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Abstract 
Innovative approaches are required to face current academic 
challenges in engineering, such as increasing withdrawals from 
studies and a small number of female students. This article 
presents a remote lab exercise in the automotive domain targeting 
embedded system architectures and their programming. In the 
automotive industry, Electronic Control Units (ECUs) become 
more and more important. Advanced Driver Assistant Systems 
(ADAS) can help to increase safety and comfort. The efficient 
development of ADAS is therefore of high importance and 
mandatory for industrial competitiveness. Using the presented 
remote lab, students in electrical engineering and computer 
science can be introduced to this important topic in an early phase 
of their career. The exercise targets the development of an ECU 
that exemplary supports the driver in an everyday scenario. The 
development environment consists of National Instruments 
LabVIEW software connected to a car simulator. 
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1. Introduction 
ELLI, as abbreviation for „Exzellentes Lehren und Lernen in den 
Ingenieurswissenschaften“ – „Excellent Teaching and Learning in 
Engineering“ combines the expertise of three universities in the 
German state North Rhine-Westphalia: RWTH Aachen 
University, Ruhr-University Bochum and the Technical 
University Dortmund. The goal of ELLI is to increase the quality 
of teaching and to improve the conditions for studying. With a 
focus on remote-learning environments, support of mobility and 
internationalization, professional competence and student 
lifecycle, ELLI targets innovative approaches regarding current 
academic challenges. It tries to decrease withdrawals from studies 
and to support the enrollment of female students. 

This article describes a remote lab exercise, as part of ELLI. 
Students get the chance to develop Advanced Driver Assistance 
Systems (ADAS) using a LabVIEW-based environment. 
LabVIEW was selected as base system, as it can be integrated to 
the ELLI web interface. A server enables the parameterization of 
the LabVIEW Virtual Instrument (VI) across an Ethernet network. 
Students can access the remote labs at reserved times and 
accomplish their tasks from any computer on the internet. 

The exercise targets the development of an ECU that exemplary 
supports the driver in an everyday scenario. The LabVIEW design 
software is hereby connected to a car simulator. The ECU consists 
of a virtual System-on-Chip (SoC) [1]. SoCs basically combine 
two views on an embedded system. On the one hand processors 
can be used to execute software while on the other hand 
peripheral modules can process sensor data and control actuators 
in parallel. The architecture of embedded systems and the fact that 
hardware structures get more and more complex play important 
roles in this context. One has therefore to distinguish between 
functionality on the software and on the hardware layer. A so 
called Hardware/Software Co-Design approach combines the 
development of the software with the simultaneous development 
of hardware. In the remote lab, the students can use a simple 
accumulator architecture to access peripheral modules via 
memory-mapping. 

The paper is structured in the following manner: Section 2 
presents related work in the area of E-Learning, remote labs and 
virtual system platforms. Section 3 shows the experimental setup 
including the LabVIEW application and the remaining features of 
the exercise. After presenting the user interface in Section 4, the 
planned experiments are shown in Section 5. The paper is 
concluded in Section 6. 

2. Related Work 
A LabVIEW-based remote laboratory is presented in [2]. It allows 
controlling a multi-pipe fluid flow experiment. Students can 
develop their own algorithms, using engineering software, and 
observe the results. A testbed is available that can be used to 
obtain parameters. The Chalmers University of Technology uses a 
LabVIEW-based remote Lab in the context of the automotive 
industry [3]. Students can use a web interface to control an 
electric drives system and to understand its design, the modeling 
and the assessment. The web course was successfully evaluated 
by the students. Kalúz et al. [4] present a hardware/software 
architecture for automatic-control remote laboratories. The novel 
approach is based on programmable logic controllers and 
industrial network routers. A web page with on-the-fly content 
generation, based on JavaScript, is presented. The authors 
evaluate their approach with the example of a thermo-optical 
education system and other remote laboratories. 
Besides the simulation of a SoC in LabVIEW, alternatives exist 
that can be used to provide a virtual system. The open-source 
machine emulator and virtualizer QEMU [5] uses a dynamic 
translation of processor instructions of the guest system to 
instructions for the host system. QEMU achieves a high 
performance and can be extended with user-defined peripherals. 



These peripherals could handle the connection with the car 
simulator and provide all the required functionality that exists 
besides the presented accumulator architecture in LabVIEW. A 
use case for these peripheral extensions is shown in [6], 
demonstrating the usage of QEMU for the emulation of 
Networks-on-Chip (NoCs). Gem5 is a modular simulator for 
different CPU processor models and memory systems [7]. 
Different layers of abstraction exist that can be used to find a 
tradeoff between simulation accuracy and performance. The 
available Instruction Set Architectures are ARM, ALPHA, MIPS, 
Power, SPARC and x86. It is furthermore possible to execute an 
Operating System (OS) on the virtual processors. Due to the 
flexible structure of Gem5, future versions of the presented 
remote lab could also utilize this simulator to enable a fine-
grained view on the Processing System (PS). The Virtual System 
Platform (VSP), provided by Cadence [8], can be used to analyze 
hardware and software behavior at an early point in the 
development cycle. It is possible to extend the functionality of the 
simulator by custom made components. The Cadence VSP 
therefore supports the approach that is presented in this paper: 
External peripheral components can be implemented in virtual 
programmable logic, while accurate processor models execute 
functionality in software. 
For this exercise, LabVIEW is used as it provides a flexible 
development environment. Getting started with LabVIEW is an 
easy task, even for Bachelor students. In future versions, the 
exercise can be extended with the aforementioned simulators. 

3. Experiment Setup 
The students, who connect to the experiment remotely, have 
access to a user interface that is written in LabVIEW. It is split 
into a programmer window, to develop an assembler application 
for the processor of the ECU, and a simulator window, to execute 
the assembler code. After the start of the experiment, the students 
enter their application into the programmer window. During the 
simulation process, commands are sent to the driving simulator 
and simulation data of the car is received. Moreover, current 
information about the ECU state, such as its data memory, is 
displayed. The overall setup is shown in Figure 1. The LabVIEW 
application (LabVIEW VI) running on the host computer uses a 
DLL to open a network socket and to connect to a local server. 
The server is necessary as the driving simulator supports only one 
incoming connection. A second connection can be opened by a 
supervisor who can control the simulated environment during the 
lab exercise. The protocol is based on TCP/IP and data transfers 
are constructed as strings, which can contain commands for the 
simulator or data from it. Inside the DLL, the data is parsed into 
the correct string format and subsequently send over a local 
network socket.  
 

 
Figure 1: Setup of the Experiment 

3.1 LabVIEW Application 
The LabVIEW VI consists of two finite state machines (FSM).  
These FSM implement the programmer and the simulator. Their 
interfaces are described in Section 4. 
The programmer is used to write the assembler code of the ECU’s 
processor into the program memory. The corresponding FSM is 
shown in Figure 2. It is possible to store new instructions and to 
set the address of the program memory, in order to write to 
arbitrary addresses. After the code is stored in the program 
memory, the students can start the simulator and the data is passed 
to the next FSM. 
 

 
Figure 2: Programmer State Machine 

 
The simulator FSM communicates with the car simulator in every 
cycle in order to update the sensor data of the car simulation. 
Moreover, the user can choose to execute the next instruction or to 
change the state of one of the cockpit inputs and outputs, such as 
the cruise control and the radio. 
 

 
Figure 3: Simulator State Machine 

 

3.2 ECU Processor Architecture 
In order to teach the concept of memory-mapping, to show 
students the meaning of registers, and to be compliant with the 
offered lectures Computer Architecture and Hardware/Software 



Codesign at the Ruhr-University Bochum, the accumulator 
architecture has been chosen as the basis for this exercise. 
Furthermore, the accumulator machine is an excellent entry in the 
topic of processor architecture and therefore of great importance 
from the didactic point of view. The structure of the chosen 
accumulator machine is depicted in Figure 4. 
 

 
Figure 4: Accumulator Architecture 

 
The accumulator architecture is a very basic architecture 
compared to today’s x86 architecture. The result of an operation is 
always written into the accumulator register. Commands can 
access the memory directly and operations with two operands 
fetch one from the accumulator register and the other one from 
memory. A list of available commands is given in Table 1. 
 

Table 1: Available Commands 
Command Operand Description 

Load [Addr] Load content from memory into the accumulator register 

Store [Addr] Store content from the accumulator into memory 

Add [Addr] Replace content of the accumulator by the sum of the 
accumulator value and the value at memory address [Addr] 

Sub [Addr] Replace content of the accumulator by the substraction of the 
accumulator value and the value at memory address [Addr] 

Mult [Addr] Replace content of the accumulator by the multiplication of the 
accumulator value and the value at memory address [Addr] 

BGT [Addr] Executes the following command if the value of the value at 
memory address [Addr] is greater than the accumulator 
content’s value 

BST [Addr] Executes the following command if the value of the value at 
memory address [Addr] is smaller than the accumulator 
content’s value 

BEQ [Addr] Executes the following command if the value of the value at 
memory address [Addr] is equal to the accumulator content’s 
value 

JMP [Addr] Jumps to address [Addr] 

NOP  No operation will be executed by the processor  

 
Moreover, the student will learn about resource usage of 
processors implementation in a theoretic part of the lab exercise. 
For this, a basic architecture, such as the accumulator, shows a 
significant difference in necessary resources compared to today’s 
microprocessors. 
On the other side, it is a good example to teach students the 
downside of having only few, here one, internal registers.  
Together with the theoretical part, they learn the costs of the 
memory access that is necessary in every command listed in Table 
1.  

3.3 Processor Peripherals 
The peripheral modules of the processor can be accessed via 
memory-mapped I/O. Therefore, students will learn that certain 
memory addresses do not refer to the data memory of the 
processor but to registers of processor peripherals. The memory 
address mapping is listed in Table 2. A description of the internals 
behind the memory-mapped I/O is given in the theoretic part. 
 

Table 2: Memory Address Mapping 
Address Function Read/ 

Write 
Description 

0 - 15 Memory Rd/Wr Data memory block 

16 Car reset Rd/Wr Reset car 

17 Brake Rd/Wr Brake on/off 

18 Memory Rd/Wr  

19 Light Rd/Wr Light on/off 

20 Radio Rd/Wr Radio on/off 

21 Handbrake Rd/Wr Handbrake on/off 

22 Cruise control Rd/Wr Cruise control on/off 

23 unavailable % Read and writes are not allowed 

24 Ignition Rd/Wr Ignition on/off 

25 Steer angle Rd/Wr Steering wheel position in degree: 0 to 360 

26 Brake pedal Rd/Wr Brake pedal push state in percent: 0 to 100 

27 Accelerator 
pedal 

Rd/Wr Accelerator pedal push state in percent: 0 to 100 

28-36 Memory Rd/Wr Data memory block 

37 Seatbelt sensor Rd Seatbelt state open (0) / close (1) 

38 Cruise control  Rd Cruise control button pressed (1) / released (0) 

39-63 Memory Rd/Wr Data memory block 

 

3.4 Car Simulator 
A car simulator allows the testing of automotive components in a 
safe but accurate environment. The cockpit is hereby equipped 
with a driver seat, a steering wheel, pedals for brake and 
acceleration, and functionality that is provided by software. 
For the purpose of the presented remote experiment, the car 
simulator „Trainer F12PT-3L40“, manufactured by Foerst GmbH 
[9], is used. It is shown in Figure 5 and consists of a single-seated 
car cockpit with three monitors for visualization. The simulator 
includes all relevant electrical and electronic devices that can be 
used to extend its functionality, such as interfaces and control 
units. Sensors consecutively measure information that is 
processed by the control software. The communication of the car 
simulator with external components is enabled by an integrated 
computer system via an Ethernet interface. The Ethernet interface 
allows the remote control of the simulated environment and the 
simulated vehicle. This interface also allows reading out values 
from the virtual car represented by the car simulator. The car 
simulator is therefore suitable for the development of ADAS, as it 
is flexible and accurate. Via the Ethernet interface, ECUs can send 
relevant control information to the car simulator that reacts on the 
incoming data. Also sensor data is transmitted to the sender on 
request. The car simulator hereby acts as server and listens to 
incoming TCP/IP connections on a predefined port. Requests to 
the simulator are capsuled in a message container. 



 
Figure 5: Foerst Trainer F12PT-3L40 

All in all, more than 150 functions are available that can be used 
to manipulate the driving behavior, weather conditions and 
vehicle parameters. Also critical driving situations can be 
instantiated by respective functions. 

Conceivable is also the analysis of the driving environment by 
specialized image processing algorithms. This can exemplary 
include the traffic signs or lane detection. The car can 
automatically react in the case of an emergency or inform the 
driver appropriately. 

Within the driving environment, each car is identifiable by a 
unique id. It is furthermore possible to calculate the distance 
between two cars. With this information, an adaptive cruise 
control system can be implemented that keeps the distance to a car 
in front of the driver’s car constant. 

The Ethernet interface can moreover be used to connect the car 
simulator to external development environments, such as 
Matlab/Simulink or LabView. These environments can improve 
the design of control units and help to analyze the results on a 
graphical user interface (GUI). 

The car simulator is hence a flexible tool for the development of 
ADAS and other areas of research, right up to car to car 
communication technology. 

4. Graphical User Interface 
The user interface is accessed remotely through the website of the 
ELLI project. The access to the LabVIEW VI is enabled through a 
framework which is based on the Microsoft Internet Information 
Server. In this section we are going to present the two views of the 
graphical user interface (GUI), the programmer and the simulator 
view. The webserver framework is not part of this article. 

4.1 Programmer View 
The programmer view is used for adding instructions and their 
arguments to the program memory of the ECU processor. It is 
depicted in Figure 6. During start or reset, the program memory 
address is set to the first address, 0. The address can be changed 
by the address field and the “Set” button. These two elements are 
labeled with ‘1’. The students can use this to insert a subroutine at 
a specific memory location. The content in the program memory 
cannot be moved. Therefore, the developer needs to schedule the 
program memory layout before loading the program. By doing so, 
the students are forced to plan the size of their program. 
The overall memory size is given on the lower left side of the 
programming window, labeled with ‘3’. Instructions can be 
loaded into the memory by the inputs labeled with ‘2’. The 
available commands correspond to the ones listed in Table 1. The 
input ‘Value’ is used as operand value. 
 

 
Figure 6: Programmer View 

 
When the program is written to the program memory, the 
simulation can be started by pressing the “Simulate” button on the 
lower right side of the programmer view window.  
 

 
Figure 7: Accumulator Architecture Simulator View 

 

4.2 Simulator View 
During the simulation the current program counter (PC), 
instruction and its operand are shown in the section labeled with 
‘1’ in Figure 7. The user can simulate input signals such as 
closing the seatbelt or turning the cruise control on or off by the 
buttons in the “User Input” section labeled with ‘2’. The memory 



content is shown in the section labeled with ‘3’. This section also 
shows the accumulator register content, as well as the state of 
some of the registers which are mapped in the memory space. The 
“Simulation Information” section, labeled with ‘4’, shows the 
current state of the simulation. 
The simulated cycles correspond to the cycles of the processor 
which executes one instruction per cycle. The simulation cycles 
are the cycles the simulator FSM is executed. Moreover, the 
current state of the weather inside the simulated environment is 
indicated. 
In order to stop the simulation, the “Stop Simulation” button can 
be used.  

5. Experiment 
The remote experiment implemented within the ELLI project 
targets the implementation of a basic ECU program, which 
controls parts of the car after the power on process. Moreover, it 
monitors user inputs to activate the cruise control and triggers the 
cruise control peripheral module. 
Therefore, the students need to implement the following 
sequence: 
First they should check whether the driver’s seatbelt is closed or 
not. If this is the case, the motor can be started. Afterwards, the 
weather should be checked. If it is foggy, rainy, twilight or night, 
the lights should be switched on. Otherwise, they should be 
switched off. After checking the weather conditions and before 
the driver starts driving, the radio should be turned on and the 
electronic handbrake must be released. 
If the cruise control button is pressed while driving, the program 
should activate the cruise control peripheral module in order to 
keep the current velocity. 

6. Conclusion and Outlook 
This article presents a remote laboratory in the domain of 
automotive ECU development and embedded systems. A car 
simulator is connected to a LabVIEW environment, realizing an 
accumulator architecture. Students can remotely access the 
LabVIEW VI to manipulate the driving scenario based on custom 
algorithms. The exercise is part of the joint project “ELLI”. The 
project targets the improvement of teaching and innovative 
approaches to face current academic challenges. 
In the future, students will have access to the remote laboratory 
during the semester. A meaningful evaluation will also be part of 
all ELLI exercises. The students will therefore get the chance to 
further improve the remote laboratory, which will help to reach 
the goals of the overall project. 
If the feedback of the students is positive and the evaluation is 
successful, it is also planned to extend the exercise by adding 
more experiments with more complex processor models and NoC 
based architectures. One possible extension is the integration of 
MPSoCSim [10], which is a current research project within our 
groups. The web interface of the remote laboratory can be 

extended to enable the parameterization of the NoC simulator. 
This enabled more advanced experiments with more advanced 
driver assistance systems. 
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