
Development of Advanced Driver Assistance Systems
using LabVIEW and a Car Simulator

Benedikt Janßen, Philipp Wehner, Diana Göhringer, Michael Hübner
Chair for Embedded Systems for Information Technology and Application-Specific Multi-Core Architectures Group

Faculty for Electrical Engineering and Information Technology
Ruhr-University Bochum, Germany

{benedikt.janssen, philipp.wehner, diana.goehringer, michael.huebner}@rub.de

Abstract
Innovative approaches are required to face current academic
challenges in engineering, such as increasing withdrawals from
studies and a small number of female students. This article
presents a remote lab exercise in the automotive domain targeting
embedded system architectures and their programming. In the
automotive industry, Electronic Control Units (ECUs) become
more and more important. Advanced Driver Assistant Systems
(ADAS) can help to increase safety and comfort. The efficient
development of ADAS is therefore of high importance and
mandatory for industrial competitiveness. Using the presented
remote lab, students in electrical engineering and computer
science can be introduced to this important topic in an early phase
of their career. The exercise targets the development of an ECU
that exemplary supports the driver in an everyday scenario. The
development environment consists of National Instruments
LabVIEW software connected to a car simulator.

• Keywords: Applied computing ➝ Education ➝ Interactive
learning environments • Applied computing ➝ Education ➝
Distance learning • Applied computing ➝ Education ➝ E-
learning.

Advanced Driver Assistance Systems, Automotive Electronic
Control Units, LabVIEW, E-Learning, Car Simulator

1. Introduction
ELLI, as abbreviation for „Exzellentes Lehren und Lernen in den
Ingenieurswissenschaften“ – „Excellent Teaching and Learning in
Engineering“ combines the expertise of three universities in the
German state North Rhine-Westphalia: RWTH Aachen
University, Ruhr-University Bochum and the Technical
University Dortmund. The goal of ELLI is to increase the quality
of teaching and to improve the conditions for studying. With a
focus on remote-learning environments, support of mobility and
internationalization, professional competence and student
lifecycle, ELLI targets innovative approaches regarding current
academic challenges. It tries to decrease withdrawals from studies
and to support the enrollment of female students.

This article describes a remote lab exercise, as part of ELLI.
Students get the chance to develop Advanced Driver Assistance
Systems (ADAS) using a LabVIEW-based environment.
LabVIEW was selected as base system, as it can be integrated to
the ELLI web interface. A server enables the parameterization of
the LabVIEW Virtual Instrument (VI) across an Ethernet network.
Students can access the remote labs at reserved times and
accomplish their tasks from any computer on the internet.

The exercise targets the development of an ECU that exemplary
supports the driver in an everyday scenario. The LabVIEW design
software is hereby connected to a car simulator. The ECU consists
of a virtual System-on-Chip (SoC) [1]. SoCs basically combine
two views on an embedded system. On the one hand processors
can be used to execute software while on the other hand
peripheral modules can process sensor data and control actuators
in parallel. The architecture of embedded systems and the fact that
hardware structures get more and more complex play important
roles in this context. One has therefore to distinguish between
functionality on the software and on the hardware layer. A so
called Hardware/Software Co-Design approach combines the
development of the software with the simultaneous development
of hardware. In the remote lab, the students can use a simple
accumulator architecture to access peripheral modules via
memory-mapping.

The paper is structured in the following manner: Section 2
presents related work in the area of E-Learning, remote labs and
virtual system platforms. Section 3 shows the experimental setup
including the LabVIEW application and the remaining features of
the exercise. After presenting the user interface in Section 4, the
planned experiments are shown in Section 5. The paper is
concluded in Section 6.

2. Related Work
A LabVIEW-based remote laboratory is presented in [2]. It allows
controlling a multi-pipe fluid flow experiment. Students can
develop their own algorithms, using engineering software, and
observe the results. A testbed is available that can be used to
obtain parameters. The Chalmers University of Technology uses a
LabVIEW-based remote Lab in the context of the automotive
industry [3]. Students can use a web interface to control an
electric drives system and to understand its design, the modeling
and the assessment. The web course was successfully evaluated
by the students. Kalúz et al. [4] present a hardware/software
architecture for automatic-control remote laboratories. The novel
approach is based on programmable logic controllers and
industrial network routers. A web page with on-the-fly content
generation, based on JavaScript, is presented. The authors
evaluate their approach with the example of a thermo-optical
education system and other remote laboratories.
Besides the simulation of a SoC in LabVIEW, alternatives exist
that can be used to provide a virtual system. The open-source
machine emulator and virtualizer QEMU [5] uses a dynamic
translation of processor instructions of the guest system to
instructions for the host system. QEMU achieves a high
performance and can be extended with user-defined peripherals.

These peripherals could handle the connection with the car
simulator and provide all the required functionality that exists
besides the presented accumulator architecture in LabVIEW. A
use case for these peripheral extensions is shown in [6],
demonstrating the usage of QEMU for the emulation of
Networks-on-Chip (NoCs). Gem5 is a modular simulator for
different CPU processor models and memory systems [7].
Different layers of abstraction exist that can be used to find a
tradeoff between simulation accuracy and performance. The
available Instruction Set Architectures are ARM, ALPHA, MIPS,
Power, SPARC and x86. It is furthermore possible to execute an
Operating System (OS) on the virtual processors. Due to the
flexible structure of Gem5, future versions of the presented
remote lab could also utilize this simulator to enable a fine-
grained view on the Processing System (PS). The Virtual System
Platform (VSP), provided by Cadence [8], can be used to analyze
hardware and software behavior at an early point in the
development cycle. It is possible to extend the functionality of the
simulator by custom made components. The Cadence VSP
therefore supports the approach that is presented in this paper:
External peripheral components can be implemented in virtual
programmable logic, while accurate processor models execute
functionality in software.
For this exercise, LabVIEW is used as it provides a flexible
development environment. Getting started with LabVIEW is an
easy task, even for Bachelor students. In future versions, the
exercise can be extended with the aforementioned simulators.

3. Experiment Setup
The students, who connect to the experiment remotely, have
access to a user interface that is written in LabVIEW. It is split
into a programmer window, to develop an assembler application
for the processor of the ECU, and a simulator window, to execute
the assembler code. After the start of the experiment, the students
enter their application into the programmer window. During the
simulation process, commands are sent to the driving simulator
and simulation data of the car is received. Moreover, current
information about the ECU state, such as its data memory, is
displayed. The overall setup is shown in Figure 1. The LabVIEW
application (LabVIEW VI) running on the host computer uses a
DLL to open a network socket and to connect to a local server.
The server is necessary as the driving simulator supports only one
incoming connection. A second connection can be opened by a
supervisor who can control the simulated environment during the
lab exercise. The protocol is based on TCP/IP and data transfers
are constructed as strings, which can contain commands for the
simulator or data from it. Inside the DLL, the data is parsed into
the correct string format and subsequently send over a local
network socket.

Figure 1: Setup of the Experiment

3.1 LabVIEW Application
The LabVIEW VI consists of two finite state machines (FSM).
These FSM implement the programmer and the simulator. Their
interfaces are described in Section 4.
The programmer is used to write the assembler code of the ECU’s
processor into the program memory. The corresponding FSM is
shown in Figure 2. It is possible to store new instructions and to
set the address of the program memory, in order to write to
arbitrary addresses. After the code is stored in the program
memory, the students can start the simulator and the data is passed
to the next FSM.

Figure 2: Programmer State Machine

The simulator FSM communicates with the car simulator in every
cycle in order to update the sensor data of the car simulation.
Moreover, the user can choose to execute the next instruction or to
change the state of one of the cockpit inputs and outputs, such as
the cruise control and the radio.

Figure 3: Simulator State Machine

3.2 ECU Processor Architecture
In order to teach the concept of memory-mapping, to show
students the meaning of registers, and to be compliant with the
offered lectures Computer Architecture and Hardware/Software

Codesign at the Ruhr-University Bochum, the accumulator
architecture has been chosen as the basis for this exercise.
Furthermore, the accumulator machine is an excellent entry in the
topic of processor architecture and therefore of great importance
from the didactic point of view. The structure of the chosen
accumulator machine is depicted in Figure 4.

Figure 4: Accumulator Architecture

The accumulator architecture is a very basic architecture
compared to today’s x86 architecture. The result of an operation is
always written into the accumulator register. Commands can
access the memory directly and operations with two operands
fetch one from the accumulator register and the other one from
memory. A list of available commands is given in Table 1.

Table 1: Available Commands
Command Operand Description

Load [Addr] Load content from memory into the accumulator register

Store [Addr] Store content from the accumulator into memory

Add [Addr] Replace content of the accumulator by the sum of the
accumulator value and the value at memory address [Addr]

Sub [Addr] Replace content of the accumulator by the substraction of the
accumulator value and the value at memory address [Addr]

Mult [Addr] Replace content of the accumulator by the multiplication of the
accumulator value and the value at memory address [Addr]

BGT [Addr] Executes the following command if the value of the value at
memory address [Addr] is greater than the accumulator
content’s value

BST [Addr] Executes the following command if the value of the value at
memory address [Addr] is smaller than the accumulator
content’s value

BEQ [Addr] Executes the following command if the value of the value at
memory address [Addr] is equal to the accumulator content’s
value

JMP [Addr] Jumps to address [Addr]

NOP No operation will be executed by the processor

Moreover, the student will learn about resource usage of
processors implementation in a theoretic part of the lab exercise.
For this, a basic architecture, such as the accumulator, shows a
significant difference in necessary resources compared to today’s
microprocessors.
On the other side, it is a good example to teach students the
downside of having only few, here one, internal registers.
Together with the theoretical part, they learn the costs of the
memory access that is necessary in every command listed in Table
1.

3.3 Processor Peripherals
The peripheral modules of the processor can be accessed via
memory-mapped I/O. Therefore, students will learn that certain
memory addresses do not refer to the data memory of the
processor but to registers of processor peripherals. The memory
address mapping is listed in Table 2. A description of the internals
behind the memory-mapped I/O is given in the theoretic part.

Table 2: Memory Address Mapping
Address Function Read/

Write
Description

0 - 15 Memory Rd/Wr Data memory block

16 Car reset Rd/Wr Reset car

17 Brake Rd/Wr Brake on/off

18 Memory Rd/Wr

19 Light Rd/Wr Light on/off

20 Radio Rd/Wr Radio on/off

21 Handbrake Rd/Wr Handbrake on/off

22 Cruise control Rd/Wr Cruise control on/off

23 unavailable % Read and writes are not allowed

24 Ignition Rd/Wr Ignition on/off

25 Steer angle Rd/Wr Steering wheel position in degree: 0 to 360

26 Brake pedal Rd/Wr Brake pedal push state in percent: 0 to 100

27 Accelerator
pedal

Rd/Wr Accelerator pedal push state in percent: 0 to 100

28-36 Memory Rd/Wr Data memory block

37 Seatbelt sensor Rd Seatbelt state open (0) / close (1)

38 Cruise control Rd Cruise control button pressed (1) / released (0)

39-63 Memory Rd/Wr Data memory block

3.4 Car Simulator
A car simulator allows the testing of automotive components in a
safe but accurate environment. The cockpit is hereby equipped
with a driver seat, a steering wheel, pedals for brake and
acceleration, and functionality that is provided by software.
For the purpose of the presented remote experiment, the car
simulator „Trainer F12PT-3L40“, manufactured by Foerst GmbH
[9], is used. It is shown in Figure 5 and consists of a single-seated
car cockpit with three monitors for visualization. The simulator
includes all relevant electrical and electronic devices that can be
used to extend its functionality, such as interfaces and control
units. Sensors consecutively measure information that is
processed by the control software. The communication of the car
simulator with external components is enabled by an integrated
computer system via an Ethernet interface. The Ethernet interface
allows the remote control of the simulated environment and the
simulated vehicle. This interface also allows reading out values
from the virtual car represented by the car simulator. The car
simulator is therefore suitable for the development of ADAS, as it
is flexible and accurate. Via the Ethernet interface, ECUs can send
relevant control information to the car simulator that reacts on the
incoming data. Also sensor data is transmitted to the sender on
request. The car simulator hereby acts as server and listens to
incoming TCP/IP connections on a predefined port. Requests to
the simulator are capsuled in a message container.

Figure 5: Foerst Trainer F12PT-3L40

All in all, more than 150 functions are available that can be used
to manipulate the driving behavior, weather conditions and
vehicle parameters. Also critical driving situations can be
instantiated by respective functions.

Conceivable is also the analysis of the driving environment by
specialized image processing algorithms. This can exemplary
include the traffic signs or lane detection. The car can
automatically react in the case of an emergency or inform the
driver appropriately.

Within the driving environment, each car is identifiable by a
unique id. It is furthermore possible to calculate the distance
between two cars. With this information, an adaptive cruise
control system can be implemented that keeps the distance to a car
in front of the driver’s car constant.

The Ethernet interface can moreover be used to connect the car
simulator to external development environments, such as
Matlab/Simulink or LabView. These environments can improve
the design of control units and help to analyze the results on a
graphical user interface (GUI).

The car simulator is hence a flexible tool for the development of
ADAS and other areas of research, right up to car to car
communication technology.

4. Graphical User Interface
The user interface is accessed remotely through the website of the
ELLI project. The access to the LabVIEW VI is enabled through a
framework which is based on the Microsoft Internet Information
Server. In this section we are going to present the two views of the
graphical user interface (GUI), the programmer and the simulator
view. The webserver framework is not part of this article.

4.1 Programmer View
The programmer view is used for adding instructions and their
arguments to the program memory of the ECU processor. It is
depicted in Figure 6. During start or reset, the program memory
address is set to the first address, 0. The address can be changed
by the address field and the “Set” button. These two elements are
labeled with ‘1’. The students can use this to insert a subroutine at
a specific memory location. The content in the program memory
cannot be moved. Therefore, the developer needs to schedule the
program memory layout before loading the program. By doing so,
the students are forced to plan the size of their program.
The overall memory size is given on the lower left side of the
programming window, labeled with ‘3’. Instructions can be
loaded into the memory by the inputs labeled with ‘2’. The
available commands correspond to the ones listed in Table 1. The
input ‘Value’ is used as operand value.

Figure 6: Programmer View

When the program is written to the program memory, the
simulation can be started by pressing the “Simulate” button on the
lower right side of the programmer view window.

Figure 7: Accumulator Architecture Simulator View

4.2 Simulator View
During the simulation the current program counter (PC),
instruction and its operand are shown in the section labeled with
‘1’ in Figure 7. The user can simulate input signals such as
closing the seatbelt or turning the cruise control on or off by the
buttons in the “User Input” section labeled with ‘2’. The memory

content is shown in the section labeled with ‘3’. This section also
shows the accumulator register content, as well as the state of
some of the registers which are mapped in the memory space. The
“Simulation Information” section, labeled with ‘4’, shows the
current state of the simulation.
The simulated cycles correspond to the cycles of the processor
which executes one instruction per cycle. The simulation cycles
are the cycles the simulator FSM is executed. Moreover, the
current state of the weather inside the simulated environment is
indicated.
In order to stop the simulation, the “Stop Simulation” button can
be used.

5. Experiment
The remote experiment implemented within the ELLI project
targets the implementation of a basic ECU program, which
controls parts of the car after the power on process. Moreover, it
monitors user inputs to activate the cruise control and triggers the
cruise control peripheral module.
Therefore, the students need to implement the following
sequence:
First they should check whether the driver’s seatbelt is closed or
not. If this is the case, the motor can be started. Afterwards, the
weather should be checked. If it is foggy, rainy, twilight or night,
the lights should be switched on. Otherwise, they should be
switched off. After checking the weather conditions and before
the driver starts driving, the radio should be turned on and the
electronic handbrake must be released.
If the cruise control button is pressed while driving, the program
should activate the cruise control peripheral module in order to
keep the current velocity.

6. Conclusion and Outlook
This article presents a remote laboratory in the domain of
automotive ECU development and embedded systems. A car
simulator is connected to a LabVIEW environment, realizing an
accumulator architecture. Students can remotely access the
LabVIEW VI to manipulate the driving scenario based on custom
algorithms. The exercise is part of the joint project “ELLI”. The
project targets the improvement of teaching and innovative
approaches to face current academic challenges.
In the future, students will have access to the remote laboratory
during the semester. A meaningful evaluation will also be part of
all ELLI exercises. The students will therefore get the chance to
further improve the remote laboratory, which will help to reach
the goals of the overall project.
If the feedback of the students is positive and the evaluation is
successful, it is also planned to extend the exercise by adding
more experiments with more complex processor models and NoC
based architectures. One possible extension is the integration of
MPSoCSim [10], which is a current research project within our
groups. The web interface of the remote laboratory can be

extended to enable the parameterization of the NoC simulator.
This enabled more advanced experiments with more advanced
driver assistance systems.

7. Acknowledgements
The project “ELLI” is funded by the Federal Ministry of
Education and Research and has a duration from 2011 to 2016.

8. References
[1] P. Marwedel. “Embedded System Design: Embedded

Systems Foundations of Cyber-Physical Systems”. 2nd
Edition. Springer 2010. ISBN 978-94-007-0256-1

[2] P. K. Imbrie, S. Raghavan. “Work In Progress - A Remote e-
Laboratory for Student Investigation, Manipulation and
Learning”. Proceedings Frontiers in Education 35th Annual
Conference, Indianopolis, IN, 2005, pp. F3J ff.

[3] S. T. Lundmark, A. Rabiei, T. Abdulahovic, S. Lundberg, T.
Thiringer, M. Alatalo, E. A. Grunditz, C. Du-Bar.
“Experiences from a distance course in electric drives
including on-line labs and tutorials”. XXth International
Conference on Electrical Machines (ICEM), Marseille, 2012,
pp. 3050-3055.

[4] M. Kalúz, J. García-Zubía, M. Fikar, L. Čirka. “A Flexible
and Configurable Architecture for Automatic Control
Remote Laboratories”. IEEE Transactions on Learning
Technologies, vol. 8, no. 3, pp. 299-310, July-Sept. 2015.

[5] QEMU: Open Source Processor Emulator,
http://wiki.qemu.org

[6] P. Wehner, D. Göhringer. “Parallel and Distributed
Simulation of networked Multi-Core Systems”. In: 2014
International Symposium on System-on-Chip (SoC).
Tampere, Finland, Oct. 2014, pp. 1-5.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A.
Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S.
Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, D. A. Wood. “The Gem5 Simulator”. In: SIGARCH
Comput. Archit. News 39.2 (Aug. 2011), pp. 1-7.

[8] Cadence Design Systems, Inc. “Virtual System Platform –
An open, connected, and scalable virtual prototyping
solution”. Available at: https://www.cadence.com

[9] FOERST GmbH, www.fahrsimulatoren.eu/
[10] P. Wehner, J. Rettkowski, T. Kleinschmidt, D. Göhringer.

“MPSoCSim: An extended OVP Simulator for Modeling and
Evaluation of Network-on-Chip based heterogeneous
MPSoCs”. In Proceedings of the International Conference on
Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XV), Samos, Greece, July 2015, pp.
390-395.

