
Carnegie Mellon

O2: Rethinking Open 
Sound Control 

Roger B. Dannenberg 
Carnegie Mellon University



Carnegie Mellon

Imagine…

¢ Distributed real-time music/media 
applications that…

¢ ... address “sevices” by name, not numbers,
¢ … automatically find and connect themselves,
¢ … establish an accurate shared time base,
¢ ... share low-latency, best-effort sensor data,
¢ … send guaranteed-delivery commands.

2
© 2018 Roger B. Dannenberg



Carnegie Mellon

O2 System

3
© 2018 Roger B. Dannenberg

TCP/IP

Process B

Process C

Service 2

Service 1
Service 3

Service 4

Process A

Key point: O2 assumes 
TCP/IP network; this allows 
greater functionality than 
OSC, which is network-
agnostic.



Carnegie Mellon

4

O2 Concepts
¢ Host: A computer attached to a local area 

network
¢ Process: A running program; there can 

multiple processes sharing a host
¢ Application: A collection of cooperating O2 

processes. Applications should have unique 
names, allowing multiple applications to 
operate independently on a single network

© 2018 Roger B. Dannenberg



Carnegie Mellon

5

O2 Concepts
¢ previous slide: Host, Process, Application
¢ Service: Processes can offer one or more 

services; each service in an application has a 
unique name and accepts typed messages.

¢ Address: an O2 address has the form: 
/service_name/aaa/bbb/ccc

¢ Message: an O2 address, timestamp, and list 
of typed parameters, e.g. we can write:

o2_send("/synth/noteon", 3.27, 
"iii", 1, 60, 100)

© 2018 Roger B. Dannenberg



Carnegie Mellon

Putting It Together

¢ o2_initialize(“application”); // one-time startup 
¢ o2_add_service(“service”); // per-service startup 
¢ o2_add_method(“address”, “types”, handler, data); 

¢ o2_set_clock(clock_callback_fn, info_ptr);

¢ o2_send (“address”, time, “types”, val1, val2, ...);
¢ o2_send_cmd (“address”, time, “types”, val1, ...); 

6
© 2018 Roger B. Dannenberg



Carnegie Mellon

Implementation

¢ Discovery:
§ All processes broadcast UDP “discovery” 

messages with IP address and port number
§ Receiver makes a TCP connection
§ Eventually, every process connects to every 

process
¢ Service Directory

§ Every process sends its service list to every 
discovered process (reliably over TCP).

§ Retransmit the list when it changes.

7
© 2018 Roger B. Dannenberg



Carnegie Mellon

Implementation (2)

¢ Clock Synchronization:
§ Master provides a service: “_cs”
§ Others send their reply address to “/_cs/get” to 

get the master’s time
§ Details: 

§ subtract half the round-trip time, 
§ pick best estimate, 
§ smoothing, 
§ clock rate estimation,
§ special cases for discontinuities

8
© 2018 Roger B. Dannenberg



Carnegie Mellon

Implementation (3)
¢ Address patterns (like OSC):

§ /service/??*/note[1-7]/{foo,bar}-[a-f]

¢ We use a tree of hash tables for efficient 
lookup

¢ Special form to short-circuit pattern matching:
§ !service/foo/note

¢ Written as a library in C for portability, use by 
Max, Pd, Python, etc.

¢ Processes can use scheduled, time-stamped 
messages internally: no network overhead

9
© 2018 Roger B. Dannenberg



Carnegie Mellon

Broadcast and Discovery

¢ Discovery in O2 is built on UDP broadcast 
messages.

¢ No broadcast => no discovery!
¢ We added a new feature “hubs”

§ If you identify an O2 process as your “hub” and 
provide its IP address and port number,

§ The “hub” will share all its discovery information
¢ So instead of broadcast messages, you can 

share the address of one process, and all 
processes will interconnect.

¢ Supports wide-area networking too.
10

© 2018 Roger B. Dannenberg



Carnegie Mellon

Performance

¢ Dominated by network stack in the OS kernel
¢ Compared with liblo OSC implementation,

§ Extra time to process service names is negligible
§ We got about 77K msgs/sec on a single laptop: 

2.4 GHz Intel Core i7 
§ 13μs

11
© 2018 Roger B. Dannenberg



Carnegie Mellon

What about Open Sound Control?

¢ You can receive and forward OSC messages 
from a particular O2 port to any named service

¢ You can forward O2 messages from a named 
O2 service to a particular OSC IP address and 
port

12
© 2018 Roger B. Dannenberg



Carnegie Mellon

“Sensor” 
Service

Bluetooth

ZigBee, 
Serial, 
USB, etc.

Client 1

Client 2

TCP/IP

Process B

Process C

Service 2

Service 1
Service 3

Service 4

Process A

© 2018 Roger B. Dannenberg
13



Carnegie Mellon

Example: CMU Laptop Orchestra

14
© 2018 Roger B. Dannenberg

¢ See videos at:

2017: https://youtu.be/icLUJMM-11M

2018: https://youtu.be/L-Sar4D7lIY



Carnegie Mellon

Future Work

¢ Adapt to MAX, Pd, Python, JavaScript, etc.
¢ Provide “bridge” over Bluetooth, MIDI, ZigBee, 

etc., from O2 Process to embedded device.
¢ Multi-thread support to separate network 

operations from, say, real-time audio threads
¢ Work with Vesa Norilo on audio transport and 

audio (Kronos) server

15
© 2018 Roger B. Dannenberg

https://github.com/rbdannenberg/o2



Carnegie Mellon

Conclusions

¢ O2 is a fast, flexible foundation for network 
and inter-process communication in music and 
media applications.

¢ Solves several problems of OSC:
§ No more manually typing in dynamic IP addresses 

to configure systems,
§ No risk of dropped commands (“start”, “note-off”),
§ Accurately timed message delivery – at last.

16
© 2018 Roger B. Dannenberg


