
IoT Penetration Testing: Security analysis of a car dongle

Aldin Burdzovic and Jonathan Matsson

Abstract— The ambition for Internet of Things (IoT) devices
of becoming a part of our everyday lives, is not only done
by entering our homes but also our vehicles. The demand
of attachable smart IoT products for cars is high. One such
product is the AutoPi, which connects the car to the internet and
allows for various features, usually found in high-end luxury
cars.

This paper presents an analysis of the cyber security aspects
of AutoPi. The findings presented shows that there is a critical
vulnerability in the system. The AutoPi can be exploited and full
access of the devices can be granted. The paper also discusses
what possible harm can be done through the found exploit.

Sammanfattning— Ambitionen för Internet of Things (IoT)
apparater att bli en del av det vardagligalivet sker inte endast i
våra hem, utan även i våra fordon. Efterfrågan på smarta IoT
produkter för bilar är hög. En sådan produkt är AutoPi, vilket
ansluter bilen till Internet och möjliggör för diverse funktioner
vanligtvis funna i avancerade lyxbilar.

Denna uppsats presenterar en analys av cybersäkerheten för
AutoPi. Upptäckterna som presenteras visar på att det finns en
kritisk säkerhetsbrist i systemet och full åtkomst till apparaten
kan uppnås. Uppsatsen diskutera även möjliga skador som kan
göras genom den funna sårbarheten.

I. INTRODUCTION

The Internet of Things (IoT) is one of the hottest tech
terms today and is an increasingly debated topic as there
seems to be a boundless potential for improving everyday
lives. The idea of IoT is to attach embedded devices to
everyday objects to make them ”smart”. IoT is already taking
over the automotive industry were newer vehicles often
come standard equipped with internet connection and various
IoT technology such as autonomous driving [1]. Since the
automotive market to a large extent consist of second-hand
vehicles, the demand of attachable smart IoT products is
high. Many companies are now attempting to develop such
products [2].

The company AutoPi1 have developed a smart IoT dongle
for the car that enables various features to help and assist
the end-user. The AutoPi dongle supplies the user with
valuable information and diagnostics about the vehicle while
allowing various smart features, usually found in high-end
luxury vehicles. However, the amount of connected devices
that comes with the implementation of IoT technology and
especially having them so present in our daily lives, the
important topic of security arises. Manufacturers can often
overlook security in attempt of getting their product out on
the market as quick as possible. So how great is the security
risk of these devices and what harm can be done? This paper
presents an analysis of the cyber security aspects of AutoPi.

1https://www.autopi.io

We use threat modeling to plan and prioritize the work, as
well as ethical hacking (penetration testing) to analyze the
dongle security. As a result we found a vulnerability in Au-
toPi Wi-Fi/NB and 4G/LTE devices, that up until the writing
of this report on 2019-10-15 wasn’t fixed. The company has
been informed and we have followed common responsible
disclosure protocols (90 days plus an additional 30 days after
discussions with the company). The vulnerability has been
assigned CVE-2019-12941.

II. BACKGROUND

This section introduces the reader to the topic and back-
ground information necessary for understanding the report.

A. ODB-II

On-Board-Diagnostics-II (ODB-II) is a standard which
regulates the look of the plug for the built-in car diagnostics
port. The ODB-II port allows for access to the vehicles vari-
ous sensors through communication with the car’s Electronic
Control Unit (ECU). The port is a way for external hardware
to communicate with the vehicle internal system, often used
by workshops for diagnostics and identifying errors. In 1994,
the ODB-II was standardized for all cars in the United States,
with Europe following in 2001 for all gasoline fueled cars
and in 2004 for all diesel cars [3]. Since then, ODB-II has
evolved into a much higher level of functionality allowing
more advanced diagnostics with a much greater detail. Today,
there is a growing market for devices that utilizes ODB-II in
order to provide various functionality to the end user2.

B. CAN

The Controller Area Network (CAN) is the standardized
internal network protocol in the automotive industry. CAN
is an asynchronous, multi-layer serial bus communication
protocol accessible via the cars OBD-II port. It is the first
widely accepted automotive bus protocol and has been the
standard for internal network in passenger cars for over 30
years. CAN is a broadcast type of bus, meaning that all
messages that are sent on the network are available system-
wide. The nodes in the CAN network are in fact ECUs, each
controlling a certain set of functions within the vehicle. It
relies on several rules for which node gets to transmit over
the network and which listens. The CAN frame includes a
destination field and data is multicasted on the bus where
nodes only address data which is addressed to them [5].
However, CAN was not designed to be secure from intrusion
[4], but rather to enable fast and stable communication. It

2https://www.marketwatch.com/press-release/global-obd-aftermarket-
industry-to-surpass-15bn-by-2024-global-market-insights-inc-2018-08-28

relies on that only the desired receivers are connected to the
network since there is no information about the source in
the frames, meaning that receiving nodes cannot now from
where the messages was sent and ultimately determine if it
is trustworthy or not.

C. Raspberry Pi

In 2012, the first version of the Raspberry Pi was released
and has since become an attractive product with its small
size, relative good performance, low power consumption and
affordable price. The Raspberry Pi is a simple single-board
computer, which unlike a microcontroller, runs an operating
system and also has a much faster CPU. The result is a
credit-card sized computer capable of performing most of
the tasks of a regular computer. The platform also features
WiFi, Bluetooth, Ethernet, HDMI and USB ports. It runs
on an operating system named Raspbian which is a Debian-
based Linux distribution [10].

D. AutoPi

AutoPi provides a service to make your car a ”smart car”.
A dongle is inserted into the OBD-II port of the car which
gives the dongle access to the cars internal systems. AutoPi
also provides a cloud service that lets you communicate with
the dongle remotely over the Internet.

The dongle is built on a Raspberry PI Zero which makes
it a very powerful IoT-device. Hardware of the dongle that is
of interest in this paper are WiFi, Bluetooth, 4G, A-GPS, two
USB ports and a mini-HDMI port. The dongle runs a Web
server and a Secure Shell (SSH) server which are reachable
from the internal WiFi network.

The dongle also runs software developed by the AutoPi
team to simplify communication with the car and dongle. For
instance, the provided API lets the user run simple HTTPS
requests to record and replay commands on the CAN bus.
The software is open source under the Apache License and
can be found on github3.

The AutoPi is sold in several editions offering differ-
ent services. This paper will address the ”4G/LTE Edition
GEN2”-edition which is the fully equipped high end model.
Some results presented in this paper might be applicable to
other models as well.

E. Threat Modelling

Threat modeling is used to get a better understanding
of possible security threats to a system [12, p. 32]. The
process usually starts by producing a very general idea about
possible threats and stepwise produce more tangible and
detailed threats. A good threat model will not only help
finding threats, but also help prioritize threats according to
their severity and discoverability.

3https://github.com/autopi-io/autopi-core

F. Ethics
The paper is focused on testing security of an IoT device

intended for cars. This is done by hacking and finding
vulnerabilities in the device. This raises an ethical dilemma.
Is it morally okay to find and publish vulnerabilities of
devices which can be used for something harmful, even if
the motive behind it is good?

To make tech products unhackable, they basically have to
be very simple with less functionality. However, tech prod-
ucts are getting more and more complex with advanced sys-
tems and greater functionality. This leaves much more room
for security flaws in those products. These security flaws can
be exploited by hackers. Normally, when people hear the
word hacker, they think of criminals. But there are ”ethical
hackers”, who for a living, exposes the vulnerabilities of
these products. The reasoning behind ethical hacking is that
it is better for someone ”good” to find the vulnerabilities
before someone ”bad” finds them. Hence, it is better for
someone trusted to find and report the vulnerabilities before
criminals exploit them.

When finding a vulnerability, it is important to disclose it
in a responsible way. This is done by notifying the developers
of the vulnerability and giving them time to patch it before
disclosing the vulnerability to the public. For the vulner-
abilities found in this paper, a 90 day disclosure deadline
was given to the developers. This method of responsible
disclosure is taken from the Google Project Zero4 to match
industry standards. A deadline also pushes the developers
to patch the system and improve their security in a timely
manner.

III. THREAT MODELING

The thread model is the foundation of which the security
testing is based upon. The threat modeling for the AutoPi
system documented in this paper follows the steps described
in the book ”IoT Penetration testing cookbook” [12, p. 42].

A. System Model
The premise of the AutoPi service is to let its end users

have full control over their dongles and modify them to fit
their needs. This opens up for possible security holes as the
end users might not be particularly experienced with security.
Since the possibility of modification is practically endless,
it is impossible to consider all possible security risks in
this paper. Therefore, the paper is focused on security of
dongles using the pre-installed hardware and software with
only slight modifications of the default settings.

Figure 1 is a simple overview of the system components
that pose a security risk. Every item in the figure is explained
in more details in the list underneath. Components that we
do not see as a possible security threat have been excluded
from our system model.

1) AutoPi: This is the main device. The dongle is built
on a Raspberry PI Zero with Raspbian as the pre-
installed operating system. This opens up for potential

4https://googleprojectzero.blogspot.com/2015/02/feedback-and-data-
driven-updates-to.html

Fig. 1. Simplified threat model

attack surfaces since the Raspberry PI contains more
complexity compared to a simple embedded system.
While the car is turned off, the dongle will sleep for
cycles of 2 hours and wake up for 5 minutes between
sleep cycles. This is to prevent drainage of the car
battery.

2) Bluetooth: The AutoPi comes with Bluetooth 4.1 and
Bluetooth Low Energy (BLE). There are no default soft-
ware on the device which uses Bluetooth. It is mainly
for connecting third-party products through, combined
with self-written code on the device, to accomplish
some wanted feature.

3) Physical connections: The devices comes with physical
ports that can be used to for implementing additional
functionality to the dongle. The dongle has two USB
2.0 ports, one mini-HDMI port and 18 GPIO pins.

4) OBD: The device is connected to the OBD-II port of the
car. The OBD-II port provides the dongle with power
and is also used for communication between dongle and
car. Some examples of functions that this port can be
used for are remotely starting the car5 or unlocking the
car6.

5) WiFi: The device can act both as a WiFi hotspot and a
WiFi client. When connected to 4G, the device can be a
WiFi hotspot so that other may connect to the network
to gain internet connection. Also, the device itself can
connect to a WiFi network to establish an internet
connection without depending on 4G connection. When
connected to the AutoPi dongles WiFi network, one
have access to the local web portal of the devices. The
web portal allows for various network configuration,
also including a terminal to run commands on the
device.
When connected to the WiFi, it is also possible to
SSH into the device. Both the web portal terminal and
the SSH terminal grants root access, meaning that full

5https://www.autopi.io/use-cases/remote-start/
6https://www.autopi.io/use-cases/auto-lock-unlock/

access of the devices is given when connected through
WiFi.

6) GPS: The device comes with a GPS module for real-
time tracking of position, speed and altitude. It includes
Assisted-GPS (A-GPS) to improve startup performance.

7) 4G: Internet connection is provided through a built in
4G-module. A sim-card is required. This is a highly
secure network since 4G encrypts the traffic between
the device and the base station [11].

8) Cloud Servers: There are two cloud servers providing
different services. One server communicates with end
users and one communicates with dongles. The com-
munication with end users will be sent over HTTPS
and the communication with dongles will be sent with
the SaltStack protocol.

9) Web Portal: The web portal, also known as the Au-
toPi Cloud software platform, allows for a dashboard
environment where the user remotely can monitor and
perform certain actions regarding the AutoPi. For in-
stance, the web portal displays data both from the car’s
internal computer and from external devices connected
to the AutoPi. The web portal also includes a terminal
for sending commands to be run on the AutoPi. The
terminal provided grants the user with root access.

B. Identifying Threats

The simplified threat model in Figure 1 gives an overview
of attack vectors. The threat model is then used to identify
explicit threats to help with documentation of threats. The
STRIDE method is used to get a general understanding of
possible threats. The most severe and discoverable threats
found via the STRIDE method are documented in greater
detail and ranked according to the DREAD method.

C. STRIDE

The STRIDE method is used to identify and categories
threats [12, p. 49] and is a commonly used in threat modeling
of vehicles [6]. STRIDE is an acronym for Spoofing of user
identity, Tampering, Repudiation, Information Disclosure,
Denial of Service and Elevation of Privilege.

These categories are used to help and ensure that all type
of threats are considered. The threats found with the method
can be seen in the list underneath:

Spoofing of user identity
– Claiming to be another user to get control over other

dongles.
– Pretending to be the cloud server and intercept traffic

from users and dongles destined to the real cloud
server.

– Impersonating another dongle to retrieve unautho-
rized information from the cloud server.

Tampering
– Modifying data sent between client, dongle and

server.
Repudiation

Information Disclosure
– Intercept data sent between client, dongle and server.
– Capture data sent on the vehicles CAN bus.
– Set up a monitoring access point.
Denial of Service
– Bring down the dongles WiFi to prevent communi-

cation between client and dongle.
– Bring down the dongles 4G connection to prevent

communication between dongle and server.
Elevation of Privilege
– Bypass WiFi authorization and connect to the device

with root access.
– Brute force web portal password to access dongle

web platform which gives root access.

The four threats that we saw as most severe and discover-
able was documented in greater detail. These threats can be
seen in Tables I through IV.

TABLE I
THREAT 1

Threat description Intercepting and modifying traffic sent between
dongle and server

Threat target Network interface between dongle and server
Attack techniques Man-in-the-middle between dongle and server
Countermeasures Authorize the dongle and server to each other

TABLE II
THREAT 2

Threat description Attacker bypasses the WiFi authorization and
connects to the dongles WiFi network

Threat target AutoPi dongle
Attack techniques The attacker brute forces a large variety of

common/random passwords to authenticate to
the network

Countermeasures Use complex password

TABLE III
THREAT 3

Threat description Claiming to be another user to get control over
dongles that the perpetrator should not have
access to

Threat target Web server and access tokens
Attack techniques Phishing or bruteforce to obtain login creden-

tials. Modification of access tokens.
Countermeasures Preventing large numbers of login attempts in a

short amount of time and reduces login verifica-
tion speed. Thorough checks on access tokens

D. DREAD

The threats were ranked according to the DREAD
method[12, p. 33]. DREAD is an acronym for Damage

TABLE IV
THREAT 4

Threat description Vulnerable services running on the dongle
Threat target AutoPi dongle
Attack techniques Scanning ports
Countermeasures Keep services up-to-date and implement good

firewall rules

potential, Reproducibility, Exploitability, Affected users and
Discoverability.

Every threat were given a score between 1 through 3 for
every category (1 being the lowest value and 3 the highest).
The score of all categories were summed to give a total score.
The threats can then be prioritized according to their total
score. The DREAD ranking can be seen in Table V.

TABLE V
DREAD RANKING

Threat 1 Threat 2 Threat 3 Threat 4
D 2 3 3 2
R 2 1 1 2
E 1 2 3 3
A 3 1 1 3
D 1 2 2 2

Total 9 9 10 12

IV. THEORY

With consideration to the threat model from previous
chapter, it is evident that the greatest attack vectors are
communication involving the cloud server and the WiFi
network since three out of the four threats are applicable
to those component. The WiFi is remotely accessible from
outside of the car and a host connected to the WiFi network
will have root access to the device. The same applies to the
cloud server. This paper is therefore primarily focused on
threats regarding those two components.

A. Dongle services

Services running on the dongle that are of interest to this
paper is services that are remotely reachable. This includes
services that are listening on a specific port that is reachable
through the firewall of the dongle or services that in some
way communicate with hosts outside the dongle. The Iptable
rules of the dongle7 specifies the open ports on which the
dongle listens (these services are only reachable from the
dongles local WiFi network). They can be seen in Table VI.

Because of the strict firewall rules, the only services
reachable from hosts outside the dongles own local WiFi are
services that initiates the connection towards outside hosts.

Some of the applications running on the dongle might have
known vulnerabilities that can be used to exploit the dongle.

7https://github.com/autopi-io/autopi-core/blob/master/src/salt/base
/state/network/wlan/hotspot/iptables-ipv4.rules

TABLE VI
OPEN PORTS AND CORRESPONDING SERVICES

Service Port
SSH 22 (TCP)
DNS 53 (TCP & UDP)

DHCP 67 (UDP)
HTTP 80 (TCP)

HTTP (API) 9000 (TCP)

A common way of finding vulnerabilities for applications are
with the use of the Common Vulnerabilities and Exposures
(CVE) list8 which contains publicly known vulnerabilities.

The services that are reachable remotely within WiFi range
are: the WiFi hotspot (hostapd version 2.4), the WiFi client
(wpa supplicant version 2.4) and the WiFi DHCP client
(dhcpcd version 6.11.5). Services that communicate over the
Internet are SaltStack (version 2017.7.5) and HTTPS request
are sent via the python library requests (version 2.12.4).
There are no severe vulnerabilities reported of these services
applicable to the dongle.

B. Wifi hotspot
The WiFi hotspot is configured to use WPA2 encryption

with a 12 hexadecimal number as password. The password
is obtained from the first 12 characters of the dongle id and
the SSID is the 12 last characters of the dongle id prepended
with ”AutoPi-”. The dongle id is the same as the minion id
which is used by the dongle to identify itself to the salt-
master. The process of producing the minion id can be seen
on row 9 in the minion install file9:

- name: "grep Serial /proc/cpuinfo | awk ’{print
$3}’ | md5sum | awk ’{print $1}’ | tee
/etc/salt/minion_id | cut -c21- | sed
’s/ˆ/autopi-/g’ > /etc/hostname"

The minion id is a Message Digest 5 (md5) hash of the
Raspberry Pi’s serial number found in /proc/cpuinfo. Md5
is a hash function which purpose is to create signatures
of large files and is therefore designed to be a fast hash
function [9]. It is not intended to encrypt the given input. The
serial number is a random string between ”00000000” and
”FFFFFFFF” with 8 zeros padded in front. 8 hex characters
gives a total of 168 possible combinations. This means that
there are 168 possible outputs from the md5 hash function
with a serial number as input. So even though the md5 hash
is 32 hex characters long, there are only a small subset (168)
of those combinations used. One can also see that the last
12 characters of the md5 hash (prefixed with ”AutoPi-”) is
used as the hostname of the dongle.

C. Wifi client
The WiFi client is continuously trying to connect to known

WiFi networks. If it is connected to a WiFi AP, the WiFi

8https://cve.mitre.org/
9https://github.com/autopi-io/autopi-core/blob/master/src/salt/base/state

/minion/install.sls

connection will be preferred over the 4G network. This
means that the dongle will send all outgoing traffic over the
WiFi connection, including its DNS request.

D. Cloud servers
The cloud service can be divided into three distinct parts:

The website, the RESTful API and the salt-master.
1) Website: The website uses django auth for authentica-

tion10. Anyone is free to create an account. A dongle
is linked to a specific account by entering the dongles
dongle id. An account can be linked to multiple dongles.
As default, a dongle is only allowed to be linked with
one account, but that limit can be increased by the
AutoPi staff manually if requested. Most of the websites
functionality uses the RESTful API as backend.

2) RESTful API: The API service runs over HTTPS and
provides a simple way to communicate with the cloud
service. Authentication is done using the Authorization
header of the HTTPS request. There are two types of
tokens that can be used to authorize an API call: a
”bearer”-token or a ”token”-token.
The ”bearer”-token is obtained by providing a valid
username and password. The returned token has the
JSON Web Token (JWT) format11. The JWT token is
base64 encoded and separated into three parts: Header,
payload and signature.
The headers (in AutoPi’s implementation of the JWT)
specifies the algorithm used for the signature and that
this is in fact a JWT token. The algorithm used is
HMAC-SHA256 [7] which is highly secure unless a
very simple key is provided during encryption.
The payload contains the username, user id and e-mail
of the user that this token is valid for. It also contains
the date at which this token becomes invalid. This is set
to eight hours.
The signature is, as state previously, created with the
HMAC-SHA256 algorithm which takes the headers and
payload as input combined with a secret key. This
provides integrity as a modification of the headers or
payload will invalidate the signature.
The ”token”-token is a static value that is used by
the dongle to communicate with the cloud server au-
tonomously without any user interaction. It can only be
used to upload event data and retrieve custom modules
from the cloud.

3) Salt-Master: AutoPi uses SaltStack to simplify the
infrastructure and communication between their cloud
server and the dongles. SaltStack uses a publish and
subscribe pattern. The dongles (also known as salt-
minions) subscribe to topics and the server (also known
as the salt-master) publishes data on those topics. Salt-
stack’s implementation of the pattern ensures that it is
the salt-master that initiates all communication.
The authentication between salt-master and salt-minion
are done using a minion id (which is the same as

10https://docs.djangoproject.com/en/2.2/topics/auth/
11https://jwt.io/introduction/

the dongle id) and RSA keys. The first time the salt-
minion connects to the salt-master, the salt-master saves
the RSA public key received from the salt-minion and
links it to the corresponding minion id. The salt-minion
saves the RSA public key received from the salt-master.
This procedure is done before the product is sent to
the customer and ensures that the salt-master and the
salt-minion have a way to authenticate each other. All
subsequent traffic sent between the two is encrypted
using Advanced Encryption Standard (AES).

V. METHOD

This chapter introduces the methodology used throughout
the work.

A. WiFi hotspot

As all traffic on the WiFi network is securely encrypted,
there are not much information gained from sniffing the
traffic from a host outside the network. The only information
that can be gathered are the MAC-addresses of computers
on the network and the SSID used by the access point.
This leaves two possible entry points: gaining access by
manipulating the back end hostapd application during the
WPA2 handshake or gaining access by sending the correct
password.

The fastest way to brute force a WiFi network is to
catch the 4-way handshake used in the WPA2 protocol
to authenticate a client with the AP12. These packets can
then be used to brute force the password locally. Since
the password is a 12 character hex string, there are 1612

possible combinations. Using hashcat13 on a GPU doing ˜180
kHashes/sec would go through all possible 12 hex character
passwords (1612) in:

1612

180000
≈ 50 years

With the knowledge that there are only 168 possible dongle
id’s (from which the WiFi password is taken), one can brute
force the passwords in 168 tries:

168

180000
≈ 6.6 hours

The SSID of the network contains the 12 last characters
of the dongle id. The SSID is broadcasted to everyone in the
vicinity of the car. This information can be used to deduce
the whole dongle id which contains the WiFi password.

All dongle ids with the last 12 characters equal to the 12
characters of the SSIDs is candidates for being the correct
dongle id. This method does not require the attacker to
catch a WPA2 handshake which means that it can be used
without the need for an external user to be connected to the
network. This method is also a lot faster since the md5 hash
is designed to do fast hashing of large files [9] while the
PBKDF2 used in WPA2 is deliberately slow to reduce the
effectiveness of brute force attacks [8].

12https://www.aircrack-ng.org/doku.php?id=cracking wpa
13https://hashcat.net/wiki/

A program was written in java to exploit this vulnerability.
The program took the 12 hex characters of the SSID as input
and returned all possible dongle ids. This program went
through multiple iterations to optimize the run time. The
program was later branched out into two programs using
different methods: one using GPU supported brute forcing
and one precomputing a wordlist containing all possible
dongle ids sorted by their last 12 characters (the part found
in the SSID) that can be search through by e.g. a binary
search algorithm.

As the first method requires a powerful GPU and the other
method requires a lot of disk drive space, both programs were
run on a desktop computer. The programs listened on a TCP
port for the input SSID and returned the correct hash over
the TCP connection which allows a perpetrator to perform
the hack remotely within the WiFi range of the car.

B. WiFi client

When connected to the AutoPi through its WiFi hotspot,
one can access the local web portal of the device through
local.autopi.io. This portal is, among others, used for network
configuration and is where the user would configure the 4G
or the WiFi connection. However, the WiFi already comes
preconfigured with one network. There is a preconfigured
WiFi network with SSID ”AutoPi QC” and password ”au-
topi2019”, which we assume is for the manufacturer’s quality
control, hence the ”QC”. To exploit this, a hotspot was set
up with these credentials. The AutoPi is configured so that it
prioritizes known WiFi networks over a 4G connection. Since
the AutoPi is constantly scanning for known WiFi networks,
the connection to the fake WiFi hotspot was established in
less than a minute and all traffic is directed to the WiFi
network instead of via the 4G connection.

C. Cloud servers

To exploit the found WiFi client vulnerability further, a
DNS spoofing attack was done. The goal behind doing a
DNS spoofing attack is to make the AutoPi believe it is
communicating with the AutoPi cloud server, when in fact
it is communicating with our ”fake” server. Whenever the
AutoPi send a DNS request, the response will be the IP
address of our fake server, since the AutoPi is connected
to our controlled network. As the AutoPi receives the IP
address, it will set up a TCP connection to the fake server.
AutoPi uses SaltStack for communication between server and
dongles. It also send specific event data over HTTPS.

Since the tests in this paper is done directly on the live
cloud servers, care have been taken to not disturb the service.
Only test that have no way of reading, editing or in some
way affect other users data or service have been performed.

Authentication tokens have been modified in different
ways to try and gain unauthorized access to send commands
to the dongle via the cloud API.

VI. RESULTS

This chapter describes the findings of the work.

A. WiFi hotspot

The two vulnerabilities found compliments each other
which makes the WiFi hotspot, using the default SSID
and password, exploitable. The first vulnerability is that the
dongle ids are derived from a input with a 8 hex character
variance. This reduces the possible subset of dongle ids from
1632 to 168 and possible passwords from 1612 to 168. The
other vulnerability is that the last 12 characters of the dongle
id is broadcasted as the SSID. This, in combination with
the first vulnerability, allows for a faster brute force attack
without the need to catch a WPA handshake.

Since the method used to derive the password from the
SSID is done by taking 12 characters of the hash and
trying to find the whole 32 character hash, the method could
return multiple candidates since multiple hashes might have
the same 12 last characters. The probability of a evenly
distributed 32 hex character hash having the same last 12
characters is:

1620

1632
=

1

1612

This probability is the same as the probability of at least
two dongles having the same SSID. Since it is such a small
number, it is negligible.

As stated before in the method paragraph, the end re-
sult where two programs utilizing different methods: one
using GPU supported brute forcing and one precomputing
a wordlist containing all possible dongle ids sorted by their
last 12 characters (the part found in the SSID) that could
searched through with a binary search algorithm. The code
can be found in the Appendix of this document.

The GPU program is written in java with CUDA14. Run-
ning the program on a GeForce GTX 1060 going through all
168 possible combinations took <1 second.

The wordlist created with the second method contained
168 hashes with every hash being 16 bytes (128 bits). This
gave a file size of:

168 · 16 ≈ 69 GB

Using a binary search algorithm on the sorted list with
168 hashes gives a maximum time complexity of:

log2 16
8 = 32

B. WiFi client

We are not quite sure if the preconfigured WiFi interface
is just a random error or a production flaw. But we know for
certain that the two AutoPi dongles which we have access
to, came preconfigured with the ”AutoPi QC” WiFi network
and with the same ”autopi2019” password. Therefore, it is
possible to set up a WiFi hotspot using this information and
the AutoPi dongle will in a short time connect to that hotspot,
without the owner being aware of it. The one in control of
the hotspot can then perform several attacks such as traffic
sniffing or DNS spoofing.

14https://developer.nvidia.com/cuda-zone

The dongle includes its hostname in the DHCP discovery
broadcasted to the DHCP server. The dongles hostname
contains the last 12 characters of the dongle id.

The Iptable rules for the WiFi client interface only allows
related connections, forwarding and output15. This means
that we were able to reach hosts on the dongles internal
network via the forwarding rule, but all traffic directed
directly towards the dongle is dropped under the input rule.
We were therefore only able to reach the dongle directly
when it sets up outgoing connections.

C. Cloud servers

By performing a DNS spoofing attack, the AutoPi dongle
can be tricked into believing it is communicating with
the AutoPi Salt-Master server. As the dongle receives the
response of the DNS request with the fake IP address, it will
try to set up a TCP connection with that server. However, the
AutoPi dongle and server uses RSA keys for authentication
during the SaltStack handshake. The dongle sets up the TCP
connection and sends its public RSA key which then gets
to the fake server. It also identifies itself with its minion
id, which is the same as the dongle id, and contains the
SSID and WiFi password. When the fake server responds
with its public key, the connection is shut down since the
AutoPi dongle notices that it is not matching the real AutoPi
Salt-Master key. Hence, the DNS spoofing attack was not
successful. Any man-in-the-middle attack is futile.

The dongle does also send event data over HTTPS to the
server. Since HTTPS needs a valid certification, in this case
for the domain ”autopi.io”, the dongle will not send any data
to the fake server. The HTTPS sent from the dongle uses the
”token”-token in the authorization header. This is the weaker
authentication with very limited use. So even if one is able to
fake a valid certificate, the HTTPS data and the intercepted
token would not be to any great use.

VII. DISCUSSION

Depending on what add-ons is combined with the dongle,
AutoPi presents a load of features. It is truly a product that
brings a great upgrade to the car. But is it secure?

The premise of the AutoPi service is to let its end
user have full control over their product. To accommodate
this, restrictions have to be relaxed to allow custom code
and modifications. This leads greater damage potential for
found vulnerabilities and it is therefore important to have
a very secure “outer layer”. AutoPi achieves this by using
external libraries and software that have proven themselves
to be secure. Everything sent from the dongle and cloud
servers are encrypted ensuring confidentiality, integrity and
authentication.

The found vulnerabilities stems from human configuration
errors rather than vulnerable software. The vulnerability
found regarding the WiFi credentials can be exploited on
any AutoPi dongle using the default WiFi settings. There
is no way of knowing exactly how many dongles that are

15https://github.com/autopi-io/autopi-core/blob/master/src/salt/base/state
/wlan/hotspot/iptables-ipv4.rules (interface wlan0)

vulnerable to the exploit. Since the default password seems
to be a 12 hex character long random generated string, it
might give people the illusion of being secure and it would
thus reduce the amount of people changing the password.

Because of the previously mentioned balance between
availability and security, the found exploit gives a perpetrator
full root access to the dongle.

The AutoPi is marketed as product with various features.
Depending on the vehicle combined with the AutoPi, the
execution of certain operations can be achieved. One such
operation is to record and replay commands sent on the
vehicles CAN bus. All communication to the ECUs goes
through the CAN bus. On certain car models, commands
such as unlocking the vehicle and starting the engine runs
on the CAN bus. Hence, the manufacturer has provided a
feature that lets the one in control of the AutoPi unlock and
start the car.

There is a substantial amount of actions that can be
performed by controlling an AutoPi unit connected to a car.
But the most severe is the controlling of the CAN bus. By
being able to send commands on the CAN bus, the actions
of the vehicle can be manipulated. Hence, raising a serious
amount of safety and security issues.

VIII. FUTURE WORKS

Since this paper has been done independently of AutoPi,
there are a lot more to test regarding the cloud service. Great
care have been taken to not affect the service of the cloud
servers which constrains the amount of test that can be done
and how thorough those tests can be.

The tests in this paper have been performed on a device
with default settings and no extra add-ons. The premise of
the AutoPi dongle is to allow implementation of custom code
and adding extra hardware. This is something that could be
looked into further. Examples are the Bluetooth module and
the USB ports. Since they are not used with default software
and hardware, there have been no security testing of them in
this paper.

IX. CONCLUSIONS

This paper shows that a product might have vulnerabilities
even though the development of the product have been
heavily security focused. A simple oversight regarding the
generation of the SSID and password of the device led to a
security exploit in an otherwise very secure device.

ACKNOWLEDGEMENT

We would like to thank our supervisors Robert Lagerström
and Pontus Johnson for their support and guidance through-
out the entire work.

REFERENCES

[1] A. Meola ”Automotive Industry Trends: IoT Connected Smart Cars &
Vehicles”, Business Insider, Dec 2016.
Available: https://www.businessinsider.com/internet-of-things-connect
ed-smart-cars-2016-10?r=US&IR=T

[2] Ericsson, ”Digital transformation and the connected car”, Ericsson
Mobility Report, Nov 2016.

Available: https://www.ericsson.com/assets/local/mobility-report/docu
ments/2016/emr-november-2016-digital-transformation.pdf

[3] European Parliament, ”DIRECTIVE 98/69/EC OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL of 13 October 1998 relating
to measures to be taken against air pollution by emissions from motor
vehicles and amending”, page 21, paragraph 8.2, Oct 1998.
Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=C
ONSLEG:1998L0069:19981228:EN:PDF

[4] R. Currie, ”Hacking the CAN Bus: Basic Manipulation of a Modern
Automobile Through CAN Bus Reverse Engineering”, SANS Institute
Information Security Reading Room, page 2. paragraph 1, May 2017.
Available: https://www.sans.org/reading-room/whitepapers/threats/pap
er/37825

[5] International Organization for Standardization, ”Road vehicles – Con-
troller area network (CAN)”, ISO 11898-1, page 5, paragraph 6.1, Dec
2013.
Available: http://read.pudn.com/downloads209/ebook/986064/ISO%20
11898/ISO%2011898-1.pdf

[6] W. Xiong, F. Krantz, and R. Lagerström, “Threat modeling and attack
simulations of connected vehicles: a research outlook,” in the Proc.
of the 5th International Conference on Information Systems Security
and Privacy (ICISSP), page 2, paragraph 2.4, Feb 2019.

[7] D. Eastlake and T. Hansen, ”US Secure Hash Algorithms (SHA and
HMAC-SHA)”, Internet Request for Comments, vol. RFC 4634, page
14, paragraph 7, Jul 2006.
Available: https://tools.ietf.org/html/rfc4634

[8] B. Kaliski, ”PKCS #5: Password-Based Cryptography Specification
Version 2.0”, Internet Request for Comments, vol. RFC 2898, page 8,
paragraph 5.2, Sep 2000.
Available: https://www.ietf.org/rfc/rfc2898.txt

[9] R. Rivest, ”The MD5 Message-Digest Algorithm”, Internet Request
for Comments, vol. RFC 1321, page 0, paragraph 1, Apr 1992.
Available: https://www.ietf.org/rfc/rfc1321.txt

[10] Raspbian, ”Raspbian FAQ”, paragraph ”What is Raspbian?”, Apr
2019.
Available: https://www.raspbian.org/RaspbianFAQ#What is Raspbian.
3F

[11] J. Cichoniski and J. Franklin, ”LTE Security – How Good Is It?”, RSA
Conference 2015, slide 34, Apr 2015.
Available: https://www.rsaconference.com/writable/presentations/
file upload/tech-r03 lte-security-how-good-is-it.pdf

[12] A. Guzman and A. Gupta, ”IoT Penetration Testing Cookbook”, Packt
Publishing Ltd., Nov 2017.

	INTRODUCTION
	BACKGROUND
	ODB-II
	CAN
	Raspberry Pi
	AutoPi
	Threat Modelling
	Ethics

	Threat Modeling
	System Model
	Identifying Threats
	STRIDE
	DREAD

	THEORY
	Dongle services
	Wifi hotspot
	Wifi client
	Cloud servers

	METHOD
	WiFi hotspot
	WiFi client
	Cloud servers

	RESULTS
	WiFi hotspot
	WiFi client
	Cloud servers

	DISCUSSION
	FUTURE WORKS
	CONCLUSIONS
	References

