<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed Sept 03</td>
<td>13-15</td>
<td>1</td>
<td>Intro</td>
</tr>
<tr>
<td>Fri Sept 05</td>
<td>15-19</td>
<td>2-3</td>
<td>Group Formation</td>
</tr>
<tr>
<td>Wed Sept 10</td>
<td>13-15</td>
<td>4</td>
<td>Proposals</td>
</tr>
<tr>
<td>Thu Sept 11</td>
<td>10-12</td>
<td>5</td>
<td>Feedback on proposals</td>
</tr>
<tr>
<td>Mon Sept 15</td>
<td>8-10</td>
<td>6</td>
<td>Hello World! Demos</td>
</tr>
<tr>
<td>Thu Sept 18</td>
<td>10-12</td>
<td>7</td>
<td>ForskarFredag Preparation</td>
</tr>
<tr>
<td>Wed Sept 24</td>
<td>14-16</td>
<td>8</td>
<td>Demo Day!!!</td>
</tr>
<tr>
<td>Thu Sept 25</td>
<td>16-20</td>
<td></td>
<td>Debaser Invitation</td>
</tr>
<tr>
<td>Fri Sept 26</td>
<td>8-18</td>
<td></td>
<td>Debaser Domination</td>
</tr>
<tr>
<td>Mon Sept 29</td>
<td>8-10</td>
<td>9</td>
<td>Reflections of ForskarFredag</td>
</tr>
<tr>
<td>Wed Oct 8</td>
<td>13-15</td>
<td>10</td>
<td>Agile Development</td>
</tr>
<tr>
<td>Mon Oct 13</td>
<td>8-10</td>
<td>11</td>
<td>Agile Development 2</td>
</tr>
<tr>
<td>Wed Oct 29</td>
<td>16-23</td>
<td></td>
<td>Kistamässan Invation</td>
</tr>
<tr>
<td>Thu Oct 30</td>
<td></td>
<td></td>
<td>Kistamässan Domination</td>
</tr>
<tr>
<td>Sun Nov 2</td>
<td>9-19</td>
<td></td>
<td>COMICON 2014!</td>
</tr>
<tr>
<td>Tue Nov 4</td>
<td>10-12</td>
<td>13</td>
<td>Reflections on ComiCon</td>
</tr>
<tr>
<td>Wed Nov 5</td>
<td>10-12</td>
<td>14</td>
<td>New groups</td>
</tr>
<tr>
<td>Fri Nov 7</td>
<td>15-19</td>
<td>15-16</td>
<td>Epson Moverio Workshop</td>
</tr>
<tr>
<td>Tue Nov 11</td>
<td>10-12</td>
<td>17</td>
<td>Proposals</td>
</tr>
<tr>
<td>Tue Nov 18</td>
<td>10-12</td>
<td>18</td>
<td>Feedback on proposals. Early hello world demos</td>
</tr>
<tr>
<td>Tue Nov 25</td>
<td>10-12</td>
<td>19</td>
<td>Hello world Idemos</td>
</tr>
<tr>
<td>Tue Dec 2</td>
<td>10-12</td>
<td>20</td>
<td>Demo Day!!!</td>
</tr>
<tr>
<td>Thu Dec 4</td>
<td>15-18</td>
<td></td>
<td>VIC Invation</td>
</tr>
<tr>
<td>Fri Dec 5</td>
<td>15-19</td>
<td></td>
<td>Prepare Open House</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open House</td>
<td>AGI14-VIC Open House</td>
</tr>
</tbody>
</table>
Agenda

• Format (starting at 13:15 sharp)
 – Presentation (10 minutes) - Template Slides.
 – Discussion (10 minutes)
 – Context Switch (1 minute)
 – Stefan
 – Johan B.
 – Oscar
2. Leonardo (13:40 - 14:00)
 – Carl
 – Anton
 – Johan S.
• Break
3. Donatello (14:15 - 14:35)
 – Søren
 – Philip
 – Daniel
 – Axel
4. Megatron (14:36 - 14:56)
 – Christoffer
 – Mattias
 – Ludwig
 – Linnea
• Next Lecture (14:57 - 15:00)
 – Assignment 2
Michelangelo

• Stefan
• Johan B
• Oscar
Space Survival

Stefan Etoh
etoh@kth.se

Oscar Friberg
ofri@kth.se

Johan Bäckman
johba@kth.se

Advanced Graphics and Interaction
AGI14
2014/09/10
Space Survival
Motivation

- Further development opportunities
- Challenge to combine multiple interactive devices
- Cool immersive experience
- Experience outer space!
- Save dollars and make space training easier and better
- Space is fun.
Goals and Challenges

• Avatar arms corresponding to physical movements
• Achieving realistic physics
• Believable graphics & an immersive world
Related Work

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Year</th>
<th>Published in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Reality: Avatars in human spaceflight training</td>
<td>Lawrence, B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creating Next-Gen 3D Interactive Apps With Motion Control in Unity 3D</td>
<td>Pleemmons, D.</td>
<td>2014</td>
<td>SIGGRAPH 2014 Workshop</td>
</tr>
<tr>
<td>Creating Next-Gen 3D Interactive Apps With Motion Control in Unity 3D</td>
<td>Holz, D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR Simulation System for EVA Astronaut Training</td>
<td>Liu, Yuqing. et. al.</td>
<td>2010</td>
<td>AIAA SPACE 2010 Conference & Exposition</td>
</tr>
<tr>
<td>VR Simulation System for EVA Astronaut Training</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control VR (Control VR)

- https://www.youtube.com/watch?v=KkPjLBxYoQ&feature=youtu.be&t=1m10s
Spacewalk (Richard Emms)

- https://www.youtube.com/watch?v=bg7Sm6fF8vg
Chilling Space (RiftAway)

- https://www.youtube.com/watch?v=vvd9HwZfl6U
Methods and Techniques

• Wii Remotes and Nunchucks – UniWii-plugin
• Oculus Rift
• Blender
• Unity 3D (C#)
Wii Remotes & Nunchucks
Oculus Rift
Blender
Unity
Thank you!

Questions?

Stefan Etoh, IMT {etoh@kth.se}
Oscar Friberg, IMT {ofri@kth.se}
Johan Bäckman, IMT {johba@kth.se}

Mario Romero {marior@kth.se}
FEEDBACK TO SPACE SURVIVAL
SPACE SURVIVAL

UNITY PRO LICENSE - NEED IT? YES OCCULUS
PLUGINS

FOCUS: 1 INTERACTION INVERSIVE
2. GRAPHICS

TURN? MOVE? (SPACE) PUSH?

TRAINING? EXPERIENCE. (OWN RULES)

JET PACK?

SPACE PHYSICS ARE ODD!!

WILL ROCKS MOVE?

SPIN? ANGULAR MOMENTUM?

IN ROOM W/ G? WHAT IS THE SETTING?

WALLS

END STATE

WORK LOAD

OSCAR - UNITY

STEFAN

JOHAN
Leonardo

• Carl
• Anton
• Johan S
Project Proposal

Carl Ahrsjö
ahrsjo@kth.se

Anton Warnhag
awarnhag@kth.se

Johan Storvall
johansto@kth.se

Advanced Graphics and Interaction
AGI14
2014/09/10
Dual Engine VR Racing
Motivation

• Why is this project interesting?
• What do we want to learn by doing this project?
• Why does the world need this project and how does it make the world a better place?
Goals and Challenges

• Goals
 – Immersive, first person view experience of VR racing at high speed
 – Rendering a huge world/track for racing around in/on
 – A fun steering method with two “engines” (NovInt Falcons) providing useful haptic feedback
 – Fire particle system

• Challenges
 – Real time rendering as you race through the world/track
 – Making the haptic feedback realistic and useful
 – To not burn out the motors of the Falcon as you get caught up in the game
 – Development support for the Falcon can be hard to find
Related Work

• Interactive Racing Game with Graphic and Haptic Feedback
 – Sang-Youn Kim, Kyu-Young Kim
 – 2007
• Dust Storm
 – Tarandi, Nellåker, Bäckström
 – 2012
• Radial-G
 – Geoff Cullen
 – 2014
Interactive Racing Game with Graphic and Haptic Feedback

\[V_r(L) = \sum_{n=1}^{\infty} h_n \left[u(L-p_n) - u(L-q_n) \right] \]

Where,
- \(u \): a unit step function, and
- \(L \): the distance from starting point to the current position of a car

(a)

(b)
Dust Storm
Radial-G
Methods and Techniques

• General approach
• Oculus Rift and two NovInt Falcon (or Razer Hydra if not possible)
• NovInt SDK
• Connecting via FalconUnity
• Algorithms and Interaction
Oculus Rift, NovInt Falcon, Razer Hydra
NovInt SDK

- A Windows platform, C++ language
- Combine with Unity JavaScript (UnityScript)
FalconUnity

• A library that allows for easy manipulation of Unity3D objects using a NovInt Falcon.

• Video: http://www.screenr.com/baP7 for those who are interested
Algorithms and Interaction

• Using existing algorithms to create a huge immersive world/track, i.e. Octree rendering (real time rendering)

• Applying existing interaction methods in a new way, using two NovInt Falcons at the same time
Fire particle generator
Unity’s terrain engine
Thank you!

Questions?

Carl Ahrsjö {ahrsjo@kth.se}
Anton Warnhag {awarnhag@kth.se}
Johan Storvall {johansto@kth.se}
Teacher:
Mario Romero {marior@kth.se}
FEEDBACK TO POD RACER
Pod Racing

FALCON (FORCE \rightarrow BREAK)?

Hover vehicle behavior?

\[\text{Balance} \]

\[\text{Fan} \]

(float in air/water)

\[\text{Invisible} \]

Force | Input/Output

Priority of interaction

- Occurs

What do you let go of first?

Opponents | Now timer/checkpoint later

Jonas Ford...
Donatello

- Søren
- Philip
- Daniel
- Axel
You Are a Tree
General Goal
Make people smile!

Challenge
- A seamless experience
- Low learning threshold
- No penalties
Tech Goal

Procedural generation of trees, controlled with Kinect.

Challenge

- Real-time
- Reliable gesture recognition
- YOU Are a Tree
Personal Goal
Provide a testbed for learning more advanced computer graphics

Challenge
- Robust, but simple(!), interaction
- Flexible, but not too manual/complex
Tech

- Unity Pro
 - Boilerplate + Editor
 - Shaders
 - Animations
 - Sound
- Kinect SDK
 - v.1 or v.2
Tech cont.

- Tree generation
 - L-system
 - Mesh generation
 - Rigging
 - Skinning
- Environment
 - Ground and sky
 - Camera
 - Time, day night cycle
 - Particles: dust, spores etc.
 - Wind
 - God rays
Related

TreeSketch
http://vimeo.com/68195050
L-Systems

- Fractals, all the way down!
First Iteration

- Simple generation from primitives
- Basic Kinect gestures
 - Spread, duck, wave?
- Single tree, single user
Feedback to AY3
- PERSISTENCE
- SAVING
- EXPORTING
- PRINTING
- MULTIPLAYER
 - COLLOQUED COLLABORATION
 - DISTRIBUTED COLLABORATION (NETWORKING)
- SYNCHRONOUS
- A-SYNCHRONOUS
- SESSION
- CAMERA

L-SYSTEM (?)
 - LANGUAGE
 - FRACTALS
 - PROD. RULES
 - TERMINALS
 - PRODUCTIONS

SPORES
- ARM/MOVEMENT
- WIND

(TXT.RAIN)
UTTERBACK 2001?

SCENARIO
- SUBWAY
- SECURITY

NOT IN
- ALIEN EXPERIENCE

WHAT IS TURTLE GRAPHIC

- NO DIRECT REPRESENTATION

- NOT "BEING" A TREE

- GROWING
 - CLIPPING
 - PRUNING

- INTERACTION (ADVANCED) (COMPLEX?)
- FINGERS (PRECISION?)

- NOT ESSENTIAL

- RELIABLE INTERACTION
- ABSTRACT / ART
Megatron

- Christoffer
- Mattias
- Ludwig
- Linnea
Project Proposal

Linnea
lblo@kth.se

Christoffer
cwiss@kth.se

ludwigpe@kth.se

matlon@kth.se
Project Idea

Helper, 2D view

Main Player, 3D view

Enemy, 2D view

Level 1: Into the Dark
Motivation

- Create a social and fun experience for three persons
- Learn about
Goals and Challenges

- Fun multiplayer experience
- The experience must be exciting for all parts
- Increased immersion with Oculus and Razer Hydra
- Technical constraints, access to tech, difficulty to learn
- Higher level of detail (graphics and sound)
- Priority, lack of expertise, risk of breaking the core
Related Work

- **Uncle Roy All Around You: Implicating the City in a Location-Based Performance**
 - Benford, Steve. et al. (2003)

- **Designing Asymmetrical Collaborative Gameplay for Heterogeneous Device Ecosystems**
 - Speck, Robert Sean. (2013)

- **Experimental Evidence for Suspense as Determinant of Video Game Enjoyment**
 - Klimmt, Christoph et al. (2009)
Enemy LAPRAS
used CONFUSE RAY!
Methods and Techniques
Methods and Techniques
Thank You for Listening!

¿Preguntas?
Assignment 2
A google scholar method

1. Search for the root
2. Search within "cited by"
3. Search for the leaf
FEEDBACK TO SURVIVAL IN THE DARK
MEGATRON

- OPPONENT (ENEMY) - FUN SCARED?
 - TRAPS
 - AIR PLAYER
 - PRESSURE
 - CATCH

* CONSTRAINTS ON HELPER
* MAIN PLAYER (HEAD PHONES)
* COLLOCATED / DISTRIBUTED
* PROCEDURAL GENERATION
 - ENEMY PAIN'S MAP
 - DESIGNS SCARE HOUSE
 - TRAPS

HELPER'S UTILITY

- HELPER (SCARED?)
 - 2D GAME
 - THRILLED

- TINGLE TUNNEL (HELPER)
 - ZELDA...
 - PLACES ELEMENTS
 - CONTENT OF MESSAGE?
 - LEFT... →
 - TRAP AHEAD?
- ENEMY (SEES MESSAGES?)
 - LOCATES PLAYER
 - FUN TO SCARE
 - CONNECTIVITY
 - WIFI
 - HELPER - IPHONE / IMPS?

spy vs spy?
Thank you!

marior@kth.se

Questions?