
ID1354
Internet Applications

JavaScript

Leif Lindbäck, Nima Dokoohaki
leifl@kth.se, nimad@kth.se

SCS/ICT/KTH

2(67)

Overview of JavaScript

● Originally developed by Netscape, as
LiveScript

● Became a joint venture of Netscape
and Sun in 1995, renamed
JavaScript

● Now standardized by the European
Computer Manufacturers Association
as ECMA-262 (also ISO 16262)

● The only relathionship between
JavaScript and Java is similar syntax.

3(67)

Overview of JavaScript (Cont'd)

● JavaScript is the language for
client-side behavior in web
applications.

● Can be use also on server, not covered
in this course.

● Can handle user interaction through
forms.

● Possible to change HTML documents
using the Document Object Model,
DOM, covered in coming lecture.

4(67)

Object Orientation and JavaScript

● JavaScript has some support for
object-orientation, but less and
different from Java.

● No class-based inheritance
● No polymorphism
● Can be used for procedural programming

(like C) without using objects at all.
● JavaScript objects are collections of

properties, which can be fields or
functions.

5(67)

How to Include JavaScript Code

● Write JavaScript in separate files, with
the extension .js

● Include a JavaScript file with the src
attribute of the <script> element in
the HTML file where it is used:

 <script src = "myscript.js"></script>

6(67)

The First Example

7(67)

Syntax
 - Identifiers begin with a letter or

underscore, followed by any number of
letters, underscores, and digits.

 - Case sensitive
 - Statements are separated with semicolon.
 - Reserved words are: abstract, arguments, boolean, break,

byte, case, catch, char, class, const, continue, debugger, default, delete, do,
double, else, enum, eval, export, extends, false, final, finally, float, for, function,
goto, if, implements, import, in, instanceof, int, interface, let, long, native, new,
null, package, private, protected, public, return, short, static, super, switch,
synchronized, this, throw, throws, transient, true, try, typeof, var, void, volatile,
while, with, yield

 - Comments: single-line, //, and
 multiple-line, /* some comment */

8(67)

Code Conventions

● Always use the same naming
convention for all your code,
preferrably:
– Variable and function names written as

camelCase.

– Global variables written in UPPERCASE.

– Constants (like PI) written in UPPERCASE

● Write declarations at the beginning of
the scope.

9(67)

Variables

● JavaScript is dynamically typed, type is never
declared and variables change type when
needed.
year = "in the eighties"; year is a string .
year = 84; year is a number .

● Global variables can be declared either
implicitly, just write the variable name, or
explicitly, variable name preceeded with
var.
 var sum = 0;
 today = "Monday";

 flag = false;

10(67)

Local Variables Must Be
Declared With var

● Local variables must be explicitly declared with
the var keyworld.

● Here, c is a local variable:
function myFunction(a, b) {

 var c = 4;
 return a + b + c;

}

● Here, c is a global variable:
function myFunction(a, b) {

 c = 4;
 return a + b + c;

}

11(67)

Hoisting
● JavaScript hoists all declarations, which means they are

moved to the top of the current scope (function or script).
● However, initializations are not hoisted.

 var x = 5;
 var sum = x + y;
 var y = 7;

is hoisted to
 var x = 5;
 var y;
 var sum = x + y;
 y = 7;

which does not make sense since y has no value when it is
used.

● Always write declarations at the beginning of the scope,
since that is how they are interpreted by JavaScript.

12(67)

 Primitive Values

● All primitive values have one of the five
primitive types: Number, String, Boolean,
Undefined, Null.

● Number, String, and Boolean have wrapper
objects (Number, String, and Boolean),
just like Java.

● For Number and String, primitive
values and objects are coerced back
and forth, therfore, primitive values
can be treated as objects.

13(67)

Strings

● String literals are delimited by either ' or ".
● Quotes can be used inside strings if they

don't match the quotes surrounding the
string:

"He is called 'Johnny'";
 'He is called "Johnny"';

● Strings can include escape sequences,
e.g., \t or \n. Note that these will not
cause tabs or line breaks in a HTML page
since they are not HTML tags.

14(67)

Numbers

● Numbers can be with or without decimals:
var pi = 3;

 var pi = 3.14;
● Numbers are represented in double-precision

64-bit format, meaning the range is
±1.7976931348623157e+308 to
±-5e-324

15(67)

Boolean, Null, Undefined
● A Boolean can have the value true or

false
● The only Undefined value is undefined.

It is the value of a variable that has
never been set to any value.

● The only Null value is null. It is used to
unset a variable:

name = ”Sara”; Name has the value ”Sara”.
 name = null; Name has the value null.

16(67)

Assignment Operators

● Assignment operators are the same as in
Java, =, +=, -=, etc

17(67)

Bitwise Operators

● Bitwise operators are and, &; or, |; not, ~;
xor, ^; left shift, <<; right shift, >>

● Bit operators work on 32 bits numbers.
● Any numeric operand in the operation is

converted into a 32 bit number and the
result is converted back to a JavaScript
number.

18(67)

Arithmetic Operators

● Numeric operators are the same as in Java, +
+, --, +, -, *, /, %

● All operations are in double precision.
● Same precedence and associativity as Java

19(67)

Number Utilities

● The Math object provides functions like
floor, round, max, min, trigonometric
functions, etc

● The Number object has useful properties like
MAX_VALUE, MIN_VALUE,
POSITIVE_INFINITY, NEGATIVE_INFINITY,
PI and NaN.

● NaN represents an illegal number, for example
the result of an overflow.

● It is not equal to any other number, not even
itself. Test for it with the isNaN() function.

20(67)

Concatenation and Conversion

● The string concatenation operator is the same as in Java, +

● Concatenation coerces numbers to strings.

● Numeric operators, other than +, coerce strings to
 numbers.

● If either operand of + is a string, it becomes a concatenation operator.

● Explicit conversions are as follows:

 1. Use the String and Number constructors

 2. Use toString method:
 var a = 10;
 a = a.toString();

 3. Use parseInt and parseFloat methods:
 var a = "10";
 a = parseInt(a);

21(67)

Typeof Operator
● The typeof operator returns the type of a variable

or expression.
● It returns "number", "string", or "boolean"

for Number, String, or Boolean, "undefined"
for Undefined, "function" for a function,
”object” for objects, and ”object” also for
null

typeof 10 returns the string ”number”

22(67)

The Date Object

 - The Date Object

 - Create one with the Date constructor (no params)
 - Local time methods of Date:
 toLocaleString – returns a string of the date
 getDate – returns the day of the month
 getMonth – returns the month of the year (0 – 11)
 getDay – returns the day of the week (0 – 6)
 getFullYear – returns the year
 getTime – returns the number of milliseconds since Jan 1, 1970
 getHours – returns the hour (0 – 23)
 getMinutes – returns the minutes (0 – 59)
 getMilliseconds – returns the millisecond (0 – 999)
- Example: new Date().getDate();

23(67)

The String Object

- Some String properties and methods:

 - length e.g., var len = str1.length; (a property,
not a function)

 - charAt(position) e.g., str.charAt(3)
 - indexOf(string) e.g., str.indexOf('B')
 - substring(from, to) e.g., str.substring(1, 3)
 - toLowerCase() e.g., str.toLowerCase()

24(67)

Output using the Document Object

● The document object represents the current HTML
Document, an Element object represents a HTML element.

– The document object is always present in a HTML page.
● The following line returns the HTML element with id
elemid:
 document.getElementById("elemid");

● The following line sets the HTML code of the element with
id elemid:
 document.getElementById("demo").innerHTML =
 ”Some output
”;

25(67)

Output Using the Console
● The console object has methods for

writing to the JavaScript console, for
example console.log(”a message”);

● This is useful when debugging a JavaScript
program.

26(67)

IO Using the alert, confirm and
prompt methods.

1. alert("Hej! \n");

 - Parameter is plain text, not HTML

 - Opens a dialog box which displays the parameter string and an
 OK button.

2. confirm("Do you want to continue?");

 - Opens a dialog box and displays the parameter and two buttons,
 OK and Cancel.

3. prompt("What is your name?", "");

 - Opens a dialog box and displays its string parameter, along with
 a text box and two buttons, OK and Cancel

 - The second parameter is for a default response if the user
 presses OK without typing a response in the text box.

27(67)

● if statements, for loops and while loops are
similar to Java.

● There are three kinds of conditions: primitive
values, relational expressions and compound
expressions.

 1. Primitive values
 - If it is a string, it is true unless it is the
 empty string.
 - If it is a number, it is true unless it is zero

if (“hej”) enters the if block.
 if (“”) does not enter the if block.

Control Statements

28(67)

Control Statements (Cont'd)
 2. Relational Expressions

 - The usual six comparision operators: ==, !=, <, >, <=, >=
 - Operands are coerced if necessary
 - If one operand is a string and one is a number, the

 string is coerced to a number.
 - If one operand is a boolean and the other is not, the

 boolean is coerced to a number (1 or 0)

 - The unusual two comparision operators: === and !==
 - Same as == and !=, except that no coercions are

 done. The expression can only be true if the operands
 have the same type.

29(67)

Control Statements (Cont'd)

 2. Relational Expressions (Cont'd)

 - Comparisons of references to objects compare
 addresses, not values.

 3. Compound Expressions

 - The logical operators are: and, &&; or, ||; not, !
 (x < 10 && y > 1)

30(67)

Functions

● Functions are declared, much the same
way as in Java, but prefixed with the
function keyword.

● Since JavaScript is dynamically typed,
neither parameters nor return value has
a type:

 function sum(a, b) {
 return a + b;

 }

31(67)

Anonymous Functions

● An anonymous function is defined in an
expression, instead of a declaration.

● The reference to the anonymous function
is stored in a variable, which can then be
used to invoke the function.

var myFunc = function(a, b) {return a + b};
myFunc(4, 3); //Returns 7

32(67)

Function Hoisting

● Functions are hoisted the same way
as variables, therefore, a function can
be called before it is declared:

 square(5);
 function square(y) {

 return y * y;
 }

33(67)

Function Parameters

● Parameters are passed by value, like in Java.

● The number of arguments is not checked.

34(67)

Missing Arguments
● Missing arguments are set to undefined.

● If undefined variables are not desired,
assign default values in the function:

function myFunction(x, y) {
 if (y === undefined) {
 y = 0; //default value
 }
 ...
 }

● Can also be written like this:
function myFunction(x, y) {

 y = y || 0;
 ...
 }

35(67)

Function Parameters (Cont'd)
● Extra arguments have no name, but can be

read from the arguments array, which is a
built-in object:
 x = sumAll(1, 123, 500, 115, 44);

 function sumAll() {
 var i, sum = 0;
 for(i = 0; i < arguments.length;
 i++) {
 sum += arguments[i];
 }
 return sum;
 }

36(67)

Arrays

● Arrays are normally created with the array
literal:
var myList = [24, "bread", true];

● Elements are accessed by referring to
index number, myList[0] has the value
24. The first element is at index 0.

● The length property is always set to the
number of elements in the array.

37(67)

Arrays (Cont'd)
● Elements can be added at index length:

myList[myList.length] = ”Stina”;
● Elements can be iterated with a for loop:

var index;
var fruits = ["Banana", "Orange", "Apple"];
for (index = 0; index < fruits.length; index++)
{
 alert(fruits[index]);

}

38(67)

Some Array Methods
● join Joins all elements of an array into a string.

● sort Coerces elements to strings and puts them
in alphabetical order.

● concat Joins two or more arrays, and returns a
copy of the joined arrays.

● push Appends elements to the end.

● pop Removes the last element.

● unshift Prepends elements to the beginning.

● shift Removes the first element.

39(67)

The Object Model
● The object model is quite different from

Java.
● JavaScript is prototype-based.

Inheritance is performed by cloning
existing objects that serve as prototypes.

● No classes, class-based inheritance,
interfaces or polymorphism. These
features can be mimicked, but they are
not built-in as in Java.

40(67)

Properties

● Like in Java, objects can have properties
(variables).

● An object is a collection of properties, a bit
like an array with named elements.

● Properties can be accessed the following
ways:
 objectName.property e.g., person.age

objectName["property"] e.g., person["age"]
objectName[expression] e.g., x = "age";

 person[x]

41(67)

Instantiating an Object
● There are three ways to create an object.

1.Specify a list with a name:value pair for each
property. Such a list is called an object literal.
 var person = {firstName : "Nisse", age : 50};

2.Use the new keyword.
 var obj = new Object();

3.Write a constructor. The constructor is a plain
function.
 function Person(first, age) {
 this.firstName = first;
 this.age = age;
 }

var myMother = new Person("Sara", 48);

● Use number one for collections of data, use number
three for more complex objects, avoid number two.

42(67)

Instantiating an Object (Cont'd)
● function Person(first, age) {
 this.firstName = first;
 this.age = age;
 }

var myMother = new Person("Sara", 48);

● What actually happens when the constructor is
called is:

1. The new operator creates an object.

2. The object is passed to the Person constructor
as the value of this.

3. The constructor creates the properties
firstName and age in the object.

4. The object's reference is stored in myMother.

43(67)

By Reference

● A variable that holds an object is a
reference to that object.
var person = {firstName : "Nisse", age : 50};
var samePerson = person;
samePerson.age = 40; //Updates also person.

44(67)

for-in loop

● Properties can be iterated with the
for-in loop:
var person = {name:"Stina", age:25};
var x;
for (x in person) {
 ...
}

45(67)

Add and Delete Properties

● A Property is added by assigning a
value to it.
var person = {firstName : "Stina", age : 50};
person.lastName = ”Svensson”;

● A Property is deleted with the
keyword delete.
var person = {firstName : "Stina", age : 50};
delete person.age; //person.age is now
 //undefined.

46(67)

Methods

● Methods are functions defined as
properties.

● Method calls have the same syntax
as in Java,
objectName.methodName();

47(67)

Defining Methods
● Methods can be defined in constructors.

function Person(firstname) {
 this.name = firstname;
 this.changeName = function changeName(name) {
 this.name = name;
 }
}

var person = new Person("Olle");
person.changeName("Pelle");

● Like properties, methods can also be added
with the object literal or added to existing
objects.

48(67)

The this keyword

● In previous examples, this has been
used like we would use it in Java.

● That is not a good practice, since
this might point to wrong object
when a method is called from an
event handler, for example as a
consequence of the user clicking a
button.

49(67)

The this keyword

● A solution is to store this in a
variable in the constructor.
function Person(firstname) {
 var self = this;
 self.name = firstname;
 self.changeName =
 function changeName(name) {
 self.name = name;
 }
}

50(67)

Closures
● How could the previous example work? The

variable self is referenced from the function
changeName after the function Person has
terminated.

● This is a programming construct call a closure.
● In languages supporting closures, nested

functions can access variables in the outer
function after it is closed.

● Those variables, like self, will have the value
they had when the outer function created the
nested function.

51(67)

Object Prototype

● All objects have a prototype, from which
it inherits properties and methods.

● The prototype is also an object.
● An object created from its own

constructor, inherits from its own
prototype.

● Objects created with the object literal, or
with new Object(), inherit from the
prototype of the object Object.

52(67)

Prototype Chain

● Each object has a prototype chain, the
top of which is Object.prototype.

● Objects inherits properties from all
prototypes in the prototype chain.

● When looking for a prototype, the
whole chain is followed until the
prototype is found or the top is
reached.
– This is slow for long chains.

53(67)

Inheritance
● To inherit an object, set the prototype to the

object that shall be inherited:
 function Person(name) {
 this.name = name;
 }

 function Employee(name, salary) {
 this.parent = Person;
 this.parent(name);
 this.salary = salary;
 }
 Employee.prototype = new Person();

 var sara = new Employee(”Sara”, 1200);

54(67)

Inheritance (Cont'd)
● The Employee constructor from previous slide:
 function Employee(name, salary) {
 this.parent = Person;
 this.parent(name);
 this.salary = salary;
 }

● Assigning Person to the parent property means
that property is actually the Person function.

● When this.parent is called, Person executes
and adds the name property to the object
indicated by this, namely the newly created
Employee object.

55(67)

Inheritance (Cont'd)

● Much can be said about pros and
cons of this and other ways to inherit.

● Much can also be said about
implementing polymorphism and
other object-oriented constructs.

● However, that is outside the scope of
this course.

56(67)

Regular Expressions

● Both HTML and HTTP are string based.
● Web applications often contain a lot of

code searching and manipulating
strings.

● Regular expressions is a powerful tool
for this.

● A regular expression is a sequence of
characters that forms a search pattern.

57(67)

Regexp Syntax

● A regular expression has the form
/pattern/modifiers, for example
/stina/i.
– The i modifier means the expression is case

insensitive.

58(67)

Methods Often Used for Regexps.
● The search and replace methods in the
string object are good candidates for using
regular expressions.
var str = "Hi, My name is Sara";
var n = str.search(/sara/i); //n is 15

var str = "Hi, my name is Olle";
var res = str.replace(/olle/i,
 "a secret");
//res is ”Hi, my name is a secret”

● Note that the regexp is not a string. In fact, it
is a RegExp object.

59(67)

Regular Expression Characters

● There are two categories of characters in a regexp
pattern:

– Metacharacters have special meanings in
patterns and do not match themselves. The
following are metacharacters:
 \ | () [] { } ^ $ * + ? .

– Normal characters that do match themselves.
All characters except the metacharacters are
normal characters.

● A metacharacter is treated as a normal character
if it is preceeded by a backslash, \.

60(67)

Character Classes

● [abc] means any of the characters
a, b or c.

● [a-z] means any character in the range
a-z.

● A caret at the left end of a class definition
means not. [^0-9] means any charcter
not in the range 0-9

● The character order when defining ranges
is the Unicode order.

61(67)

Predefined Character Classes
There are many predefined character classes with

abbreviations.

 Abbr. Equiv. Pattern Matches
 \d [0-9] a digit

 \D [^0-9] not a digit

 \w [A-Za-z_0-9] a word character

 \W [^A-Za-z_0-9] not a word character

 \s [\r\t\n\f] a whitespace
 character

 \S [^\r\t\n\f] not a whitespace
 character

62(67)

Quantifiers

 Quantifier Meaning
 {n} exactly n occurences of the preceeding pattern
 {m,} at least m occurences
 {m, n} at least m but not more than n occurences

 + at least one occurrence
 * any number of occurences
 ? zero or one occurrence

63(67)

Anchors
● The pattern is forced to match only at the

beginning with ^
 /^Lee/ matches "Lee Ann" but not

"Mary Lee Ann"
● The pattern is forced to match only at the

end with $
/Lee$/ matches "Mary Lee" , but not
"Mary Lee Ann”

64(67)

Handling Errors

• Error handling is done much the same
way as in Java, using try-catch blocks.

try {
 // Block of code.
} catch(err) {
 // Handle errors from the try block.
}

65(67)

Throwing Exceptions

● The JavaScript interpreter will throw an
exception if there is an error in the code.
– The first alert statement below throws an

exception since x is not defined.
try {

 alert(x);
} catch (err) {

 alert(err);
}

● Exceptions can also be thrown with the
throw statement:

 throw ”Error message”;

66(67)

finally Block

● A finally block is always executed
when leaving the try/catch blocks.
 try {
 // Block of code.
 } catch(err) {
 // Handle errors from the try block.
 } finally {
 // Always executed.
 }

67(67)

Best Practices
● Avoid using global variables.
● Declare local variables with the var keyword,

otherwise they become global variables.
● Always treat numbers, strings, and booleans

as primitive values, never as objects.
– Objects are slower and comparisions may fail when

mixing objects and primitives.

● Use === and !== instead of == and !=
 0 == ”” is true
 0 === ”” is false

	Slide 1
	4.1 Overview of JavaScript
	4.1 Overview of JavaScript (continued)
	4.2 Object Orientation and JavaScript
	4.3 General Syntactic Characteristics
	Slide 6
	4.3 General Syntactic Characteristics
	Slide 8
	4.4 Primitives, Operations, & Expressions
	Slide 10
	Slide 11
	Slide 12
	4.4 Primitives, Operations, & Expressions (continued)
	Slide 14
	4.4 Primitives, Operations, & Expressions (continued)
	Slide 16
	Slide 17
	Slide 18
	4.4 Primitives, Operations, & Expressions (continued)
	4.4 Primitives, Operations, & Expressions (continued)
	4.4 Primitives, Operations, & Expressions (continued)
	4.4 Primitives, Operations, & Expressions (continued)
	4.4 Primitives, Operations, & Expressions (continued)
	4.5 Screen Output & Keyboard Input
	Slide 25
	4.5 Screen Output (continued)
	4.6 Control Statements
	4.6 Control Statements
	4.6 Control Statements (continued)
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	4.8 Arrays
	Slide 37
	4.8 Arrays (continued)
	4.7 Object Creation and Modification
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	4.12 Pattern Matching
	4.12 Pattern Matching (continued)
	4.12 Pattern Matching (continued)
	Slide 62
	4.12 Pattern Matching (continued)
	Handling errors in Javascript*
	Slide 65
	Slide 66
	Slide 67

