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Feature Space

Sensors give measurements which can be converted to
features.
However in the real world
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Sources of Noise
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Sources of Noise

Samples Feature space
because of
X Measurement noise
X Intra-class variation
X Poor choice of features

Feature Space

End result: a K−dimensional space

in which each dimension is a feature

containing n labelled samples (objects)
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Feature Space

Problem: Large Feature Space

Size of feature space exponential in number of features.

More features =⇒ potential for better description of the
objects but...

More features =⇒ more difficult to model P(x | y).

Extreme Solution: Naïve Bayes classifier

X All features (dimensions) regarded as independent.

X Model k one-dimensional distributions instead of one
k -dimensional distribution.



Naïve Bayes Classifier

x is a vector (x1, . . . , xK ) of attribute or feature values.

Let Y = {1,2, . . . ,Y} be the set of possible classes.

The MAP estimate of y is

yMAP = arg max
y∈Y

P(y | x1, . . . , xK )

= arg max
y∈Y

P(x1, . . . , xK | y)P(y)
P(x1, . . . , xK )

= arg max
y∈Y

P(x1, . . . , xK | y)P(y)

Naïve Bayes assumption: P(x1, . . . , xK | y) =
∏K

k=1 P(xk | y)

This give the Naïve Bayes classifier:

yMAP = arg max
y∈Y

P(y)
K∏

k=1

P(xk | y)

Naïve Bayes Classifier

One of the most common learning methods.

When to use:
X Moderate or large training set available.

X Features xi of a data instance x are conditionally
independent given classification (or at least reasonably
independent, still works with a little dependence).

Successful applications:
X Medical diagnoses (symptoms independent)

X Classification of text documents (words independent)

Example: Play Tennis?

Question: Will I go and play tennis given the forecast?

My measurements:
1 forecast ∈ {sunny, overcast, rainy},
2 temperature ∈ {hot, mild, cool},
3 humidity ∈ {high, normal},
4 windy ∈ {false, true}.

Possible decisions:
y ∈ {yes, no}

Example: Play Tennis?

What I did in the past:
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Example: Play Tennis?

• Learning:
Learn
likelihoods and
prior from data

• P(x1| yes)

• P(x4| yes)

• P(x2| no)



Example: Play Tennis?

Counts of when I played tennis (did not play)

Outlook Temperature Humidity Windy

sunny overcast rain hot mild cool high normal false true

2 (3) 4 (0) 3 (2) 2 (2) 4 (2) 3 (1) 3 (4) 6 (1) 6 (2) 3 (3)

Prior of whether I played tennis or not

Counts:
Play

yes no

9 5

Prior Probabilities:
Play

yes no

9
14

5
14

Likelihood of attribute when tennis played P(xi | y=yes)(P(xi | y=no))

Outlook Temperature Humidity Windy

sunny overcast rain hot mild cool high normal false true

2
9 ( 3

5 )
4
9 ( 0

5 )
3
9 ( 2

5 )
2
9 ( 2

5 )
4
9 ( 2

5 )
3
9 ( 1

5 )
3
9 ( 4

5 )
6
9 ( 1

5 )
6
9 ( 2

5 )
3
9 ( 3

5 )

Example: Play Tennis?

Inference: Use the learnt model to classify a new instance.

New instance:

x = (sunny, cool, high, true)

Apply Naïve Bayes Classifier:

yMAP = arg max
y ∈ {yes, no}

P(y)
4∏

i=1

P(xi | y)

P(yes) P(sunny | yes) P(cool | yes) P(high | yes) P(true | yes) =
9

14
×

2

9
×

3

9
×

3

9
×

3

9
= .005

P(no) P(sunny | no) P(cool | no) P(high | no) P(true | no) =
5

14
×

3

5
×

1

5
×

4

5
×

3

5
= .021

=⇒ yMAP = no

Naïve Bayes: Independence Violation

Conditional independence assumption:

P(x1, x2, . . . , xK | y) =
K∏

k=1

P(xk | y)

often violated - but it works surprisingly well anyway!

Note: Do not need the posterior probabilities P(y |x) to be
correct. Only need yMAP to be correct.

Since dependencies ignored, naïve Bayes posteriors often
unrealistically close to 0 or 1.
Different attributes say the same thing to a higher degree than we
expect as they are correlated in reality.

Naïve Bayes: Estimating Probabilities

Problem: What if none of the training instances with target
value y have attribute xi? Then

P(xi | y) = 0 =⇒ P(y)
K∏

i=1

P(xi | y) = 0

Solution: Add as prior knowledge that P(xi | y) must be
larger than 0:

P(xi | y) =
ny + mp
n + m

where

n = number of training samples with label y

ny = number of training samples with label y and value xi

p = prior estimate of P(xi | y)
m = weight given to prior estimate (in relation to data)



Example: Spam detection

Aim: Build a classifier to identify spam e-mails.

How:
Training
X Create dictionary of words and tokens W = {w1, . . . , wL}. These

words should be those which are specific to spam or non-spam e-mails.

X E-mail is a concatenation, in order, of its words and tokens:
e = (e1, e2, . . . , eK ) with ei ∈ W.

X Must model and learn
P(e1, e2, . . . , eK | spam) and P(e1, e2, . . . , eK | not spam)

Dear customer,
A fully licensed Online Pharmacy is offering pharmaceuticals:
- brought to you directly from abroad
-produced by the same multinational corporations selling through the major US 
pharmacies
-priced up to 5 times cheaper as compared to major US pharmacies.
Enjoy the US dollar purchasing power on http://pharmacy-buyonline.com.ua/

Email: E

Concatenate words from e-mail into a vector

('dear', 'customer', ',', 'a', 'fully', 'licensed',    .....   ,'/')  

Vector: e

Inference
X Given an e-mail, E , compute e = (e1, . . . ,eK ).

X Use Bayes’ rule to compute
P(spam | e1, . . . , eK ) ∝ P(e1, . . . , eK | spam) P(spam)

Example: Spam detection

How is the joint probability distribution modelled?

P(e1, . . . ,eK | spam)

Remember K will be very large and vary from e-mail to e-mail..

Make conditional independence assumption:

P(e1, . . . , eK | spam) =
K∏

k=1

P(ek | spam)

Similarly

P(e1, . . . , eK | not spam) =
K∏

k=1

P(ek | not spam)

Have assumed the position of word is not important.

Example: Spam detection

Learning:
Assume one has n training e-mails and their labels - spam /non-spam

S = {(e1, y1), . . . , (en, yn)}

Note: ei = (ei1, . . . , eiKi ).

Create dictionary
1 Make a union of all the distinctive words and tokens in e1, . . . , en

to createW = {w1, . . . ,wL}. (Note: words such as and, the, ... omitted)

Learn probabilities
For y ∈ {spam, not spam}

1 Set P(y) =
∑n

i=1 Ind(yi=y)
n ←proportion of e-mails from class y .

2 ny =
∑n

i=1 Ki × Ind (yi = y) ← total # of words in the class y e-mails.

3 For each word wl compute

nyl =
∑n

i=1 Ind (yi = y)×
(∑Ki

k=1 Ind (eik = wl)
)
← # of occurrences of

word wl in the class y e-mails.

4 P(wl | y) =
nyl+1

ny+|W| ← assume prior value of P(wl | y) is 1/|W|.

Example: Spam detection

Inference: Classify a new e-mail e∗ = (e∗1, . . . ,e
∗
K∗)

y∗ = arg max
y∈{−1,1}

P(y)
K∗∏

k=1

P(e∗k |y)


