Naïve Bayes Classifier

Lecture 7 (Part I), DD2431 Machine Learning

A. Maki

September 2014

- Sensors give measurements which can be converted to features.
- However in the real world

Samples

because of
\checkmark Measurement noise
\checkmark Intra-class variation
\checkmark Poor choice of features

Feature Space

End result: a K-dimensional space

- in which each dimension is a feature
- containing n labelled samples (objects)

- Size of feature space exponential in number of features.
- More features \Longrightarrow potential for better description of the objects but...
More features \Longrightarrow more difficult to model $P(\mathbf{x} \mid y)$.
- Extreme Solution: Naïve Bayes classifier
\checkmark All features (dimensions) regarded as independent.
\checkmark Model k one-dimensional distributions instead of one k-dimensional distribution.

Naïve Bayes Classifier

```
Naïve Bayes Classifier
```

- \mathbf{x} is a vector $\left(x_{1}, \ldots, x_{K}\right)$ of attribute or feature values.
- Let $\mathcal{Y}=\{1,2, \ldots, Y\}$ be the set of possible classes.
- The MAP estimate of y is

$$
\begin{aligned}
y_{\text {MAP }} & =\arg \max _{y \in \mathcal{Y}} P\left(y \mid x_{1}, \ldots, x_{K}\right) \\
& =\arg \max _{y \in \mathcal{Y}} \frac{P\left(x_{1}, \ldots, x_{K} \mid y\right) P(y)}{P\left(x_{1}, \ldots, x_{K}\right)} \\
& =\arg \max _{y \in \mathcal{Y}} P\left(x_{1}, \ldots, x_{K} \mid y\right) P(y)
\end{aligned}
$$

- Naïve Bayes assumption: $P\left(x_{1}, \ldots, x_{K} \mid y\right)=\prod_{k=1}^{K} P\left(x_{k} \mid y\right)$
- This give the Naïve Bayes classifier.

$$
y_{\mathrm{MAP}}=\arg \max _{y \in \mathcal{Y}} P(y) \prod_{k=1}^{K} P\left(x_{k} \mid y\right)
$$

- One of the most common learning methods.
- When to use:
\checkmark Moderate or large training set available.
\checkmark Features x_{i} of a data instance \mathbf{x} are conditionally independent given classification (or at least reasonably independent, still works with a little dependence).
- Successful applications:
\checkmark Medical diagnoses (symptoms independent)
\checkmark Classification of text documents (words independent)

Example: Play Tennis?

What I did in the past:

outlook	temp.	humidity	windy	play	outlook	temp.	humidity	windy	play
sunny	hot	high	false	no	sunny	mild	high	false	no
sunny	hot	high	true	no	sunny	cod	normal	false	yes
overcast	hot	high	false	yes	rainy	mild	normal	false	yes
rainy	mild	high	fake	yes	sunny	mild	normal	true	yes
rainy	cool	normal	fake	yes	overcast	mild	high	true	yes
rainy	cool	normal	true	no	overcast	hot	normal	false	yes
overcast	cool	normal	true	yes	rainy	mild	high	true	no

Counts of when I played tennis (did not play)

Outlook			Temperature			Humidity		Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
2 (3)	4 (0)	3 (2)	2 (2)	4 (2)	3 (1)	3 (4)	6 (1)	6 (2)	3 (3)

Prior of whether I played tennis or not

$$
\text { Counts: } \quad \text { Prior Probabilities: }
$$

Likelihood of attribute when tennis played $P\left(x_{i} \mid \mathrm{y}=\mathrm{yes}\right)\left(P\left(x_{i} \mid \mathrm{y}=\mathrm{no}\right)\right)$

Outlook			Temperature			Humidity		Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
$\frac{2}{9}\left(\frac{3}{5}\right)$	$\frac{4}{9}\left(\frac{0}{5}\right)$	$\frac{3}{9}\left(\frac{2}{5}\right)$	$\frac{2}{9}\left(\frac{2}{5}\right)$	$\frac{4}{9}\left(\frac{2}{5}\right)$	$\frac{3}{9}\left(\frac{1}{5}\right)$	$\frac{3}{9}\left(\frac{4}{5}\right)$	$\frac{6}{9}\left(\frac{1}{5}\right)$	$\frac{6}{9}\left(\frac{2}{5}\right)$	$\frac{3}{9}\left(\frac{3}{5}\right)$

Naïve Bayes: Independence Violation

- Conditional independence assumption:

$$
P\left(x_{1}, x_{2}, \ldots, x_{K} \mid y\right)=\prod_{k=1}^{K} P\left(x_{k} \mid y\right)
$$

often violated - but it works surprisingly well anyway!

- Note: Do not need the posterior probabilities $P(y \mid \mathbf{x})$ to be correct. Only need $y_{\text {MAP }}$ to be correct.
- Since dependencies ignored, naïve Bayes posteriors often unrealistically close to 0 or 1 .
Different attributes say the same thing to a higher degree than we expect as they are correlated in reality.

Inference: Use the learnt model to classify a new instance.

New instance:

$$
\mathbf{x}=(\text { sunny }, \text { cool }, \text { high, true })
$$

Apply Naïve Bayes Classifier:

$$
y_{\mathrm{MAP}}=\arg \max _{y \in\{\text { yes, no }\}} P(y) \prod_{i=1}^{4} P\left(x_{i} \mid y\right)
$$

$P($ yes $) P\left(\right.$ sunny | yes) $P\left(\right.$ cool | yes) $P\left(\right.$ high \mid yes) $P\left(\right.$ true | yes) $=\frac{9}{14} \times \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9}=.005$ $P($ no $) P($ sunny \mid no $) P($ cool \mid no $) P($ high \mid no $) P($ true \mid no $)=\frac{5}{14} \times \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5}=.021$
$\Longrightarrow y_{\mathrm{MAP}}=\mathrm{no}$

Naïve Bayes: Estimating Probabilities

- Problem: What if none of the training instances with target value y have attribute x_{i} ? Then

$$
P\left(x_{i} \mid y\right)=0 \quad \Longrightarrow \quad P(y) \prod_{i=1}^{K} P\left(x_{i} \mid y\right)=0
$$

- Solution: Add as prior knowledge that $P\left(x_{i} \mid y\right)$ must be larger than 0 :

$$
P\left(x_{i} \mid y\right)=\frac{n_{y}+m p}{n+m}
$$

where
$n=$ number of training samples with label y
$n_{y}=$ number of training samples with label y and value x_{i}
$p=$ prior estimate of $P\left(x_{i} \mid y\right)$
$m=$ weight given to prior estimate (in relation to data)

Example: Spam detection

```
Example: Spam detection
```

- Aim: Build a classifier to identify spam e-mails.

- How:

Training
\checkmark Create dictionary of words and tokens $\mathcal{W}=\left\{w_{1}, \ldots, w_{L}\right\}$. These words should be those which are specific to spam or non-spam e-mails.
\checkmark E-mail is a concatenation, in order, of its words and tokens: $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{K}\right)$ with $e_{i} \in \mathcal{W}$.
\checkmark Must model and learn $P\left(e_{1}, e_{2}, \ldots, e_{K} \mid\right.$ spam $)$ and $P\left(e_{1}, e_{2}, \ldots, e_{K} \mid\right.$ not spam $)$

Concatenate words from e-mail into a vector
Inference
\checkmark Given an e-mail, E, compute $\mathbf{e}=\left(e_{1}, \ldots, e_{K}\right)$.
\checkmark Use Bayes' rule to compute

$$
P\left(\text { spam } \mid e_{1}, \ldots, e_{K}\right) \propto P\left(e_{1}, \ldots, e_{K} \mid \text { spam }\right) P(\text { spam })
$$

Example: Spam detection

Learning:

Assume one has n training e-mails and their labels - spam /non-spam

$$
\mathcal{S}=\left\{\left(\mathbf{e}_{1}, y_{1}\right), \ldots,\left(\mathbf{e}_{n}, y_{n}\right)\right\}
$$

Note: $\mathbf{e}_{i}=\left(e_{i 1}, \ldots, e_{i K_{i}}\right)$.

Create dictionary

(1) Make a union of all the distinctive words and tokens in $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ to create $\mathcal{W}=\left\{w_{1}, \ldots, \boldsymbol{W}_{L}\right\}$. (Note: words such as and, the, \ldots omitted)

Learn probabilities

For $y \in\{$ spam, not spam $\}$
(1) Set $P(y)=\frac{\sum_{i=1}^{n} \operatorname{Ind}\left(y_{i}=y\right)}{n}$
-proportion of e-mails from class y
(2) $n_{y}=\sum_{i=1}^{n} K_{i} \times \operatorname{Ind}\left(y_{i}=y\right) \leftarrow$ total $\#$ of words in the class y e-mails.
(3) For each word w_{l} compute
$n_{y l}=\sum_{i=1}^{n} \operatorname{Ind}\left(y_{i}=y\right) \times\left(\sum_{k=1}^{K_{i}} \operatorname{Ind}\left(e_{i k}=w_{l}\right)\right) \leftarrow \#$ of occurrences of word w_{l} in the class y e-mails.
(4) $P\left(w_{l} \mid y\right)=\frac{n_{y l}+1}{n_{y}+|\mathcal{W}|}$
\leftarrow assume prior value of $P\left(w_{l} \mid y\right)$ is $1 /|\mathcal{W}|$.

