

Lecture 7 (part II): Classification

Atsuto Maki September, 2014

DD2431, CSC/KTH

Logistic regression

An approach to learning functions (of the form $f: x \to y$) or $P(y \mid x)$ where y is discrete-valued, typically a boolean, and x is a vector (of discrete or continuous variables)

Sigmoid/Logistic function:

$$g(z) = \frac{1}{1 + e^{-z}}$$

We model $P(y \mid x)$ using a sigmoid function that gives outputs between 0 and 1 (interpretable as probability) for all input values of x

We will visit

- Naïve Bayes classifier (visited in part I)
- Logistic Regression (binary classification)
- Discriminative and Generative models

Classification => a qualitative output; to assign an observation to a category (class)

Example: Credit card default data

We are to predict customers that are likely to default

y (default) is categorical: Yes/No

 \boldsymbol{x} contains variables: annual income, monthly balance

Figures from An Introduction to Statistical Learning (G. James et al.)

Model/hypothesis representation

In linear regression we had: $f(x) = w^T x$

Here we use:
$$f_w(x) = \frac{1}{1 + e^{-w^T x}}$$
 so that $0 \le f_w(x) \le 1$

Interpretation of f: estimated probability

that y = 1 given x, parameterized by w

$$f_w(x) = P(y = 1 | x, w)$$

 $P(y = 0 | x, w) = 1 - P(y = 1 | x, w)$

Cost function

• Training dataset:

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

of N pairs of inputs x_i and targets $y_i \in \{1,0\}$

• Want the parameters w that minimise the error:

$$E(w) = \frac{1}{N} \sum_{n=1}^{N} Cost(f_w(x_n), y_n)$$
$$-y \log(f_w(x)) - (1 - y) \log(1 - f_w(x))$$

Decision boundary

In linear regression we had: $f(x) = w^T x$

Here we use:
$$f_w(x) = \frac{1}{1 + e^{-w^T x}}$$
 so that $0 \le f_w(x) \le 1$

Predict
$$y = 1$$
 if $f_w(x) \ge 0.5 \rightarrow w^T x \ge 0$
Predict $y = 0$ if $f_w(x) < 0.5 \rightarrow w^T x < 0$

Decision boundary

Estimating the parameters

Gradient Decent to find w such that $\min E(w)$

$$E(w) = -\frac{1}{N} \sum_{n=1}^{N} \left[y_n \log(f_w(x_n)) + (1 - y_n) \log(1 - f_w(x_n)) \right]$$

Repeat:
$$w_i = w_i - \alpha \frac{\partial}{\partial w_i} E(w)$$
 (Simultaneous update for all w_i)

$$= w_i - \alpha \sum_{n=1}^{N} (f_w(x_n) - y_n) x_{nj}$$

For a new *x*, compute
$$f_w(x) = \frac{1}{1 + e^{-w^T x}} = P(y = 1 | x, w)$$

Inference and decision

Three distinctive approaches to classification problem

- Discriminative function: learn a function that maps inputs directly to a class label (no access to probabilities)
- Discriminative approach
- · Generative approach

Classification can be seen as inference + decision:

- 1. Inference stage: to learn a model for $P(y \mid x)$ using training data
- 2. Decision stage: to determine optimal class membership using these posterior probabilities

Discriminative vs Generative model

Discriminative approach:

• Directly model the posterior probabilities $P(y \mid x)$

Generative approach:

- First solve the inference of determining $P(x \mid y)$ for each class
- \bullet Infer the prior class probability $P(\mathbf{y})$, often just by the fraction
- Use Bayes' theorem

The difference mainly in computing $P(x \mid y)$

- Demanding, requiring a large training set, and computation
- + Possible to generate synthetic data points in the input space

Example: two classes, single variable

Class-conditional densities

Posterior probabilities

Figures from Pattern Recognition and Machine Learning (C. Bishop)