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N We will visit
. ) ¢ Naive Bayes classifier (visited in part 1)
Lecture 7 (part Il): Classification
e Logistic Regression (binary classification)
Atsuto Maki e Discriminative and Generative models
September, 2014
Classification => a qualitative output; to assign an
DD2431, CSC/KTH observation to a category (class)
Logistic regression Example: Credit card default data
An approach to learning functions (of the form f:x—y) i -

or P(y | x) where y is discrete-valued, typically a boolean,
and x is a vector (of discrete or continuous variables)
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We are to predict customers that are likely to default

1
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We model P(y | x) using a sigmoid function that gives
outputs between 0 and 1 (interpretable as probability)
for all input values of x

y (default) is categorical: Yes/No
X contains variables: annual income, monthly balance

Figures from An Introduction to Statistical Learning (G. James et al.)



Model/hypothesis representation

In linear regression we had: f(x)=w"x

Here we use: f, (x)= " ITX sothat 0=, (x)=I
+e

Interpretation of f: estimated probability
that y = 1 given x, parameterized by w

£, (x) =P(y=1lx,w)
P(y=0lx,w)=1-P(y=1lx,w)

Cost function

¢ Training dataset:
D= {(xlayl)a(xg,yz)s” ',(XN,)’N)}
of N pairs of inputs xi and targets yi €{1,0}

e Want the parameters w that minimise the error:

1 N
E(w)=— 2 Cfsf(fw (x, ) v,)
—ylog(f, (x))—(1-y)log(1- f, (x))

Decision boundary

In linear regression we had: f(x)=w"x

Here we use: f, (x)= 1 I_WT sothat 0= f,(x)sl
+e

Predicty = 1 if fw(x)ZO.S —w'x=0
Predicty=0if f,(x)<05 =w'x<0

Decision boundary

Estimating the parameters

Gradient Decent to find w such that mwin E(w)

E(w)———E Llog(f,, (x, )+ (1-y,)log-f, (x )]

d
Repeat: w,=w, —a— E(w)  (simultaneous update for all wi)
owi

=wi—ag(f (x

For a new x, compute f, (x)= !

——=P(y=1lx,w)

l+e



Inference and decision Example: two classes, single variable

Three distinctive approaches to classification problem

R ) ) Class-conditional densities Posterior probabilities
» Discriminative function: learn a function that maps X
. . elrae 1:2
inputs directly to a class label (no access to probabilities) - -
* Discriminative approach . p(zlCz) 1
* Generative approach o
2 .
= 3
Classification can be seen as inference + decision: 3 06
1. Inference stage: to learn a model for P(y | x) using S e 04
. . x
training data =
. . . . . ]‘
2. Decision stage: to determine optimal class membership 02
using these posterior probabilities o o
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Figures from Pattern Recognition and Machine Learning (C. Bishop)

Discriminative vs Generative model

Discriminative approach:
* Directly model the posterior probabilities P(y | x)

Generative approach:
* First solve the inference of determining P(x | y) for each class
* Infer the prior class probability P(y) , often just by the fraction
* Use Bayes’ theorem

The difference mainly in computing P(x | y)
- Demanding, requiring a large training set, and computation
+ Possible to generate synthetic data points in the input space



