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© Structural Risk Minimization
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© Support Vector Machines

QO Kernels
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Linear separation Linear separation

@ Linear separation

Dendrites  Soma Axon

Neuron caricature, “artificial neuron”
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@ Weighted input signals
@ Summing
@ Thresholded output
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Linear separation

Linear separation

0 = sign E Xj Wi
i

What can a single " artificial neuron” compute?

8
e Geometrical interpretation

— 7

ﬂt:l—/ X
X Input in vector format w
w Weights in vector format X,
o OQutput

0 = sign Zx,-w,-
i Variable threshold = Not anchored to origin

Common trick: treat the threshold as a weight
Linear separation

Linear separation

Training a linear separator

Perceptron Learning

@ Incremental learning

What does learning mean here?
@ Weights only change when the output is wrong

Learning means finding the best weights w;
Two good algorithms exist: o Update rule: w; = w; +1(t — 0)xj
o Always converges if the problem is solvable

@ Perceptron Learning

@ Delta Rule

érjan Ekeberg Machine Learning Orjan Ekeberg Machine Learning



Linear separation Linear separation

Linear Separation

Delta Rule (LMS-rule)

@ Incremental learning ° ©
o Weights always change ° ° o o
o w; + w;+n(t— vT/TS(')x,-
@ Converges only in the mean ¢ °
@ Will find an optimal solution even if the problem can not be ¢ © °
fully solved °
° ¢

Linear separation
Structural Risk Minimization

Many acceptable solutions — bad generalization

© Structural Risk Minimization

@ Structural Risk
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Structural Risk Minimization

Hyperplane with margins
Training data points are at least a distance d from the plane
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Less arbitrariness — better generalization
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Structural Risk Minimization

Structural Risk Minimization

o Wide margins restrict the possible hyperplanes to choose from
@ Less risk to choose a bad hyperplane by accident
@ Reduced risk for bad generalization

Minimization of the structural risk = maximization of the margin

Out of all hyperplanes which solve the problem
the one with widest margin will probably generalize best J
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Structural Risk Minimization

Mathematical Formulation

@ Separating Hyperplane

wix=0
@ Hyperplane with a margin
wig>1 when t =1
wix< -1 when t = —1
e Combined
tw'x >1
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How wide is the margin?
@ Select two points, g and g, on the two margins:

wip=1 w'g=-1

@ Distance between p and g along w:
VT/T

2d = (5 - d)
]

© Simplify:

Maximal margin corresponds to minimal length of the weight vector |
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Structural Risk Minimization

Support Vector Machines

Best Separating Hyperplane

Minimize

© Support Vector Machines
Constraints
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Support Vector Machines Support Vector Machines

Support Vector Machines

Observation

Almost everything becomes linearly separable
when represented in high-dimensional spaces

1k

"Ordinary” low-dimensional data can be "scattered” into a

high-dimensional space. e Transform the input to a

suitable high-dimensional
Two problems emerge space

@ Many free parameters — bad generalization o Choose the separation that

@ Extensive computations has maximal margins
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Support Vector Machines
Kernels

Support Vector Machines

o Advantages

e Very good generalization
o Works well even with few training samples
o Fast classification

e Disadvantages @ Kernels

e Non-local weight calculation
e Hard to implement efficiently
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Kernels Kernels

Transform input data non-linearly into a high-dimensional feature
space

Idea behind Kernels

Utilize the advantages of a high-dimensional space
without actually representing anything high-dimensional

@ Condition: The only operation done in the high-dimensional
space is to compute scalar products between pairs of items

@ Trick: The scalar product is computed using the original
(low-dimensional) representation
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Example

Points in 2D

|

X1
X2

Kernels

|

Transformation to 4D
X
. V3xix2
B(X) = \/§X1X22
3

X5

d(R)T - () = Xyt + 3xEyixeye + 3xy1GY5 + X5y

érjan Ekeberg Machine Learning

= (xw + Xzyz)3

Kernels

Structural Risk Minimization

Minimize

Constraints

Vi

New formulation

Minimize

Constraints
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Kernels

Common Kernels

Polynomials

Radial Bases

K(%.7) = e 22 I571°
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Kernels

Structural Risk Minimization

Minimize

Constraints
twip(x)>1 Vi

Lagranges Multiplier Method

AT [t,-vT/T¢>(>_<’,-) - 1]

i

L=

N =

Minimize w.r.t. w, maximize w.r.t. a;j > 0

oL

=

0
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Kernels Kernels

Use
W= Z Oé,'t,'qb()_(")
1 . -
L= 5V‘.}TV‘.} - Zai {t;vVTqb()?,-) — 1] to eliminate w
1
1.7 LT o
o 5w o L= 3970 o 157k
— = w — ajtip(X;) = ;
ow : iti i ;
" 1 - > o
w = Z O t:¢(X;) L= 5 Z a;a;jt; tJ¢(X,')T¢)(XJ') — Z a;ozjt;tJ-(b(X,-)ngﬁ(xJ-) + Z o
i iJ 1J i
1 = >
L= Z o — 5 Z oz,-ajt,'tjd)(X;)Tqb(Xj)
i iJj

Kernels Kernels

The Dual Problem

Maximize 1
Z @i =5 Z ajajtiti(%) T o(%;)
i ij
Under the constraints © Choose a suitable kernel function
@ Compute «; (solve the maximization problem)
aj 20 Vi © X; corresponding to «; # 0 are called support vectors
o . @ C(lassify new data points via
@ w has disappeared
@ ¢(X) only appear in scalar product pairs Za;t;lc(%,i;) >0
1
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Non-separable Classes Non-separable Classes

None- le Traini I
one-Separable Training Samples Re-formulation of the minimization problem
Allow for Slack
- Minimize 1
i W © EVT/TVTHLCZ@-
i
® . ' Constraints

. QA ° w7 (%) = 1-¢;

&; are called slack variables
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Non-separable Classes

Dual Formulation with Slack
Maximize

1 S =
D_ai—5 > aiojtito(%) T 4(%)
i iy
With constraints

OSCL/,'SC Vi

Otherwise, everything remains as before
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