Classification with Separating Hyperplanes Örjan Ekeberg Machine Learning - 1 Linear separation - 2 Structural Risk Minimization - Support Vector Machines - 4 Kernels - Non-separable Classes - 1 Linear separation - Structural Risk Minimization - Support Vector Machines - 4 Kernels - Non-separable Classes Örjan Ekeberg Machine Learning Neuron caricature, "artificial neuron" - Weighted input signals - Summing - Thresholded output ### Linear separation Support Vector Machines Non-separable Classes What can a single "artificial neuron" compute? - \vec{x} Input in vector format - \vec{w} Weights in vector format - Output $$o = \operatorname{sign}\left(\sum_{i} x_{i} w_{i}\right)$$ Örjan Ekeberg Machine Learning # Training a linear separator What does learning mean here? Learning means finding the best weights w_i Two good algorithms exist: - Perceptron Learning - Delta Rule Linear separation Structural Risk Minimization Support Vector Machines Non-separable Classes $$o = \operatorname{sign}\left(\sum_{i} x_{i} w_{i}\right)$$ ### Geometrical interpretation Variable threshold \equiv Not anchored to origin Common trick: treat the threshold as a weight Örjan Ekeberg Machine Learning # Perceptron Learning - Incremental learning - Weights only change when the output is wrong - Update rule: $w_i \leftarrow w_i + \eta(t o)x_i$ - Always converges if the problem is solvable # Linear Separation Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization Support Vector Machines Kernels Non-separable Classes - Linear separation - Structural Risk Minimization - Support Vector Machines - 4 Kernels - 5 Non-separable Classes Delta Rule (LMS-rule) - Incremental learning - Weights always change - $w_i \leftarrow w_i + \eta(t \vec{w}^T \vec{x}) x_i$ - Converges only in the mean - Will find an optimal solution even if the problem can not be fully solved Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization Support Vector Machine: Kernel: Non-separable Classe Many acceptable solutions \rightarrow bad generalization Structural Risk ### Hyperplane with margins Training data points are at least a distance d from the plane Less arbitrariness \rightarrow better generalization Örjan Ekeberg #### Mathematical Formulation Separating Hyperplane $$\vec{w}^T \vec{x} = 0$$ • Hyperplane with a margin $$\vec{w}^T \vec{x} \ge 1$$ when $t = 1$ $\vec{w}^T \vec{x} \le -1$ when $t = -1$ Combined $$t\vec{w}^T\vec{x} > 1$$ - Wide margins restrict the possible hyperplanes to choose from - Less risk to choose a bad hyperplane by accident - Reduced risk for bad generalization Minimization of the structural risk \equiv maximization of the margin Out of all hyperplanes which solve the problem the one with widest margin will probably generalize best Örjan Ekeberg Machine Learning How wide is the margin? • Select two points, \vec{p} and \vec{q} , on the two margins: $$\vec{w}^T \vec{p} = 1$$ $\vec{w}^T \vec{q} = -1$ ② Distance between \vec{p} and \vec{q} along \vec{w} : $$2d = \frac{\vec{w}^T}{||\vec{w}||}(\vec{p} - \vec{q})$$ Simplify: $$2d = \frac{\vec{w}^T \vec{p} - \vec{w}^T \vec{q}}{||\vec{w}||} = \frac{1 - (-1)}{||\vec{w}||} = \frac{2}{||\vec{w}||}$$ Maximal margin corresponds to minimal length of the weight vector ## Best Separating Hyperplane Minimize $$\vec{w}^T \vec{w}$$ Constraints $$t_i \vec{w}^T \vec{x}_i \geq 1$$ Örjan Ekeberg Machine Learning Support Vector Machines Non-separable Classes ### Observation Almost everything becomes linearly separable when represented in high-dimensional spaces "Ordinary" low-dimensional data can be "scattered" into a high-dimensional space. Two problems emerge - lacktriangle Many free parameters o bad generalization - Extensive computations - 1 Linear separation - 2 Structural Risk Minimization - Support Vector Machines - 4 Kernels - Non-separable Classes Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization Support Vector Machines # Support Vector Machines - Transform the input to a suitable high-dimensional space - Choose the separation that has maximal margins Machine Learning - Advantages - Very good generalization - Works well even with few training samples - Fast classification - Disadvantages - Non-local weight calculation - Hard to implement efficiently Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization Support Vector Machines Kernels Non-separable Classes Transform input data non-linearly into a high-dimensional feature space Linear separation Structural Risk Minimization Support Vector Machines Kernels Non-separable Classes - 1 Linear separation - 2 Structural Risk Minimization - 3 Support Vector Machines - 4 Kernels - 5 Non-separable Classes Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization Support Vector Machine: **Kerne**l: Non-separable Classe: ## Idea behind Kernels Utilize the advantages of a high-dimensional space without actually representing anything high-dimensional - Condition: The only operation done in the high-dimensional space is to compute *scalar products* between pairs of items - Trick: The scalar product is computed using the original (low-dimensional) representation ### Example Transformation to 4D Points in 2D $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$ $$\phi(\vec{x}) = \begin{bmatrix} x_1^3 \\ \sqrt{3}x_1^2x_2 \\ \sqrt{3}x_1x_2^2 \\ x_2^3 \end{bmatrix}$$ $$\phi(\vec{x})^{T} \cdot \phi(\vec{y}) = x_{1}^{3}y_{1}^{3} + 3x_{1}^{2}y_{1}^{2}x_{2}y_{2} + 3x_{1}y_{1}x_{2}^{2}y_{2}^{2} + x_{2}^{3}y_{2}^{3}$$ $$= (x_{1}y_{1} + x_{2}y_{2})^{3}$$ $$= (\vec{x}^{T} \cdot \vec{y})^{3}$$ $$= \mathcal{K}(\vec{x}, \vec{y})$$ Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization ### Structural Risk Minimization Minimize $$\vec{w}^T \vec{w}$$ Constraints $$t_i \vec{w}^T \vec{x}_i \geq 1 \quad \forall i$$ • Non-linear transformation ϕ of input \vec{x} ### New formulation Minimize $$\frac{1}{2}\vec{w}^T\vec{w}$$ Constraints $$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 \quad \forall$$ Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization Support Vector Machines Non-separable Classes Common Kernels **Polynomials** $$\mathcal{K}(\vec{x}, \vec{y}) = (\vec{x}^T \vec{y} + 1)^p$$ Radial Bases $$\mathcal{K}(\vec{x}, \vec{y}) = e^{- rac{1}{2 ho^2}||\vec{x} - \vec{y}||^2}$$ Örjan Ekeberg Machine Learning ### Structural Risk Minimization Minimize $$\frac{1}{2}\vec{w}^T\vec{w}$$ Constraints $$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 \quad \forall i$$ Lagranges Multiplier Method $$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$ Minimize w.r.t. \vec{w} , maximize w.r.t. $\alpha_i \geq 0$ $$\frac{\partial L}{\partial \vec{w}} = 0$$ $$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$ $$\frac{\partial L}{\partial \vec{w}} = 0 \implies \vec{w} - \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i}) = 0$$ $$\vec{w} = \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i})$$ Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization Support Vector Machines Kernels ### The Dual Problem Maximize $$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{\mathsf{T}} \phi(\vec{x}_{j})$$ Under the constraints $$\alpha_i \geq 0 \quad \forall i$$ - \vec{w} has disappeared - $\phi(\vec{x})$ only appear in scalar product pairs Linear separation Structural Risk Minimization Support Vector Machines Kernels Use $$\vec{w} = \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i})$$ to eliminate \vec{w} $$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$ $$L = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) - \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) + \sum_i \alpha_i$$ $$L = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$$ Örjan Ekeberg Machine Learning Linear separation Structural Risk Minimization Support Vector Machine Kerne Non separable Class - Choose a suitable kernel function - 2 Compute α_i (solve the maximization problem) - **3** $\vec{x_i}$ corresponding to $\alpha_i \neq 0$ are called support vectors - Classify new data points via $$\sum_{i} \alpha_{i} t_{i} \mathcal{K}(\vec{x}, \vec{x_{i}}) > 0$$ Örjan Ekeberg Machine Learning Örjan Ekeberg Machine Learning Non-separable Classes # None-Separable Training Samples Allow for Slack Örjan Ekeberg Machine Learning # Dual Formulation with Slack Maximize $$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$$ With constraints $$0 \le \alpha_i \le C \quad \forall i$$ Otherwise, everything remains as before Örjan Ekeberg Machine Learning Re-formulation of the minimization problem Minimize $$\frac{1}{2}\vec{w}^T\vec{w} + C\sum_i \xi_i$$ Constraints $$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 - \xi_i$$ ξ_i are called *slack variables* Örjan Ekeberg Machine Learning