Classification with Separating Hyperplanes

Örjan Ekeberg

Machine Learning

- 1 Linear separation
- 2 Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- Non-separable Classes

- 1 Linear separation
- Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- Non-separable Classes

Örjan Ekeberg

Machine Learning

Neuron caricature, "artificial neuron"

- Weighted input signals
- Summing
- Thresholded output

Linear separation Support Vector Machines Non-separable Classes

What can a single "artificial neuron" compute?

- \vec{x} Input in vector format
- \vec{w} Weights in vector format
- Output

$$o = \operatorname{sign}\left(\sum_{i} x_{i} w_{i}\right)$$

Örjan Ekeberg

Machine Learning

Training a linear separator

What does learning mean here?

Learning means finding the best weights w_i

Two good algorithms exist:

- Perceptron Learning
- Delta Rule

Linear separation Structural Risk Minimization Support Vector Machines Non-separable Classes

$$o = \operatorname{sign}\left(\sum_{i} x_{i} w_{i}\right)$$

Geometrical interpretation

Variable threshold \equiv Not anchored to origin Common trick: treat the threshold as a weight

Örjan Ekeberg Machine Learning

Perceptron Learning

- Incremental learning
- Weights only change when the output is wrong
- Update rule: $w_i \leftarrow w_i + \eta(t o)x_i$
- Always converges if the problem is solvable

Linear Separation

Örjan Ekeberg

Machine Learning

Linear separation Structural Risk Minimization Support Vector Machines Kernels Non-separable Classes

- Linear separation
- Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- 5 Non-separable Classes

Delta Rule (LMS-rule)

- Incremental learning
- Weights always change
- $w_i \leftarrow w_i + \eta(t \vec{w}^T \vec{x}) x_i$
- Converges only in the mean
- Will find an optimal solution even if the problem can not be fully solved

Örjan Ekeberg

Machine Learning

Linear separation
Structural Risk Minimization
Support Vector Machine:
Kernel:
Non-separable Classe

Many acceptable solutions \rightarrow bad generalization

Structural Risk

Hyperplane with margins

Training data points are at least a distance d from the plane

Less arbitrariness \rightarrow better generalization

Örjan Ekeberg

Mathematical Formulation

Separating Hyperplane

$$\vec{w}^T \vec{x} = 0$$

• Hyperplane with a margin

$$\vec{w}^T \vec{x} \ge 1$$
 when $t = 1$
 $\vec{w}^T \vec{x} \le -1$ when $t = -1$

Combined

$$t\vec{w}^T\vec{x} > 1$$

- Wide margins restrict the possible hyperplanes to choose from
- Less risk to choose a bad hyperplane by accident
- Reduced risk for bad generalization

Minimization of the structural risk \equiv maximization of the margin

Out of all hyperplanes which solve the problem the one with widest margin will probably generalize best

Örjan Ekeberg

Machine Learning

How wide is the margin?

• Select two points, \vec{p} and \vec{q} , on the two margins:

$$\vec{w}^T \vec{p} = 1$$
 $\vec{w}^T \vec{q} = -1$

② Distance between \vec{p} and \vec{q} along \vec{w} :

$$2d = \frac{\vec{w}^T}{||\vec{w}||}(\vec{p} - \vec{q})$$

Simplify:

$$2d = \frac{\vec{w}^T \vec{p} - \vec{w}^T \vec{q}}{||\vec{w}||} = \frac{1 - (-1)}{||\vec{w}||} = \frac{2}{||\vec{w}||}$$

Maximal margin corresponds to minimal length of the weight vector

Best Separating Hyperplane

Minimize

$$\vec{w}^T \vec{w}$$

Constraints

$$t_i \vec{w}^T \vec{x}_i \geq 1$$

Örjan Ekeberg

Machine Learning

Support Vector Machines Non-separable Classes

Observation

Almost everything becomes linearly separable when represented in high-dimensional spaces

"Ordinary" low-dimensional data can be "scattered" into a high-dimensional space.

Two problems emerge

- lacktriangle Many free parameters o bad generalization
- Extensive computations

- 1 Linear separation
- 2 Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- Non-separable Classes

Örjan Ekeberg

Machine Learning

Linear separation Structural Risk Minimization Support Vector Machines

Support Vector Machines

- Transform the input to a suitable high-dimensional space
- Choose the separation that has maximal margins

Machine Learning

- Advantages
 - Very good generalization
 - Works well even with few training samples
 - Fast classification
- Disadvantages
 - Non-local weight calculation
 - Hard to implement efficiently

Örjan Ekeberg

Machine Learning

Linear separation Structural Risk Minimization Support Vector Machines Kernels Non-separable Classes

Transform input data non-linearly into a high-dimensional feature space

Linear separation
Structural Risk Minimization
Support Vector Machines
Kernels
Non-separable Classes

- 1 Linear separation
- 2 Structural Risk Minimization
- 3 Support Vector Machines
- 4 Kernels
- 5 Non-separable Classes

Örjan Ekeberg

Machine Learning

Linear separation Structural Risk Minimization Support Vector Machine: **Kerne**l: Non-separable Classe:

Idea behind Kernels

Utilize the advantages of a high-dimensional space without actually representing anything high-dimensional

- Condition: The only operation done in the high-dimensional space is to compute *scalar products* between pairs of items
- Trick: The scalar product is computed using the original (low-dimensional) representation

Example

Transformation to 4D

Points in 2D

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\phi(\vec{x}) = \begin{bmatrix} x_1^3 \\ \sqrt{3}x_1^2x_2 \\ \sqrt{3}x_1x_2^2 \\ x_2^3 \end{bmatrix}$$

$$\phi(\vec{x})^{T} \cdot \phi(\vec{y}) = x_{1}^{3}y_{1}^{3} + 3x_{1}^{2}y_{1}^{2}x_{2}y_{2} + 3x_{1}y_{1}x_{2}^{2}y_{2}^{2} + x_{2}^{3}y_{2}^{3}$$

$$= (x_{1}y_{1} + x_{2}y_{2})^{3}$$

$$= (\vec{x}^{T} \cdot \vec{y})^{3}$$

$$= \mathcal{K}(\vec{x}, \vec{y})$$

Örjan Ekeberg

Machine Learning

Linear separation Structural Risk Minimization

Structural Risk Minimization

Minimize

$$\vec{w}^T \vec{w}$$

Constraints

$$t_i \vec{w}^T \vec{x}_i \geq 1 \quad \forall i$$

• Non-linear transformation ϕ of input \vec{x}

New formulation

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w}$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 \quad \forall$$

Örjan Ekeberg Machine Learning

Linear separation Structural Risk Minimization Support Vector Machines Non-separable Classes

Common Kernels

Polynomials

$$\mathcal{K}(\vec{x}, \vec{y}) = (\vec{x}^T \vec{y} + 1)^p$$

Radial Bases

$$\mathcal{K}(\vec{x}, \vec{y}) = e^{-rac{1}{2
ho^2}||\vec{x} - \vec{y}||^2}$$

Örjan Ekeberg

Machine Learning

Structural Risk Minimization

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w}$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 \quad \forall i$$

Lagranges Multiplier Method

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

Minimize w.r.t. \vec{w} , maximize w.r.t. $\alpha_i \geq 0$

$$\frac{\partial L}{\partial \vec{w}} = 0$$

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

$$\frac{\partial L}{\partial \vec{w}} = 0 \implies \vec{w} - \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i}) = 0$$

$$\vec{w} = \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i})$$

Örjan Ekeberg

Machine Learning

Linear separation Structural Risk Minimization Support Vector Machines Kernels

The Dual Problem

Maximize

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{\mathsf{T}} \phi(\vec{x}_{j})$$

Under the constraints

$$\alpha_i \geq 0 \quad \forall i$$

- \vec{w} has disappeared
- $\phi(\vec{x})$ only appear in scalar product pairs

Linear separation Structural Risk Minimization Support Vector Machines Kernels

Use

$$\vec{w} = \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i})$$

to eliminate \vec{w}

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

$$L = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) - \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) + \sum_i \alpha_i$$

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$$

Örjan Ekeberg

Machine Learning

Linear separation
Structural Risk Minimization
Support Vector Machine
Kerne
Non separable Class

- Choose a suitable kernel function
- 2 Compute α_i (solve the maximization problem)
- **3** $\vec{x_i}$ corresponding to $\alpha_i \neq 0$ are called support vectors
- Classify new data points via

$$\sum_{i} \alpha_{i} t_{i} \mathcal{K}(\vec{x}, \vec{x_{i}}) > 0$$

Örjan Ekeberg Machine Learning

Örjan Ekeberg

Machine Learning

Non-separable Classes

None-Separable Training Samples

Allow for Slack

Örjan Ekeberg

Machine Learning

Dual Formulation with Slack

Maximize

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$$

With constraints

$$0 \le \alpha_i \le C \quad \forall i$$

Otherwise, everything remains as before

Örjan Ekeberg Machine Learning

Re-formulation of the minimization problem

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w} + C\sum_i \xi_i$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 - \xi_i$$

 ξ_i are called *slack variables*

Örjan Ekeberg

Machine Learning