
PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The PHP Language
Internet Applications, ID1354

1 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Contents

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

2 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Section

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

3 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The PHP Language

I PHP development was
started by Rasmus
Lerdorf in 1994.

I Developed to allow him
to track visitors to his
web site.

I PHP is an open-source product, developed
by the PHP group.

I PHP was originally an acronym for
Personal Home Page, but later became
PHP Hypertext Preprocessor.

4 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The PHP Language

I PHP development was
started by Rasmus
Lerdorf in 1994.

I Developed to allow him
to track visitors to his
web site.

I PHP is an open-source product, developed
by the PHP group.

I PHP was originally an acronym for
Personal Home Page, but later became
PHP Hypertext Preprocessor.

4 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The PHP Language

I PHP development was
started by Rasmus
Lerdorf in 1994.

I Developed to allow him
to track visitors to his
web site.

I PHP is an open-source product, developed
by the PHP group.

I PHP was originally an acronym for
Personal Home Page, but later became
PHP Hypertext Preprocessor.

4 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Overview of PHP
I By far the most used server-side

programming language.
I Dynamically typed, like JavaScript.

I Purely interpreted, like JavaScript.
I Object-oriented with class-based

inheritance, like Java, but using objects is
optional.

I PHP files can contain HTML and PHP.
I PHP files have extension .php
I There are many different versions of PHP,

and they differ quite a lot. This presentation
follows the latest versions.

5 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Overview of PHP
I By far the most used server-side

programming language.
I Dynamically typed, like JavaScript.
I Purely interpreted, like JavaScript.

I Object-oriented with class-based
inheritance, like Java, but using objects is
optional.

I PHP files can contain HTML and PHP.
I PHP files have extension .php
I There are many different versions of PHP,

and they differ quite a lot. This presentation
follows the latest versions.

5 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Overview of PHP
I By far the most used server-side

programming language.
I Dynamically typed, like JavaScript.
I Purely interpreted, like JavaScript.
I Object-oriented with class-based

inheritance, like Java, but using objects is
optional.

I PHP files can contain HTML and PHP.
I PHP files have extension .php
I There are many different versions of PHP,

and they differ quite a lot. This presentation
follows the latest versions.

5 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Overview of PHP
I By far the most used server-side

programming language.
I Dynamically typed, like JavaScript.
I Purely interpreted, like JavaScript.
I Object-oriented with class-based

inheritance, like Java, but using objects is
optional.

I PHP files can contain HTML and PHP.

I PHP files have extension .php
I There are many different versions of PHP,

and they differ quite a lot. This presentation
follows the latest versions.

5 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Overview of PHP
I By far the most used server-side

programming language.
I Dynamically typed, like JavaScript.
I Purely interpreted, like JavaScript.
I Object-oriented with class-based

inheritance, like Java, but using objects is
optional.

I PHP files can contain HTML and PHP.
I PHP files have extension .php

I There are many different versions of PHP,
and they differ quite a lot. This presentation
follows the latest versions.

5 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Overview of PHP
I By far the most used server-side

programming language.
I Dynamically typed, like JavaScript.
I Purely interpreted, like JavaScript.
I Object-oriented with class-based

inheritance, like Java, but using objects is
optional.

I PHP files can contain HTML and PHP.
I PHP files have extension .php
I There are many different versions of PHP,

and they differ quite a lot. This presentation
follows the latest versions.

5 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Overview of PHP
I By far the most used server-side

programming language.
I Dynamically typed, like JavaScript.
I Purely interpreted, like JavaScript.
I Object-oriented with class-based

inheritance, like Java, but using objects is
optional.

I PHP files can contain HTML and PHP.
I PHP files have extension .php
I There are many different versions of PHP,

and they differ quite a lot. This presentation
follows the latest versions.

5 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Installation
I The PHP interpreter must be integrated in

the web server.
I Therefore, installation depends on server, see
http://php.net/manual/en/install.php

for instructions.
I Consider installing a WAMP/LAMP/MAMP

pack.

I The first letter is you operating system
(Windows, Linux or MacOS).

I The other letters means Apache, MySQL and
PHP. These together form a complete web
server.

I EasyPHP , http://www.easyphp.org/, is a
WAMP pack that is easy to install.

6 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Installation
I The PHP interpreter must be integrated in

the web server.
I Therefore, installation depends on server, see
http://php.net/manual/en/install.php

for instructions.
I Consider installing a WAMP/LAMP/MAMP

pack.
I The first letter is you operating system

(Windows, Linux or MacOS).

I The other letters means Apache, MySQL and
PHP. These together form a complete web
server.

I EasyPHP , http://www.easyphp.org/, is a
WAMP pack that is easy to install.

6 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Installation
I The PHP interpreter must be integrated in

the web server.
I Therefore, installation depends on server, see
http://php.net/manual/en/install.php

for instructions.
I Consider installing a WAMP/LAMP/MAMP

pack.
I The first letter is you operating system

(Windows, Linux or MacOS).
I The other letters means Apache, MySQL and

PHP. These together form a complete web
server.

I EasyPHP , http://www.easyphp.org/, is a
WAMP pack that is easy to install.

6 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Installation
I The PHP interpreter must be integrated in

the web server.
I Therefore, installation depends on server, see
http://php.net/manual/en/install.php

for instructions.
I Consider installing a WAMP/LAMP/MAMP

pack.
I The first letter is you operating system

(Windows, Linux or MacOS).
I The other letters means Apache, MySQL and

PHP. These together form a complete web
server.

I EasyPHP , http://www.easyphp.org/, is a
WAMP pack that is easy to install.

6 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Installation
I The PHP interpreter must be integrated in

the web server.
I Therefore, installation depends on server, see
http://php.net/manual/en/install.php

for instructions.
I Consider installing a WAMP/LAMP/MAMP

pack.
I The first letter is you operating system

(Windows, Linux or MacOS).
I The other letters means Apache, MySQL and

PHP. These together form a complete web
server.

I EasyPHP , http://www.easyphp.org/, is a
WAMP pack that is easy to install.

6 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Syntax

I A PHP file can contain both PHP and
HTML.

I HTML is passed to the browser, PHP is
executed on the server, and the resulting
output is passed to the browser.

I PHP code is embedded between
<?php and ?> tags.

I You might want to omit the closing tag since it
produces a space in the output.

7 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Syntax

I A PHP file can contain both PHP and
HTML.

I HTML is passed to the browser, PHP is
executed on the server, and the resulting
output is passed to the browser.

I PHP code is embedded between
<?php and ?> tags.

I You might want to omit the closing tag since it
produces a space in the output.

7 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Syntax

I A PHP file can contain both PHP and
HTML.

I HTML is passed to the browser, PHP is
executed on the server, and the resulting
output is passed to the browser.

I PHP code is embedded between
<?php and ?> tags.

I You might want to omit the closing tag since it
produces a space in the output.

7 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The First Example

8 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Accessing PHP Files

I A PHP file is accessed with a HTTP
request with a matching URL, just like a
HTML file is accessed,
http://myserver.se/path/to/thephpfile.php

I Execution just starts from the beginning of
the specified PHP file, there is nothing like
a main method.

9 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Accessing PHP Files

I A PHP file is accessed with a HTTP
request with a matching URL, just like a
HTML file is accessed,
http://myserver.se/path/to/thephpfile.php

I Execution just starts from the beginning of
the specified PHP file, there is nothing like
a main method.

9 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Accessing PHP Files (Cont’d)

I To call code in other PHP files, it is
necessary to include those files.

I Files are included with the include
construct, include anotherfile.php;.

I The interpreter will look for files at the
specified file path, at specified include
paths, in the calling file’s directory, and in
the current working directory.

10 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Accessing PHP Files (Cont’d)

I To call code in other PHP files, it is
necessary to include those files.

I Files are included with the include
construct, include anotherfile.php;.

I The interpreter will look for files at the
specified file path, at specified include
paths, in the calling file’s directory, and in
the current working directory.

10 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Accessing PHP Files (Cont’d)

I To call code in other PHP files, it is
necessary to include those files.

I Files are included with the include
construct, include anotherfile.php;.

I The interpreter will look for files at the
specified file path, at specified include
paths, in the calling file’s directory, and in
the current working directory.

10 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Accessing PHP Files (Cont’d’)

I include will emit a warning if it cannot
find a file. There is also the require
construct which works like include but
emits a fatal error if the specified file is not
found.

I include_once and require_once
works like include and require,
except that the same file is included only
once even if it is specified in multiple
inclusion statements.

11 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Accessing PHP Files (Cont’d’)

I include will emit a warning if it cannot
find a file. There is also the require
construct which works like include but
emits a fatal error if the specified file is not
found.

I include_once and require_once
works like include and require,
except that the same file is included only
once even if it is specified in multiple
inclusion statements.

11 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Naming Conventions
I There is no globally accepted naming

convention as in for example Java, but the
following is quite common.

I Class and interface names are written in
PascalCase, MyFirstClass

I Method names are written in camelCase,
myFirstMethod

I Functions, which are methods placed
outside classes, are named with
underscore, my_first_function

I Variables are named with underscore,
my_first_var, both inside and outside
classes.

12 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Naming Conventions
I There is no globally accepted naming

convention as in for example Java, but the
following is quite common.

I Class and interface names are written in
PascalCase, MyFirstClass

I Method names are written in camelCase,
myFirstMethod

I Functions, which are methods placed
outside classes, are named with
underscore, my_first_function

I Variables are named with underscore,
my_first_var, both inside and outside
classes.

12 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Naming Conventions
I There is no globally accepted naming

convention as in for example Java, but the
following is quite common.

I Class and interface names are written in
PascalCase, MyFirstClass

I Method names are written in camelCase,
myFirstMethod

I Functions, which are methods placed
outside classes, are named with
underscore, my_first_function

I Variables are named with underscore,
my_first_var, both inside and outside
classes.

12 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Naming Conventions
I There is no globally accepted naming

convention as in for example Java, but the
following is quite common.

I Class and interface names are written in
PascalCase, MyFirstClass

I Method names are written in camelCase,
myFirstMethod

I Functions, which are methods placed
outside classes, are named with
underscore, my_first_function

I Variables are named with underscore,
my_first_var, both inside and outside
classes.

12 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Naming Conventions
I There is no globally accepted naming

convention as in for example Java, but the
following is quite common.

I Class and interface names are written in
PascalCase, MyFirstClass

I Method names are written in camelCase,
myFirstMethod

I Functions, which are methods placed
outside classes, are named with
underscore, my_first_function

I Variables are named with underscore,
my_first_var, both inside and outside
classes.

12 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Naming Conventions (Cont’d)

I Constant names are written in upper case
with underscores,
MY_FIRST_CONSTANT

I Namespace, which corresponds to
packages, are named in PascalCase,
MyFirstNamespace

13 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Naming Conventions (Cont’d)

I Constant names are written in upper case
with underscores,
MY_FIRST_CONSTANT

I Namespace, which corresponds to
packages, are named in PascalCase,
MyFirstNamespace

13 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Section

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

14 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Comments

There are three different kinds of comments:
// Single line comment

Single line comment

/*
Multiple line comment

*/

15 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Identifiers

I A valid identifier starts with a letter or
underscore, followed by any number of
letters, numbers, or underscores.

I Identifiers are case sensitive.

16 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Identifiers

I A valid identifier starts with a letter or
underscore, followed by any number of
letters, numbers, or underscores.

I Identifiers are case sensitive.

16 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Variables
I Variables are represented by a dollar sign,
$, followed by the name of the variable.

I There are no variable declarations, PHP is
dynamically typed.

I A variable is created and assigned an
appropriate type when it is first used, much the
same way as in JavaScript.

I A variable that has never been assigned a
value is unbound and has the value NULL

I The unset function sets a variable to
NULL

I The isset function is used to determine
whether a variable is NULL

17 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Variables
I Variables are represented by a dollar sign,
$, followed by the name of the variable.

I There are no variable declarations, PHP is
dynamically typed.

I A variable is created and assigned an
appropriate type when it is first used, much the
same way as in JavaScript.

I A variable that has never been assigned a
value is unbound and has the value NULL

I The unset function sets a variable to
NULL

I The isset function is used to determine
whether a variable is NULL

17 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Variables
I Variables are represented by a dollar sign,
$, followed by the name of the variable.

I There are no variable declarations, PHP is
dynamically typed.

I A variable is created and assigned an
appropriate type when it is first used, much the
same way as in JavaScript.

I A variable that has never been assigned a
value is unbound and has the value NULL

I The unset function sets a variable to
NULL

I The isset function is used to determine
whether a variable is NULL

17 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Variables
I Variables are represented by a dollar sign,
$, followed by the name of the variable.

I There are no variable declarations, PHP is
dynamically typed.

I A variable is created and assigned an
appropriate type when it is first used, much the
same way as in JavaScript.

I A variable that has never been assigned a
value is unbound and has the value NULL

I The unset function sets a variable to
NULL

I The isset function is used to determine
whether a variable is NULL

17 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Variables
I Variables are represented by a dollar sign,
$, followed by the name of the variable.

I There are no variable declarations, PHP is
dynamically typed.

I A variable is created and assigned an
appropriate type when it is first used, much the
same way as in JavaScript.

I A variable that has never been assigned a
value is unbound and has the value NULL

I The unset function sets a variable to
NULL

I The isset function is used to determine
whether a variable is NULL

17 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Predefined Variables
I PHP has many predefined variables, that

are always available to a PHP program, for
example:

I $_GET An array with all HTTP GET
variables.

I $_POST An array with all HTTP POST
variables.

I $_SESSION An array with all session
variables.

I $_COOKIE An array with all HTTP
Cookies.

I These are called superglobals, and are
always accessible, regardless of scope

18 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Predefined Variables
I PHP has many predefined variables, that

are always available to a PHP program, for
example:

I $_GET An array with all HTTP GET
variables.

I $_POST An array with all HTTP POST
variables.

I $_SESSION An array with all session
variables.

I $_COOKIE An array with all HTTP
Cookies.

I These are called superglobals, and are
always accessible, regardless of scope

18 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Predefined Variables
I PHP has many predefined variables, that

are always available to a PHP program, for
example:

I $_GET An array with all HTTP GET
variables.

I $_POST An array with all HTTP POST
variables.

I $_SESSION An array with all session
variables.

I $_COOKIE An array with all HTTP
Cookies.

I These are called superglobals, and are
always accessible, regardless of scope

18 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Predefined Variables
I PHP has many predefined variables, that

are always available to a PHP program, for
example:

I $_GET An array with all HTTP GET
variables.

I $_POST An array with all HTTP POST
variables.

I $_SESSION An array with all session
variables.

I $_COOKIE An array with all HTTP
Cookies.

I These are called superglobals, and are
always accessible, regardless of scope

18 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Predefined Variables
I PHP has many predefined variables, that

are always available to a PHP program, for
example:

I $_GET An array with all HTTP GET
variables.

I $_POST An array with all HTTP POST
variables.

I $_SESSION An array with all session
variables.

I $_COOKIE An array with all HTTP
Cookies.

I These are called superglobals, and are
always accessible, regardless of scope

18 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Predefined Variables
I PHP has many predefined variables, that

are always available to a PHP program, for
example:

I $_GET An array with all HTTP GET
variables.

I $_POST An array with all HTTP POST
variables.

I $_SESSION An array with all session
variables.

I $_COOKIE An array with all HTTP
Cookies.

I These are called superglobals, and are
always accessible, regardless of scope

18 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Constants

I Constants can be defined with the const
and define constructs.

I The following two examples are equal.
define("GREETING", "Hello world");
echo GREETING;

const GREETING = "Hello World";
echo GREETING;

I Note that constant names are not prefixed
with $

19 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Constants

I Constants can be defined with the const
and define constructs.

I The following two examples are equal.
define("GREETING", "Hello world");
echo GREETING;

const GREETING = "Hello World";
echo GREETING;

I Note that constant names are not prefixed
with $

19 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Constants

I Constants can be defined with the const
and define constructs.

I The following two examples are equal.
define("GREETING", "Hello world");
echo GREETING;

const GREETING = "Hello World";
echo GREETING;

I Note that constant names are not prefixed
with $

19 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Magic Constants

I There are built-in magic constants that are
always available.

I Some magic constants follow.

__FILE__ Path and name of the currently
executing PHP file.

__DIR__ Path to directory with the currently
executing PHP file.

__FUNCTION__ Name of the currently executing
function.

20 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Magic Constants

I There are built-in magic constants that are
always available.

I Some magic constants follow.
__FILE__ Path and name of the currently

executing PHP file.

__DIR__ Path to directory with the currently
executing PHP file.

__FUNCTION__ Name of the currently executing
function.

20 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Magic Constants

I There are built-in magic constants that are
always available.

I Some magic constants follow.
__FILE__ Path and name of the currently

executing PHP file.
__DIR__ Path to directory with the currently

executing PHP file.

__FUNCTION__ Name of the currently executing
function.

20 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Magic Constants

I There are built-in magic constants that are
always available.

I Some magic constants follow.
__FILE__ Path and name of the currently

executing PHP file.
__DIR__ Path to directory with the currently

executing PHP file.
__FUNCTION__ Name of the currently executing

function.

20 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Magic Constants

I There are built-in magic constants that are
always available.

I Some magic constants follow.
__FILE__ Path and name of the currently

executing PHP file.
__DIR__ Path to directory with the currently

executing PHP file.
__FUNCTION__ Name of the currently executing

function.

20 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Types
I There are eight different types.

I Four scalar types, boolean (true or
false; 0, “”, and “0” are false, others true)
integer (platform-dependent size),
double (platform-dependent size), string.

I Two compound types, array and object.
I Two special types, resource (a reference to

an external resource, like a database) and
NULL (the value of an unbound variable).

I To print type and value of an expression,
use the var_dump function.

I To get a human-readable representation of
a type, use the gettype function.

I To check for a certain type, use the
is_<type> functions.

21 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Types
I There are eight different types.

I Four scalar types, boolean (true or
false; 0, “”, and “0” are false, others true)
integer (platform-dependent size),
double (platform-dependent size), string.

I Two compound types, array and object.

I Two special types, resource (a reference to
an external resource, like a database) and
NULL (the value of an unbound variable).

I To print type and value of an expression,
use the var_dump function.

I To get a human-readable representation of
a type, use the gettype function.

I To check for a certain type, use the
is_<type> functions.

21 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Types
I There are eight different types.

I Four scalar types, boolean (true or
false; 0, “”, and “0” are false, others true)
integer (platform-dependent size),
double (platform-dependent size), string.

I Two compound types, array and object.
I Two special types, resource (a reference to

an external resource, like a database) and
NULL (the value of an unbound variable).

I To print type and value of an expression,
use the var_dump function.

I To get a human-readable representation of
a type, use the gettype function.

I To check for a certain type, use the
is_<type> functions.

21 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Types
I There are eight different types.

I Four scalar types, boolean (true or
false; 0, “”, and “0” are false, others true)
integer (platform-dependent size),
double (platform-dependent size), string.

I Two compound types, array and object.
I Two special types, resource (a reference to

an external resource, like a database) and
NULL (the value of an unbound variable).

I To print type and value of an expression,
use the var_dump function.

I To get a human-readable representation of
a type, use the gettype function.

I To check for a certain type, use the
is_<type> functions.

21 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Types
I There are eight different types.

I Four scalar types, boolean (true or
false; 0, “”, and “0” are false, others true)
integer (platform-dependent size),
double (platform-dependent size), string.

I Two compound types, array and object.
I Two special types, resource (a reference to

an external resource, like a database) and
NULL (the value of an unbound variable).

I To print type and value of an expression,
use the var_dump function.

I To get a human-readable representation of
a type, use the gettype function.

I To check for a certain type, use the
is_<type> functions.

21 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Types
I There are eight different types.

I Four scalar types, boolean (true or
false; 0, “”, and “0” are false, others true)
integer (platform-dependent size),
double (platform-dependent size), string.

I Two compound types, array and object.
I Two special types, resource (a reference to

an external resource, like a database) and
NULL (the value of an unbound variable).

I To print type and value of an expression,
use the var_dump function.

I To get a human-readable representation of
a type, use the gettype function.

I To check for a certain type, use the
is_<type> functions.

21 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Types
I There are eight different types.

I Four scalar types, boolean (true or
false; 0, “”, and “0” are false, others true)
integer (platform-dependent size),
double (platform-dependent size), string.

I Two compound types, array and object.
I Two special types, resource (a reference to

an external resource, like a database) and
NULL (the value of an unbound variable).

I To print type and value of an expression,
use the var_dump function.

I To get a human-readable representation of
a type, use the gettype function.

I To check for a certain type, use the
is_<type> functions.

21 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The String Type
I A string consists of one-byte characters.
I Variables and escape sequences are not

expanded with single-quoted string literals.
$a = 2;
echo ’The value is \n $a’;
// Prints: The value is \n $a

I Variables and escape sequences are
expanded with double-quoted string literals.

$a = 2;
echo "The value is \n $a";
// Prints: The value is
// 2

I Note that \n is expanded to a line break,
not to a
 tag.

22 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The String Type
I A string consists of one-byte characters.
I Variables and escape sequences are not

expanded with single-quoted string literals.
$a = 2;
echo ’The value is \n $a’;
// Prints: The value is \n $a

I Variables and escape sequences are
expanded with double-quoted string literals.

$a = 2;
echo "The value is \n $a";
// Prints: The value is
// 2

I Note that \n is expanded to a line break,
not to a
 tag.

22 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The String Type
I A string consists of one-byte characters.
I Variables and escape sequences are not

expanded with single-quoted string literals.
$a = 2;
echo ’The value is \n $a’;
// Prints: The value is \n $a

I Variables and escape sequences are
expanded with double-quoted string literals.

$a = 2;
echo "The value is \n $a";
// Prints: The value is
// 2

I Note that \n is expanded to a line break,
not to a
 tag.

22 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The String Type
I A string consists of one-byte characters.
I Variables and escape sequences are not

expanded with single-quoted string literals.
$a = 2;
echo ’The value is \n $a’;
// Prints: The value is \n $a

I Variables and escape sequences are
expanded with double-quoted string literals.

$a = 2;
echo "The value is \n $a";
// Prints: The value is
// 2

I Note that \n is expanded to a line break,
not to a
 tag.

22 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

String Concatenation

I The string concatenation operator is a dot,
.
$what = "Hello";
$who = "World!";
echo $what . " " . $who;

23 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arithmetic Operators

I The usual +, -, *, / and %.
I If the result of integer division is not an

integer, a double is returned.

I Any integer operation that results in
overflow produces a double.

I The modulus operator, %, coerces its
operands to integer.

24 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arithmetic Operators

I The usual +, -, *, / and %.
I If the result of integer division is not an

integer, a double is returned.
I Any integer operation that results in

overflow produces a double.

I The modulus operator, %, coerces its
operands to integer.

24 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arithmetic Operators

I The usual +, -, *, / and %.
I If the result of integer division is not an

integer, a double is returned.
I Any integer operation that results in

overflow produces a double.
I The modulus operator, %, coerces its

operands to integer.

24 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arithmetic Operators

I The usual +, -, *, / and %.
I If the result of integer division is not an

integer, a double is returned.
I Any integer operation that results in

overflow produces a double.
I The modulus operator, %, coerces its

operands to integer.

24 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arithmetic and String Functions

I Some available arithmetic functions are
floor, ceil, round, abs, min, max,
rand.

I Some available string functions are
strlen, strcmp, strpos, substr,
strlen, chop, trim.

25 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arithmetic and String Functions

I Some available arithmetic functions are
floor, ceil, round, abs, min, max,
rand.

I Some available string functions are
strlen, strcmp, strpos, substr,
strlen, chop, trim.

25 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Cast (Explicit Conversion)

I Three ways to specify an explicit
conversion.
(int)$total
intval($total)
settype($total, "integer")

26 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Output

I Output from the PHP program is included in
the out stream from server to browser.

I There are tree ways to generate output.
The first two, print and echo, differ only
in that print has a return value.
$what = "Hello";
$who = "World!";
echo $what . " " . $who;
print($what . " " . $who);

I The third way, printf, has the same
formatting flags as the C function printf.

27 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Output

I Output from the PHP program is included in
the out stream from server to browser.

I There are tree ways to generate output.
The first two, print and echo, differ only
in that print has a return value.
$what = "Hello";
$who = "World!";
echo $what . " " . $who;
print($what . " " . $who);

I The third way, printf, has the same
formatting flags as the C function printf.

27 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Output

I Output from the PHP program is included in
the out stream from server to browser.

I There are tree ways to generate output.
The first two, print and echo, differ only
in that print has a return value.
$what = "Hello";
$who = "World!";
echo $what . " " . $who;
print($what . " " . $who);

I The third way, printf, has the same
formatting flags as the C function printf.

27 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Debug Output to Console
I Output for development purposes, for

example to track the flow through the
program, should not appear in the web
page.

I Such output should be directed to the
JavaScript console. The following function
creates JavaScript code that prints the
specified string to the console.
function cons($param) {

echo "<script>" .
"console.log(’$param’);" .

"</script>";
}

28 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Debug Output to Console
I Output for development purposes, for

example to track the flow through the
program, should not appear in the web
page.

I Such output should be directed to the
JavaScript console. The following function
creates JavaScript code that prints the
specified string to the console.
function cons($param) {

echo "<script>" .
"console.log(’$param’);" .

"</script>";
}

28 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Error Messages From Interpreter
I The PHP interpreter’s output, for example exception

reports, goes to the web server’s log.

I The location of that log depends on server and
operating system. You might be able to find it by
executing a php file with the statement
phpinfo(), and looking for APACHE_LOG_DIR
in the output.

I On my Ubuntu/Apache platform, the log is in
/var/log/apache2/error.log.

I It is strongly recommended to locate this log since
that is where you will see if your PHP program
crashed.

I Remember that PHP programs are not compiled.
The only way to be notified of coding errors is
through the above mentioned log.

29 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Error Messages From Interpreter
I The PHP interpreter’s output, for example exception

reports, goes to the web server’s log.

I The location of that log depends on server and
operating system. You might be able to find it by
executing a php file with the statement
phpinfo(), and looking for APACHE_LOG_DIR
in the output.

I On my Ubuntu/Apache platform, the log is in
/var/log/apache2/error.log.

I It is strongly recommended to locate this log since
that is where you will see if your PHP program
crashed.

I Remember that PHP programs are not compiled.
The only way to be notified of coding errors is
through the above mentioned log.

29 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Error Messages From Interpreter
I The PHP interpreter’s output, for example exception

reports, goes to the web server’s log.

I The location of that log depends on server and
operating system. You might be able to find it by
executing a php file with the statement
phpinfo(), and looking for APACHE_LOG_DIR
in the output.

I On my Ubuntu/Apache platform, the log is in
/var/log/apache2/error.log.

I It is strongly recommended to locate this log since
that is where you will see if your PHP program
crashed.

I Remember that PHP programs are not compiled.
The only way to be notified of coding errors is
through the above mentioned log. 29 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Error Messages From Interpreter
I The PHP interpreter’s output, for example exception

reports, goes to the web server’s log.

I The location of that log depends on server and
operating system. You might be able to find it by
executing a php file with the statement
phpinfo(), and looking for APACHE_LOG_DIR
in the output.

I On my Ubuntu/Apache platform, the log is in
/var/log/apache2/error.log.

I It is strongly recommended to locate this log since
that is where you will see if your PHP program
crashed.

I Remember that PHP programs are not compiled.
The only way to be notified of coding errors is
through the above mentioned log. 29 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Relational and Logical Operators

I The relational operators are the same as in
JavaScript, including === and !==.

I The logical operators comes in two flavors.
The difference is that number one has
higher precedence than assignment
operators while number two has lower.

1. &&, ! and ||
2. and, or and xor

30 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Relational and Logical Operators

I The relational operators are the same as in
JavaScript, including === and !==.

I The logical operators comes in two flavors.
The difference is that number one has
higher precedence than assignment
operators while number two has lower.

1. &&, ! and ||
2. and, or and xor

30 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Control Statements

I The following control statements behave as
in Java, if, else, else if, while,
do-while, for, switch, break and
continue.

I There is also the foreach statement
which is different from Java. It will be
covered below, after arrays.

31 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Control Statements

I The following control statements behave as
in Java, if, else, else if, while,
do-while, for, switch, break and
continue.

I There is also the foreach statement
which is different from Java. It will be
covered below, after arrays.

31 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Section

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

32 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Array Type

I Not like arrays of any other language.
I A PHP array is actually an ordered map.

I A map is a type that associates values to keys.
I Ordered means elements are located at

indexes.

I This means arrays can be used for many
different data structures, like lists and hash
tables.

33 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Array Type

I Not like arrays of any other language.
I A PHP array is actually an ordered map.

I A map is a type that associates values to keys.
I Ordered means elements are located at

indexes.

I This means arrays can be used for many
different data structures, like lists and hash
tables.

33 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Array Type

I Not like arrays of any other language.
I A PHP array is actually an ordered map.

I A map is a type that associates values to keys.
I Ordered means elements are located at

indexes.

I This means arrays can be used for many
different data structures, like lists and hash
tables.

33 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

To Create an Array
I Arrays can be created with the array()

construct, which takes comma-separated
key => value pairs as arguments.
$my_array = array(

3 => "value1",
"key2" => 38

)

I Arrays can also be created with the short
array syntax, []
$my_array = [

3 => "value1",
"key2" => 38

]

34 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

To Create an Array
I Arrays can be created with the array()

construct, which takes comma-separated
key => value pairs as arguments.
$my_array = array(

3 => "value1",
"key2" => 38

)

I Arrays can also be created with the short
array syntax, []
$my_array = [

3 => "value1",
"key2" => 38

]

34 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Internal Array Structure

Figure from Sebesta: Programming the World Wide Web

35 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Keys and Values

I The key must be an integer or a string, the
value can be any type.

I Omitted keys, as below, are assigned the
integer that is nearest higher than the
highest previous integer key, or zero if there
is no previous integer key.
$array = array("foo", "bar", "hi", "there");

I Assigning to a key that already has a value
means the old value is overwritten.

36 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Keys and Values

I The key must be an integer or a string, the
value can be any type.

I Omitted keys, as below, are assigned the
integer that is nearest higher than the
highest previous integer key, or zero if there
is no previous integer key.
$array = array("foo", "bar", "hi", "there");

I Assigning to a key that already has a value
means the old value is overwritten.

36 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Keys and Values

I The key must be an integer or a string, the
value can be any type.

I Omitted keys, as below, are assigned the
integer that is nearest higher than the
highest previous integer key, or zero if there
is no previous integer key.
$array = array("foo", "bar", "hi", "there");

I Assigning to a key that already has a value
means the old value is overwritten.

36 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Access Elements Using Brackets

I Array elements are accessed using
brackets.

I If an element with the specified key does
not exist, it is created.

I If the array itself does not exist, it is created.
$arr[1] = "hi";
echo "$arr[1]"; // Prints: hi

37 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Access Elements Using Brackets

I Array elements are accessed using
brackets.

I If an element with the specified key does
not exist, it is created.

I If the array itself does not exist, it is created.
$arr[1] = "hi";
echo "$arr[1]"; // Prints: hi

37 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Access Elements Using Brackets

I Array elements are accessed using
brackets.

I If an element with the specified key does
not exist, it is created.

I If the array itself does not exist, it is created.
$arr[1] = "hi";
echo "$arr[1]"; // Prints: hi

37 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Some Array Functions
array_keys($arr) Extracts all keys.
array_values($arr) Extracts all values.

array_key_exists($arr) Tests if there
is a key with the specified value.

sizeof($arr) Returns the number of
elements.

explode($delim, $str) Returns an
array with the elements of the string
$str split at the delimiter $delim

implode($glue, $arr) Returns a string
with the elements of the array $arr
separated by $glue

38 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Some Array Functions
array_keys($arr) Extracts all keys.
array_values($arr) Extracts all values.
array_key_exists($arr) Tests if there

is a key with the specified value.

sizeof($arr) Returns the number of
elements.

explode($delim, $str) Returns an
array with the elements of the string
$str split at the delimiter $delim

implode($glue, $arr) Returns a string
with the elements of the array $arr
separated by $glue

38 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Some Array Functions
array_keys($arr) Extracts all keys.
array_values($arr) Extracts all values.
array_key_exists($arr) Tests if there

is a key with the specified value.
sizeof($arr) Returns the number of

elements.

explode($delim, $str) Returns an
array with the elements of the string
$str split at the delimiter $delim

implode($glue, $arr) Returns a string
with the elements of the array $arr
separated by $glue

38 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Some Array Functions
array_keys($arr) Extracts all keys.
array_values($arr) Extracts all values.
array_key_exists($arr) Tests if there

is a key with the specified value.
sizeof($arr) Returns the number of

elements.
explode($delim, $str) Returns an

array with the elements of the string
$str split at the delimiter $delim

implode($glue, $arr) Returns a string
with the elements of the array $arr
separated by $glue

38 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Some Array Functions
array_keys($arr) Extracts all keys.
array_values($arr) Extracts all values.
array_key_exists($arr) Tests if there

is a key with the specified value.
sizeof($arr) Returns the number of

elements.
explode($delim, $str) Returns an

array with the elements of the string
$str split at the delimiter $delim

implode($glue, $arr) Returns a string
with the elements of the array $arr
separated by $glue

38 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Some Array Functions
array_keys($arr) Extracts all keys.
array_values($arr) Extracts all values.
array_key_exists($arr) Tests if there

is a key with the specified value.
sizeof($arr) Returns the number of

elements.
explode($delim, $str) Returns an

array with the elements of the string
$str split at the delimiter $delim

implode($glue, $arr) Returns a string
with the elements of the array $arr
separated by $glue

38 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Iterating Over Elements

I An array can be iterated with the foreach
construct.
foreach ($arr as $value) {

echo("$value");
}

foreach ($arr as $key => $value) {
echo "Key: $key, Value: $value; ";

}

39 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Iterating Over Elements (Cont’d)
I Also the while construct can be used.

while (list(, $value) = each($arr)) {
echo("$value");

}

while (list($key, $value) = each($arr)) {
echo "Key: $key, Value: $value;";

}

I each returns the current key/value pair and
advances the cursor.

I list assigns multiple values from an array.
$arr = array(’a’, ’b’, ’c’);
list($elem1, $elem2, $elem3) = $arr;

I Other useful functions are reset, next, prev,
current

40 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Iterating Over Elements (Cont’d)
I Also the while construct can be used.

while (list(, $value) = each($arr)) {
echo("$value");

}

while (list($key, $value) = each($arr)) {
echo "Key: $key, Value: $value;";

}

I each returns the current key/value pair and
advances the cursor.

I list assigns multiple values from an array.
$arr = array(’a’, ’b’, ’c’);
list($elem1, $elem2, $elem3) = $arr;

I Other useful functions are reset, next, prev,
current

40 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Iterating Over Elements (Cont’d)
I Also the while construct can be used.

while (list(, $value) = each($arr)) {
echo("$value");

}

while (list($key, $value) = each($arr)) {
echo "Key: $key, Value: $value;";

}

I each returns the current key/value pair and
advances the cursor.

I list assigns multiple values from an array.
$arr = array(’a’, ’b’, ’c’);
list($elem1, $elem2, $elem3) = $arr;

I Other useful functions are reset, next, prev,
current

40 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Iterating Over Elements (Cont’d)
I Also the while construct can be used.

while (list(, $value) = each($arr)) {
echo("$value");

}

while (list($key, $value) = each($arr)) {
echo "Key: $key, Value: $value;";

}

I each returns the current key/value pair and
advances the cursor.

I list assigns multiple values from an array.
$arr = array(’a’, ’b’, ’c’);
list($elem1, $elem2, $elem3) = $arr;

I Other useful functions are reset, next, prev,
current

40 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Section

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

41 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

To Define a Function
I Functions are defined with the function

keyword.
function sum($op1, $op2) {

return $op1 + $op2;
}

I Any valid PHP code may appear inside a
function, even other functions and class
definitions.

I All functions and classes have global
scope, they can be called outside a function
even if they were defined inside.

I Functions need not be defined before they
are referenced.

42 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

To Define a Function
I Functions are defined with the function

keyword.
function sum($op1, $op2) {

return $op1 + $op2;
}

I Any valid PHP code may appear inside a
function, even other functions and class
definitions.

I All functions and classes have global
scope, they can be called outside a function
even if they were defined inside.

I Functions need not be defined before they
are referenced.

42 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

To Define a Function
I Functions are defined with the function

keyword.
function sum($op1, $op2) {

return $op1 + $op2;
}

I Any valid PHP code may appear inside a
function, even other functions and class
definitions.

I All functions and classes have global
scope, they can be called outside a function
even if they were defined inside.

I Functions need not be defined before they
are referenced.

42 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

To Define a Function
I Functions are defined with the function

keyword.
function sum($op1, $op2) {

return $op1 + $op2;
}

I Any valid PHP code may appear inside a
function, even other functions and class
definitions.

I All functions and classes have global
scope, they can be called outside a function
even if they were defined inside.

I Functions need not be defined before they
are referenced.

42 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arguments
I Arguments are by default passed by value.
I To pass by reference, prepend an

ampersand, &, to the argument.
function add_a_dot(&$string) {

$string .= ’.’;
}

$str = ’My name is Olle’;
add_a_dot($str);
echo $str; // prints ’My name is Olle.’

I There can be default argument values.
function add_two($op1, $op2=2) {

return $op1 + $op2;
}
echo add_two(3); // prints ’5’

43 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arguments
I Arguments are by default passed by value.
I To pass by reference, prepend an

ampersand, &, to the argument.
function add_a_dot(&$string) {

$string .= ’.’;
}

$str = ’My name is Olle’;
add_a_dot($str);
echo $str; // prints ’My name is Olle.’

I There can be default argument values.
function add_two($op1, $op2=2) {

return $op1 + $op2;
}
echo add_two(3); // prints ’5’

43 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Arguments
I Arguments are by default passed by value.
I To pass by reference, prepend an

ampersand, &, to the argument.
function add_a_dot(&$string) {

$string .= ’.’;
}

$str = ’My name is Olle’;
add_a_dot($str);
echo $str; // prints ’My name is Olle.’

I There can be default argument values.
function add_two($op1, $op2=2) {

return $op1 + $op2;
}
echo add_two(3); // prints ’5’

43 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Variable-Length Argument List
I A variable-length argument list is

implemented with the functions
func_num_args(),
func_get_arg() and
func_get_args().
function sum() {

$acc = 0;
foreach (func_get_args() as $n) {

$acc += $n;
}
return $acc;

}

echo sum(1, 2, 3, 4); // prints ’10’

44 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Variable Function
A variable function is a function whose name is
the value of a variable. Variables with appended
parentheses are treated as variable functions.
function foo() {

echo "In foo";
}

function bar() {
echo "In bar";

}

$func = ’foo’;
$func(); // prints ’In foo’

$func = ’bar’;
$func(); // prints ’In bar’

45 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Anonymous Functions and
Closures

I Anonymous functions and closures
behaves very much as in JavaScript.
function outer($param) {

return function() use ($param) {
echo "Inner got ’$param’";

};
}

$func = outer(’Hi!’);
echo $func(); //prints Inner got ’Hi!’

I As can be seen above, closures are defined
with the construct use.

46 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Anonymous Functions and
Closures

I Anonymous functions and closures
behaves very much as in JavaScript.
function outer($param) {

return function() use ($param) {
echo "Inner got ’$param’";

};
}

$func = outer(’Hi!’);
echo $func(); //prints Inner got ’Hi!’

I As can be seen above, closures are defined
with the construct use.

46 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Internal Functions

I There are many internal (built-in) functions,
and also many PHP extensions with yet
more functions.

I Reference manual for internal functions can
be found at
http://php.net/manual/en/funcref.php

http://www.w3schools.com/php/default.asp

47 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Internal Functions

I There are many internal (built-in) functions,
and also many PHP extensions with yet
more functions.

I Reference manual for internal functions can
be found at
http://php.net/manual/en/funcref.php

http://www.w3schools.com/php/default.asp

47 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Type Hinting
I Type hinting is a way to introduce type

safety in the otherwise type unsafe PHP
language.

I Forces parameters to be of the specified
class or interface, or to be an array or a
function.

I The following code forces the param
parameter to be an instance of the class
MyClass.
function test(MyClass $param) {
}

I Type hinting can not be used for primitive
types such as integer or string.

48 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Type Hinting
I Type hinting is a way to introduce type

safety in the otherwise type unsafe PHP
language.

I Forces parameters to be of the specified
class or interface, or to be an array or a
function.

I The following code forces the param
parameter to be an instance of the class
MyClass.
function test(MyClass $param) {
}

I Type hinting can not be used for primitive
types such as integer or string.

48 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Type Hinting
I Type hinting is a way to introduce type

safety in the otherwise type unsafe PHP
language.

I Forces parameters to be of the specified
class or interface, or to be an array or a
function.

I The following code forces the param
parameter to be an instance of the class
MyClass.
function test(MyClass $param) {
}

I Type hinting can not be used for primitive
types such as integer or string.

48 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Type Hinting
I Type hinting is a way to introduce type

safety in the otherwise type unsafe PHP
language.

I Forces parameters to be of the specified
class or interface, or to be an array or a
function.

I The following code forces the param
parameter to be an instance of the class
MyClass.
function test(MyClass $param) {
}

I Type hinting can not be used for primitive
types such as integer or string.

48 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Section

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

49 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Object Model
I The object model is class based as in Java.

I Class and interface definitions, inheritance,
implementation and instantiation is similar to Java.

I class SimpleClass {
private $var = ’a default value’;

public function displayVar() {
echo $this->var;

}
}

$instance = new SimpleClass();
echo $instance->displayVar();

I Note 1: The syntax for method call is ->

I Note 2: It is not possible to specify a visibility for the
class itself, all classes are public.

50 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Object Model
I The object model is class based as in Java.

I Class and interface definitions, inheritance,
implementation and instantiation is similar to Java.

I class SimpleClass {
private $var = ’a default value’;

public function displayVar() {
echo $this->var;

}
}

$instance = new SimpleClass();
echo $instance->displayVar();

I Note 1: The syntax for method call is ->

I Note 2: It is not possible to specify a visibility for the
class itself, all classes are public.

50 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Object Model
I The object model is class based as in Java.

I Class and interface definitions, inheritance,
implementation and instantiation is similar to Java.

I class SimpleClass {
private $var = ’a default value’;

public function displayVar() {
echo $this->var;

}
}

$instance = new SimpleClass();
echo $instance->displayVar();

I Note 1: The syntax for method call is ->

I Note 2: It is not possible to specify a visibility for the
class itself, all classes are public.

50 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Object Model
I The object model is class based as in Java.

I Class and interface definitions, inheritance,
implementation and instantiation is similar to Java.

I class SimpleClass {
private $var = ’a default value’;

public function displayVar() {
echo $this->var;

}
}

$instance = new SimpleClass();
echo $instance->displayVar();

I Note 1: The syntax for method call is ->

I Note 2: It is not possible to specify a visibility for the
class itself, all classes are public. 50 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Object Model
I The object model is class based as in Java.

I Class and interface definitions, inheritance,
implementation and instantiation is similar to Java.

I class SimpleClass {
private $var = ’a default value’;

public function displayVar() {
echo $this->var;

}
}

$instance = new SimpleClass();
echo $instance->displayVar();

I Note 1: The syntax for method call is ->

I Note 2: It is not possible to specify a visibility for the
class itself, all classes are public. 50 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Properties, Methods and Visibility

I Properties and methods are as in Java.
See previous slide for an example.

I The visibilities are public, protected
and private. The meanings are the
same as in Java.

I The default visibility is public.
I There is no package private visibility since

there are no packages.

51 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Properties, Methods and Visibility

I Properties and methods are as in Java.
See previous slide for an example.

I The visibilities are public, protected
and private. The meanings are the
same as in Java.

I The default visibility is public.

I There is no package private visibility since
there are no packages.

51 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Properties, Methods and Visibility

I Properties and methods are as in Java.
See previous slide for an example.

I The visibilities are public, protected
and private. The meanings are the
same as in Java.

I The default visibility is public.
I There is no package private visibility since

there are no packages.

51 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Properties, Methods and Visibility

I Properties and methods are as in Java.
See previous slide for an example.

I The visibilities are public, protected
and private. The meanings are the
same as in Java.

I The default visibility is public.
I There is no package private visibility since

there are no packages.

51 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Constructors
I Constructors work the same ways as in

Java, but they are always called
__construct.

I class SimpleClass {
private $var;

public function __construct($var) {
$this->var = $var;

}
}

I Note 1: Also the this variable is prefixed
with $

I Note 2: There is no overloading, there can
be only one constructor per class.

52 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Constructors
I Constructors work the same ways as in

Java, but they are always called
__construct.

I class SimpleClass {
private $var;

public function __construct($var) {
$this->var = $var;

}
}

I Note 1: Also the this variable is prefixed
with $

I Note 2: There is no overloading, there can
be only one constructor per class.

52 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Constructors
I Constructors work the same ways as in

Java, but they are always called
__construct.

I class SimpleClass {
private $var;

public function __construct($var) {
$this->var = $var;

}
}

I Note 1: Also the this variable is prefixed
with $

I Note 2: There is no overloading, there can
be only one constructor per class.

52 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Constructors
I Constructors work the same ways as in

Java, but they are always called
__construct.

I class SimpleClass {
private $var;

public function __construct($var) {
$this->var = $var;

}
}

I Note 1: Also the this variable is prefixed
with $

I Note 2: There is no overloading, there can
be only one constructor per class.

52 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Destructors
I Unlike Java, the destructor is called when

the last reference to the object is removed.
I The destructor is called __destruct

I class SimpleClass {
public function __destruct() {

echo ’running destructor’;
}

}

$instance = new SimpleClass();

I The code above prints running
destructor since the last reference to
the object is removed when program ends.

I Note that the destructor can not take any
parameters.

53 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Destructors
I Unlike Java, the destructor is called when

the last reference to the object is removed.
I The destructor is called __destruct
I class SimpleClass {

public function __destruct() {
echo ’running destructor’;

}
}

$instance = new SimpleClass();

I The code above prints running
destructor since the last reference to
the object is removed when program ends.

I Note that the destructor can not take any
parameters.

53 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Destructors
I Unlike Java, the destructor is called when

the last reference to the object is removed.
I The destructor is called __destruct
I class SimpleClass {

public function __destruct() {
echo ’running destructor’;

}
}

$instance = new SimpleClass();

I The code above prints running
destructor since the last reference to
the object is removed when program ends.

I Note that the destructor can not take any
parameters.

53 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Destructors
I Unlike Java, the destructor is called when

the last reference to the object is removed.
I The destructor is called __destruct
I class SimpleClass {

public function __destruct() {
echo ’running destructor’;

}
}

$instance = new SimpleClass();

I The code above prints running
destructor since the last reference to
the object is removed when program ends.

I Note that the destructor can not take any
parameters.

53 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Destructors
I Unlike Java, the destructor is called when

the last reference to the object is removed.
I The destructor is called __destruct
I class SimpleClass {

public function __destruct() {
echo ’running destructor’;

}
}

$instance = new SimpleClass();

I The code above prints running
destructor since the last reference to
the object is removed when program ends.

I Note that the destructor can not take any
parameters.

53 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

self and static
self is resolved to the class where it is written, static
is resolved to the called class.
class SuperClass {

public static function whoAreYouSelf() {
self::me();

}

public static function whoAreYouStatic() {
static::me();

}

protected static function me() {
echo "I am SuperClass";

}
}

class SubClass extends SuperClass {
protected static function me() {

echo "I am SubClass";
}

}

SubClass::whoAreYouSelf(); //prints ’I am SuperClass’
SubClass::whoAreYouStatic(); //prints ’I am SubClass’ 54 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Scope Resolution Operator
and Late Static Binding

I The double colon used on the previous
slide is called the scope resolution operator.

I Used to specify which class to use.

I Using static, as illustrated on the
previous slide, is late static binding, which
means that the scope is the called class.

55 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Scope Resolution Operator
and Late Static Binding

I The double colon used on the previous
slide is called the scope resolution operator.

I Used to specify which class to use.
I Using static, as illustrated on the

previous slide, is late static binding, which
means that the scope is the called class.

55 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Scope Resolution Operator
and Late Static Binding

I The double colon used on the previous
slide is called the scope resolution operator.

I Used to specify which class to use.
I Using static, as illustrated on the

previous slide, is late static binding, which
means that the scope is the called class.

55 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Object Iteration
I It is possible to iterate over fields in an

object, as if the object was an array.
I Only visible fields, as specified by the

visibility, will occur in the iteration.
class Person {

public $name;
public $phone;
public $address;

public function __construct($name, $phone, $address) {
$this->address = $address;
$this->phone = $phone;
$this->name = $name;

}
}

$stina = new Person("Stina", "1234567", "at home");
foreach ($stina as $key => $value) {

echo "$key: $value";
}

56 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Object Iteration
I It is possible to iterate over fields in an

object, as if the object was an array.
I Only visible fields, as specified by the

visibility, will occur in the iteration.
class Person {

public $name;
public $phone;
public $address;

public function __construct($name, $phone, $address) {
$this->address = $address;
$this->phone = $phone;
$this->name = $name;

}
}

$stina = new Person("Stina", "1234567", "at home");
foreach ($stina as $key => $value) {

echo "$key: $value";
}

56 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Comparing Objects

I The comparison operator, ==, considers
two object instances equal if they have the
same attributes and values, and are
instances of the same class.

I The identity operator, ===, considers
instances to be equal only if they refer to
the same instance and same class.

57 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Comparing Objects

I The comparison operator, ==, considers
two object instances equal if they have the
same attributes and values, and are
instances of the same class.

I The identity operator, ===, considers
instances to be equal only if they refer to
the same instance and same class.

57 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Object Serialization

I The serialize function returns a string
containing a representation of any PHP
value.

I The unserialize function recreates the
original values.

I Serializing an object will save all variable
values plus the class name of that object.

I To unserialize an object, the class definition
of that object needs to be present.

58 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Object Serialization

I The serialize function returns a string
containing a representation of any PHP
value.

I The unserialize function recreates the
original values.

I Serializing an object will save all variable
values plus the class name of that object.

I To unserialize an object, the class definition
of that object needs to be present.

58 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Object Serialization

I The serialize function returns a string
containing a representation of any PHP
value.

I The unserialize function recreates the
original values.

I Serializing an object will save all variable
values plus the class name of that object.

I To unserialize an object, the class definition
of that object needs to be present.

58 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Object Serialization

I The serialize function returns a string
containing a representation of any PHP
value.

I The unserialize function recreates the
original values.

I Serializing an object will save all variable
values plus the class name of that object.

I To unserialize an object, the class definition
of that object needs to be present.

58 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Object Serialization, Example
class Person {

public $name;
public $phone;
public $address;

public function __construct($name, $phone, $address) {
$this->address = $address;
$this->phone = $phone;
$this->name = $name;

}
}

$stina = new Person("Stina", "1234567", "at home");
$serialized = serialize($stina);
// prints O:6:"Person":3:{s:4:"name";s:5:"Stina";
// s:5:"phone";s:7:"1234567";
// s:7:"address";s:7:"at home";}
echo $serialized;

$someone = unserialize($serialized);
foreach ($someone as $key => $value) {

echo "$key: $value"; //Same output as before serializing
}

59 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Autoloading Classes
I Normally, each class is placed in a file with

the same name as the class, plus the
extension .php. This means we are forced
to write one require_once statement
for each used class.

I To avoid these long require_once
listings, it is possible to register an autoload
function, that is called whenever a
previously unloaded class is used.

spl_autoload_register(function ($class) {
include ’classes/’ .

\str_replace(’\\’, ’/’, $class) .
’.php’;

});

60 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Autoloading Classes
I Normally, each class is placed in a file with

the same name as the class, plus the
extension .php. This means we are forced
to write one require_once statement
for each used class.

I To avoid these long require_once
listings, it is possible to register an autoload
function, that is called whenever a
previously unloaded class is used.

spl_autoload_register(function ($class) {
include ’classes/’ .

\str_replace(’\\’, ’/’, $class) .
’.php’;

});

60 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Autoloading Classes
I Normally, each class is placed in a file with

the same name as the class, plus the
extension .php. This means we are forced
to write one require_once statement
for each used class.

I To avoid these long require_once
listings, it is possible to register an autoload
function, that is called whenever a
previously unloaded class is used.

spl_autoload_register(function ($class) {
include ’classes/’ .

\str_replace(’\\’, ’/’, $class) .
’.php’;

});

60 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Section

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

61 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Namespaces

I Namespaces are used to structure the
program, as packages are used in Java.

I A namespace does not affect visibility, there
is no package private visibility.

I Namespaces define name spaces, the
same symbol (e.g., class) can exist in
different namespaces.

I Namespaces also structure the program
and thereby improve cohesion.

I If, for example, the MVC architecture is used,
there should be the namespaces Model,
View and Controller.

62 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Namespaces

I Namespaces are used to structure the
program, as packages are used in Java.

I A namespace does not affect visibility, there
is no package private visibility.

I Namespaces define name spaces, the
same symbol (e.g., class) can exist in
different namespaces.

I Namespaces also structure the program
and thereby improve cohesion.

I If, for example, the MVC architecture is used,
there should be the namespaces Model,
View and Controller.

62 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Namespaces

I Namespaces are used to structure the
program, as packages are used in Java.

I A namespace does not affect visibility, there
is no package private visibility.

I Namespaces define name spaces, the
same symbol (e.g., class) can exist in
different namespaces.

I Namespaces also structure the program
and thereby improve cohesion.

I If, for example, the MVC architecture is used,
there should be the namespaces Model,
View and Controller.

62 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Namespaces

I Namespaces are used to structure the
program, as packages are used in Java.

I A namespace does not affect visibility, there
is no package private visibility.

I Namespaces define name spaces, the
same symbol (e.g., class) can exist in
different namespaces.

I Namespaces also structure the program
and thereby improve cohesion.

I If, for example, the MVC architecture is used,
there should be the namespaces Model,
View and Controller.

62 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Declaring Namespaces

Namespaces are declared with the
namespace keyword, placed first in a file.
namespace \Model;

namespace \MyProject\Model\Payment;

63 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Importing Namespaces
I Namespaces are imported with the use

keyword and aliased with alias.
I The following examples assume there is a

namespace \MyProject\Model\Payment,

which contains the class SomeClass.

use \MyProject\Model\Payment as Pay;
new Pay\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new Payment\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new SomeClass(); //NOT ALLOWED!!

64 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Importing Namespaces
I Namespaces are imported with the use

keyword and aliased with alias.
I The following examples assume there is a

namespace \MyProject\Model\Payment,

which contains the class SomeClass.

use \MyProject\Model\Payment as Pay;
new Pay\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new Payment\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new SomeClass(); //NOT ALLOWED!!

64 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Importing Namespaces
I Namespaces are imported with the use

keyword and aliased with alias.
I The following examples assume there is a

namespace \MyProject\Model\Payment,

which contains the class SomeClass.

use \MyProject\Model\Payment as Pay;
new Pay\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new Payment\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new SomeClass(); //NOT ALLOWED!!

64 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Importing Namespaces
I Namespaces are imported with the use

keyword and aliased with alias.
I The following examples assume there is a

namespace \MyProject\Model\Payment,

which contains the class SomeClass.

use \MyProject\Model\Payment as Pay;
new Pay\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new Payment\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new SomeClass(); //NOT ALLOWED!!

64 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Importing Namespaces
I Namespaces are imported with the use

keyword and aliased with alias.
I The following examples assume there is a

namespace \MyProject\Model\Payment,

which contains the class SomeClass.

use \MyProject\Model\Payment as Pay;
new Pay\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new Payment\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new SomeClass(); //NOT ALLOWED!!

64 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Namespaces are Hierarchical

I If the namespace A\B\C is imported as C,
a call to C\D\E is translated to
A\B\C\D\E.

I A call to C\D\E within namespace A\B is
translated to A\B\C\D\E.

I A call to \C\D\E within namespace A\B is
translated to C\D\E.

65 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Namespaces are Hierarchical

I If the namespace A\B\C is imported as C,
a call to C\D\E is translated to
A\B\C\D\E.

I A call to C\D\E within namespace A\B is
translated to A\B\C\D\E.

I A call to \C\D\E within namespace A\B is
translated to C\D\E.

65 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Namespaces are Hierarchical

I If the namespace A\B\C is imported as C,
a call to C\D\E is translated to
A\B\C\D\E.

I A call to C\D\E within namespace A\B is
translated to A\B\C\D\E.

I A call to \C\D\E within namespace A\B is
translated to C\D\E.

65 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Global Namespace

I In a file without any namespace definition,
all classes and functions are placed in the
global namespace.

I Prefixing a name with \ will specify that the
name is required from the global
namespace.

I It is good practice to prefix all functions in
the global space with \, even though the
interpreter always looks for functions in the
global space before failing.

66 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Global Namespace

I In a file without any namespace definition,
all classes and functions are placed in the
global namespace.

I Prefixing a name with \ will specify that the
name is required from the global
namespace.

I It is good practice to prefix all functions in
the global space with \, even though the
interpreter always looks for functions in the
global space before failing.

66 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

The Global Namespace

I In a file without any namespace definition,
all classes and functions are placed in the
global namespace.

I Prefixing a name with \ will specify that the
name is required from the global
namespace.

I It is good practice to prefix all functions in
the global space with \, even though the
interpreter always looks for functions in the
global space before failing.

66 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Section

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

67 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Exceptions

I PHP exception handling works exactly like
runtime exceptions in Java. There are no
checked exceptions i PHP.

I The constructs throw, try, catch and
finally have the same meaning as in
Java.

I There is no throws construct since there
are no checked exceptions.

I Custom exception classes shall extend the
class Exception, which is in the global
namespace.

68 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Exceptions

I PHP exception handling works exactly like
runtime exceptions in Java. There are no
checked exceptions i PHP.

I The constructs throw, try, catch and
finally have the same meaning as in
Java.

I There is no throws construct since there
are no checked exceptions.

I Custom exception classes shall extend the
class Exception, which is in the global
namespace.

68 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Exceptions

I PHP exception handling works exactly like
runtime exceptions in Java. There are no
checked exceptions i PHP.

I The constructs throw, try, catch and
finally have the same meaning as in
Java.

I There is no throws construct since there
are no checked exceptions.

I Custom exception classes shall extend the
class Exception, which is in the global
namespace.

68 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Exceptions

I PHP exception handling works exactly like
runtime exceptions in Java. There are no
checked exceptions i PHP.

I The constructs throw, try, catch and
finally have the same meaning as in
Java.

I There is no throws construct since there
are no checked exceptions.

I Custom exception classes shall extend the
class Exception, which is in the global
namespace.

68 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Section

Introduction to PHP

Types, Operators and Expressions

Arrays

Functions

The Object Model

Namespaces

Exception Handling

Documentation With PHPDoc

69 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Writing PHPDoc

I For simple use cases, PHPDoc is very
much like Javadoc.
/**
* Creates a cache with the specified layout.
*
* @param \Csim\Model\CacheLayout $layout The layout

of the cache that shall be created.
* @return \Csim\Model\SimulationState The state of

the newly created, empty, cahce.
*/
public function

defineCache(\Csim\Model\CacheLayout $layout) {
$this->cache = new \Csim\Model\Cache($layout);
return $this->cache->getState();

}

70 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Generating Documentation

I To generate the HTML files with
documentation, it is necessary to install a
third-party tool.

I Use for example ApiGen,
http://apigen.org/, which can be
integrated with NetBeans.

71 / 71

PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Generating Documentation

I To generate the HTML files with
documentation, it is necessary to install a
third-party tool.

I Use for example ApiGen,
http://apigen.org/, which can be
integrated with NetBeans.

71 / 71

	Introduction to PHP
	Types, Operators and Expressions
	Arrays
	Functions
	The Object Model
	Namespaces
	Exception Handling
	Documentation With PHPDoc

