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The PHP Language

I PHP development was
started by Rasmus
Lerdorf in 1994.

I Developed to allow him
to track visitors to his
web site.

I PHP is an open-source product, developed
by the PHP group.

I PHP was originally an acronym for
Personal Home Page, but later became
PHP Hypertext Preprocessor.
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Overview of PHP
I By far the most used server-side

programming language.
I Dynamically typed, like JavaScript.

I Purely interpreted, like JavaScript.
I Object-oriented with class-based

inheritance, like Java, but using objects is
optional.

I PHP files can contain HTML and PHP.
I PHP files have extension .php
I There are many different versions of PHP,

and they differ quite a lot. This presentation
follows the latest versions.
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Installation
I The PHP interpreter must be integrated in

the web server.
I Therefore, installation depends on server, see
http://php.net/manual/en/install.php

for instructions.
I Consider installing a WAMP/LAMP/MAMP

pack.

I The first letter is you operating system
(Windows, Linux or MacOS).

I The other letters means Apache, MySQL and
PHP. These together form a complete web
server.

I EasyPHP , http://www.easyphp.org/, is a
WAMP pack that is easy to install.
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Syntax

I A PHP file can contain both PHP and
HTML.

I HTML is passed to the browser, PHP is
executed on the server, and the resulting
output is passed to the browser.

I PHP code is embedded between
<?php and ?> tags.

I You might want to omit the closing tag since it
produces a space in the output.
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Accessing PHP Files

I A PHP file is accessed with a HTTP
request with a matching URL, just like a
HTML file is accessed,
http://myserver.se/path/to/thephpfile.php

I Execution just starts from the beginning of
the specified PHP file, there is nothing like
a main method.
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Accessing PHP Files (Cont’d)

I To call code in other PHP files, it is
necessary to include those files.

I Files are included with the include
construct, include anotherfile.php;.

I The interpreter will look for files at the
specified file path, at specified include
paths, in the calling file’s directory, and in
the current working directory.
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Accessing PHP Files (Cont’d’)

I include will emit a warning if it cannot
find a file. There is also the require
construct which works like include but
emits a fatal error if the specified file is not
found.

I include_once and require_once
works like include and require,
except that the same file is included only
once even if it is specified in multiple
inclusion statements.
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Naming Conventions
I There is no globally accepted naming

convention as in for example Java, but the
following is quite common.

I Class and interface names are written in
PascalCase, MyFirstClass

I Method names are written in camelCase,
myFirstMethod

I Functions, which are methods placed
outside classes, are named with
underscore, my_first_function

I Variables are named with underscore,
my_first_var, both inside and outside
classes.
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Naming Conventions (Cont’d)

I Constant names are written in upper case
with underscores,
MY_FIRST_CONSTANT

I Namespace, which corresponds to
packages, are named in PascalCase,
MyFirstNamespace
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Comments

There are three different kinds of comments:
// Single line comment

# Single line comment

/*
Multiple line comment

*/
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Identifiers

I A valid identifier starts with a letter or
underscore, followed by any number of
letters, numbers, or underscores.

I Identifiers are case sensitive.
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Variables
I Variables are represented by a dollar sign,
$, followed by the name of the variable.

I There are no variable declarations, PHP is
dynamically typed.

I A variable is created and assigned an
appropriate type when it is first used, much the
same way as in JavaScript.

I A variable that has never been assigned a
value is unbound and has the value NULL

I The unset function sets a variable to
NULL

I The isset function is used to determine
whether a variable is NULL
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Predefined Variables
I PHP has many predefined variables, that

are always available to a PHP program, for
example:

I $_GET An array with all HTTP GET
variables.

I $_POST An array with all HTTP POST
variables.

I $_SESSION An array with all session
variables.

I $_COOKIE An array with all HTTP
Cookies.

I These are called superglobals, and are
always accessible, regardless of scope
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Constants

I Constants can be defined with the const
and define constructs.

I The following two examples are equal.
define("GREETING", "Hello world");
echo GREETING;

const GREETING = "Hello World";
echo GREETING;

I Note that constant names are not prefixed
with $
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Magic Constants

I There are built-in magic constants that are
always available.

I Some magic constants follow.

__FILE__ Path and name of the currently
executing PHP file.

__DIR__ Path to directory with the currently
executing PHP file.

__FUNCTION__ Name of the currently executing
function.

20 / 71
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Types
I There are eight different types.

I Four scalar types, boolean (true or
false; 0, “”, and “0” are false, others true)
integer (platform-dependent size),
double (platform-dependent size), string.

I Two compound types, array and object.
I Two special types, resource (a reference to

an external resource, like a database) and
NULL (the value of an unbound variable).

I To print type and value of an expression,
use the var_dump function.

I To get a human-readable representation of
a type, use the gettype function.

I To check for a certain type, use the
is_<type> functions.
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The String Type
I A string consists of one-byte characters.
I Variables and escape sequences are not

expanded with single-quoted string literals.
$a = 2;
echo ’The value is \n $a’;
// Prints: The value is \n $a

I Variables and escape sequences are
expanded with double-quoted string literals.

$a = 2;
echo "The value is \n $a";
// Prints: The value is
// 2

I Note that \n is expanded to a line break,
not to a <br/> tag.
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String Concatenation

I The string concatenation operator is a dot,
.
$what = "Hello";
$who = "World!";
echo $what . " " . $who;
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Arithmetic Operators

I The usual +, -, *, / and %.
I If the result of integer division is not an

integer, a double is returned.

I Any integer operation that results in
overflow produces a double.

I The modulus operator, %, coerces its
operands to integer.
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Arithmetic and String Functions

I Some available arithmetic functions are
floor, ceil, round, abs, min, max,
rand.

I Some available string functions are
strlen, strcmp, strpos, substr,
strlen, chop, trim.
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Cast (Explicit Conversion)

I Three ways to specify an explicit
conversion.
(int)$total
intval($total)
settype($total, "integer")
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Output

I Output from the PHP program is included in
the out stream from server to browser.

I There are tree ways to generate output.
The first two, print and echo, differ only
in that print has a return value.
$what = "Hello";
$who = "World!";
echo $what . " " . $who;
print($what . " " . $who);

I The third way, printf, has the same
formatting flags as the C function printf.
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Debug Output to Console
I Output for development purposes, for

example to track the flow through the
program, should not appear in the web
page.

I Such output should be directed to the
JavaScript console. The following function
creates JavaScript code that prints the
specified string to the console.
function cons($param) {

echo "<script>" .
"console.log(’$param’);" .

"</script>";
}
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Error Messages From Interpreter
I The PHP interpreter’s output, for example exception

reports, goes to the web server’s log.

I The location of that log depends on server and
operating system. You might be able to find it by
executing a php file with the statement
phpinfo(), and looking for APACHE_LOG_DIR
in the output.

I On my Ubuntu/Apache platform, the log is in
/var/log/apache2/error.log.

I It is strongly recommended to locate this log since
that is where you will see if your PHP program
crashed.

I Remember that PHP programs are not compiled.
The only way to be notified of coding errors is
through the above mentioned log.
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Relational and Logical Operators

I The relational operators are the same as in
JavaScript, including === and !==.

I The logical operators comes in two flavors.
The difference is that number one has
higher precedence than assignment
operators while number two has lower.

1. &&, ! and ||
2. and, or and xor
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Control Statements

I The following control statements behave as
in Java, if, else, else if, while,
do-while, for, switch, break and
continue.

I There is also the foreach statement
which is different from Java. It will be
covered below, after arrays.
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The Array Type

I Not like arrays of any other language.
I A PHP array is actually an ordered map.

I A map is a type that associates values to keys.
I Ordered means elements are located at

indexes.

I This means arrays can be used for many
different data structures, like lists and hash
tables.
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To Create an Array
I Arrays can be created with the array()

construct, which takes comma-separated
key => value pairs as arguments.
$my_array = array(

3 => "value1",
"key2" => 38

)

I Arrays can also be created with the short
array syntax, []
$my_array = [

3 => "value1",
"key2" => 38

]
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Internal Array Structure

Figure from Sebesta: Programming the World Wide Web
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Keys and Values

I The key must be an integer or a string, the
value can be any type.

I Omitted keys, as below, are assigned the
integer that is nearest higher than the
highest previous integer key, or zero if there
is no previous integer key.
$array = array("foo", "bar", "hi", "there");

I Assigning to a key that already has a value
means the old value is overwritten.

36 / 71



PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Keys and Values

I The key must be an integer or a string, the
value can be any type.

I Omitted keys, as below, are assigned the
integer that is nearest higher than the
highest previous integer key, or zero if there
is no previous integer key.
$array = array("foo", "bar", "hi", "there");

I Assigning to a key that already has a value
means the old value is overwritten.

36 / 71



PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Keys and Values

I The key must be an integer or a string, the
value can be any type.

I Omitted keys, as below, are assigned the
integer that is nearest higher than the
highest previous integer key, or zero if there
is no previous integer key.
$array = array("foo", "bar", "hi", "there");

I Assigning to a key that already has a value
means the old value is overwritten.

36 / 71



PHP

Introduction

Types, Operators
and Expressions

Arrays

Functions

Objects

Namespaces

Exception Handling

PHPDoc

Access Elements Using Brackets

I Array elements are accessed using
brackets.

I If an element with the specified key does
not exist, it is created.

I If the array itself does not exist, it is created.
$arr[1] = "hi";
echo "$arr[1]"; // Prints: hi
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Some Array Functions
array_keys($arr) Extracts all keys.
array_values($arr) Extracts all values.

array_key_exists($arr) Tests if there
is a key with the specified value.

sizeof($arr) Returns the number of
elements.

explode($delim, $str) Returns an
array with the elements of the string
$str split at the delimiter $delim

implode($glue, $arr) Returns a string
with the elements of the array $arr
separated by $glue
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Iterating Over Elements

I An array can be iterated with the foreach
construct.
foreach ($arr as $value) {

echo("$value");
}

foreach ($arr as $key => $value) {
echo "Key: $key, Value: $value; ";

}
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Iterating Over Elements (Cont’d)
I Also the while construct can be used.

while (list(, $value) = each($arr)) {
echo("$value");

}

while (list($key, $value) = each($arr)) {
echo "Key: $key, Value: $value;";

}

I each returns the current key/value pair and
advances the cursor.

I list assigns multiple values from an array.
$arr = array(’a’, ’b’, ’c’);
list($elem1, $elem2, $elem3) = $arr;

I Other useful functions are reset, next, prev,
current
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To Define a Function
I Functions are defined with the function

keyword.
function sum($op1, $op2) {

return $op1 + $op2;
}

I Any valid PHP code may appear inside a
function, even other functions and class
definitions.

I All functions and classes have global
scope, they can be called outside a function
even if they were defined inside.

I Functions need not be defined before they
are referenced.
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Arguments
I Arguments are by default passed by value.
I To pass by reference, prepend an

ampersand, &, to the argument.
function add_a_dot(&$string) {

$string .= ’.’;
}

$str = ’My name is Olle’;
add_a_dot($str);
echo $str; // prints ’My name is Olle.’

I There can be default argument values.
function add_two($op1, $op2=2) {

return $op1 + $op2;
}
echo add_two(3); // prints ’5’
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Variable-Length Argument List
I A variable-length argument list is

implemented with the functions
func_num_args(),
func_get_arg() and
func_get_args().
function sum() {

$acc = 0;
foreach (func_get_args() as $n) {

$acc += $n;
}
return $acc;

}

echo sum(1, 2, 3, 4); // prints ’10’
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Variable Function
A variable function is a function whose name is
the value of a variable. Variables with appended
parentheses are treated as variable functions.
function foo() {

echo "In foo";
}

function bar() {
echo "In bar";

}

$func = ’foo’;
$func(); // prints ’In foo’

$func = ’bar’;
$func(); // prints ’In bar’
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Anonymous Functions and
Closures

I Anonymous functions and closures
behaves very much as in JavaScript.
function outer($param) {

return function() use ($param) {
echo "Inner got ’$param’";

};
}

$func = outer(’Hi!’);
echo $func(); //prints Inner got ’Hi!’

I As can be seen above, closures are defined
with the construct use.
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Internal Functions

I There are many internal (built-in) functions,
and also many PHP extensions with yet
more functions.

I Reference manual for internal functions can
be found at
http://php.net/manual/en/funcref.php

http://www.w3schools.com/php/default.asp
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Type Hinting
I Type hinting is a way to introduce type

safety in the otherwise type unsafe PHP
language.

I Forces parameters to be of the specified
class or interface, or to be an array or a
function.

I The following code forces the param
parameter to be an instance of the class
MyClass.
function test(MyClass $param) {
}

I Type hinting can not be used for primitive
types such as integer or string.
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The Object Model
I The object model is class based as in Java.

I Class and interface definitions, inheritance,
implementation and instantiation is similar to Java.

I class SimpleClass {
private $var = ’a default value’;

public function displayVar() {
echo $this->var;

}
}

$instance = new SimpleClass();
echo $instance->displayVar();

I Note 1: The syntax for method call is ->

I Note 2: It is not possible to specify a visibility for the
class itself, all classes are public.
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Properties, Methods and Visibility

I Properties and methods are as in Java.
See previous slide for an example.

I The visibilities are public, protected
and private. The meanings are the
same as in Java.

I The default visibility is public.
I There is no package private visibility since

there are no packages.
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Constructors
I Constructors work the same ways as in

Java, but they are always called
__construct.

I class SimpleClass {
private $var;

public function __construct($var) {
$this->var = $var;

}
}

I Note 1: Also the this variable is prefixed
with $

I Note 2: There is no overloading, there can
be only one constructor per class.
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Destructors
I Unlike Java, the destructor is called when

the last reference to the object is removed.
I The destructor is called __destruct

I class SimpleClass {
public function __destruct() {

echo ’running destructor’;
}

}

$instance = new SimpleClass();

I The code above prints running
destructor since the last reference to
the object is removed when program ends.

I Note that the destructor can not take any
parameters.
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self and static
self is resolved to the class where it is written, static
is resolved to the called class.
class SuperClass {

public static function whoAreYouSelf() {
self::me();

}

public static function whoAreYouStatic() {
static::me();

}

protected static function me() {
echo "I am SuperClass";

}
}

class SubClass extends SuperClass {
protected static function me() {

echo "I am SubClass";
}

}

SubClass::whoAreYouSelf(); //prints ’I am SuperClass’
SubClass::whoAreYouStatic(); //prints ’I am SubClass’ 54 / 71
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The Scope Resolution Operator
and Late Static Binding

I The double colon used on the previous
slide is called the scope resolution operator.

I Used to specify which class to use.

I Using static, as illustrated on the
previous slide, is late static binding, which
means that the scope is the called class.
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Object Iteration
I It is possible to iterate over fields in an

object, as if the object was an array.
I Only visible fields, as specified by the

visibility, will occur in the iteration.
class Person {

public $name;
public $phone;
public $address;

public function __construct($name, $phone, $address) {
$this->address = $address;
$this->phone = $phone;
$this->name = $name;

}
}

$stina = new Person("Stina", "1234567", "at home");
foreach ($stina as $key => $value) {

echo "$key: $value";
}
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Comparing Objects

I The comparison operator, ==, considers
two object instances equal if they have the
same attributes and values, and are
instances of the same class.

I The identity operator, ===, considers
instances to be equal only if they refer to
the same instance and same class.
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Object Serialization

I The serialize function returns a string
containing a representation of any PHP
value.

I The unserialize function recreates the
original values.

I Serializing an object will save all variable
values plus the class name of that object.

I To unserialize an object, the class definition
of that object needs to be present.
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Object Serialization, Example
class Person {

public $name;
public $phone;
public $address;

public function __construct($name, $phone, $address) {
$this->address = $address;
$this->phone = $phone;
$this->name = $name;

}
}

$stina = new Person("Stina", "1234567", "at home");
$serialized = serialize($stina);
// prints O:6:"Person":3:{s:4:"name";s:5:"Stina";
// s:5:"phone";s:7:"1234567";
// s:7:"address";s:7:"at home";}
echo $serialized;

$someone = unserialize($serialized);
foreach ($someone as $key => $value) {

echo "$key: $value"; //Same output as before serializing
}
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Autoloading Classes
I Normally, each class is placed in a file with

the same name as the class, plus the
extension .php. This means we are forced
to write one require_once statement
for each used class.

I To avoid these long require_once
listings, it is possible to register an autoload
function, that is called whenever a
previously unloaded class is used.

spl_autoload_register(function ($class) {
include ’classes/’ .

\str_replace(’\\’, ’/’, $class) .
’.php’;

});
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Namespaces

I Namespaces are used to structure the
program, as packages are used in Java.

I A namespace does not affect visibility, there
is no package private visibility.

I Namespaces define name spaces, the
same symbol (e.g., class) can exist in
different namespaces.

I Namespaces also structure the program
and thereby improve cohesion.

I If, for example, the MVC architecture is used,
there should be the namespaces Model,
View and Controller.
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Declaring Namespaces

Namespaces are declared with the
namespace keyword, placed first in a file.
namespace \Model;

namespace \MyProject\Model\Payment;
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Importing Namespaces
I Namespaces are imported with the use

keyword and aliased with alias.
I The following examples assume there is a

namespace \MyProject\Model\Payment,

which contains the class SomeClass.

use \MyProject\Model\Payment as Pay;
new Pay\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new Payment\SomeClass();
//Instantiates \MyProject\Model\Payment\SomeClass

use \MyProject\Model\Payment;
new SomeClass(); //NOT ALLOWED!!
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Namespaces are Hierarchical

I If the namespace A\B\C is imported as C,
a call to C\D\E is translated to
A\B\C\D\E.

I A call to C\D\E within namespace A\B is
translated to A\B\C\D\E.

I A call to \C\D\E within namespace A\B is
translated to C\D\E.
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The Global Namespace

I In a file without any namespace definition,
all classes and functions are placed in the
global namespace.

I Prefixing a name with \ will specify that the
name is required from the global
namespace.

I It is good practice to prefix all functions in
the global space with \, even though the
interpreter always looks for functions in the
global space before failing.
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Exceptions

I PHP exception handling works exactly like
runtime exceptions in Java. There are no
checked exceptions i PHP.

I The constructs throw, try, catch and
finally have the same meaning as in
Java.

I There is no throws construct since there
are no checked exceptions.

I Custom exception classes shall extend the
class Exception, which is in the global
namespace.
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Writing PHPDoc

I For simple use cases, PHPDoc is very
much like Javadoc.
/**
* Creates a cache with the specified layout.
*
* @param \Csim\Model\CacheLayout $layout The layout

of the cache that shall be created.
* @return \Csim\Model\SimulationState The state of

the newly created, empty, cahce.
*/
public function

defineCache(\Csim\Model\CacheLayout $layout) {
$this->cache = new \Csim\Model\Cache($layout);
return $this->cache->getState();

}
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Generating Documentation

I To generate the HTML files with
documentation, it is necessary to install a
third-party tool.

I Use for example ApiGen,
http://apigen.org/, which can be
integrated with NetBeans.
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