Concepts and Hypotheses PAC-Learning VC-Dimension

Introduction to Learning Theory

Questions suitable for Theoretical Analysis

- How hard is a given learning task?
- How many training examples are needed?
- How large is the risk of failing?

Örjan Ekeberg Machine Learning	Örjan Ekeberg Machine Learning
Concepts and Hypotheses PAC-Learning VC-Dimension	Concepts and HypothesesDefinitionsPAC-LearningExampleVC-DimensionHypotheses
 Concepts and Hypotheses Definitions Example Hypotheses 	 Concepts and Hypotheses Definitions Example Hypotheses
 PAC-Learning Consistent Learners 	PAC-LearningConsistent Learners
 VC-Dimension Example 	VC-DimensionExample

Concepts and Hypotheses Defin PAC-Learning Exam VC-Dimension Hypo

Concept Learning

Concept Learning

Learning of a boolean function from examples

Categories

- "Nice weather"
- "Dog"
- "Motor vehicle"
- "Criminal offence"

Subsets of a superset X

Terminology

c The concept to learn

$$c(x) \to \mathcal{F}/\mathcal{T}, \quad x \in X$$

h Hypothesis, Result of the learning ("guessed c")

$$h(x) \to \mathcal{F}/\mathcal{T}, \quad x \in X$$

H Hypotheses space, All conceivable hypotheses (before data arrives)

 $h \in H$

D Set of available training data

 $D \subseteq X$

Orjan Ekeberg	iviachine Learning	

Concepts and Hypotheses PAC-Learning

VC-Dimension

Terminology

Two kinds of training examples

Positive example:

$$x: c(x) = \mathcal{T}, \quad x \in D$$

Definitions

Example Hypotheses

Negative example:

$$x: c(x) = \mathcal{F}, x \in D$$

Örjan Ekeberg Machine Learning

Concepts and Hypotheses PAC-Learning VC-Dimension Hypothese

Example of a <i>concept</i>		
	" Nice Weather"	

Let each "weather instance" x_i be composed of three attributes:

Generally: $Sky \times Temperature \times Wind$

Concepts and Hypotheses PAC-Learning VC-Dimension Hypotheses

Assume that the attributes can only take on certain discrete values:

Sky	$\in \{ $ Sunny, Cloudy, Rainy $\}$
Temp	$\in \{ Marm, Mild, Cold \}$
Wind	\in { Windy, Calm }

Number of possible weathers: $|X| = 3 \cdot 3 \cdot 2 = 18$

Typical training samples

$x_1 =$	<sunny, warm,="" windy=""></sunny,>	$\rightarrow Nice$
$x_2 =$	<sunny, mild,="" windy=""></sunny,>	ightarrow Nice
$x_{3} =$	<Rainy, Cold, Windy $>$	$\to Bad$
$x_4 =$	<sunny, calm="" warm,=""></sunny,>	\rightarrow Nice

Örjan Ekeberg	Machine Learning	Örjan Ekeberg	Machine Learning
Concepts and Hypotheses	Definitions	Concepts and Hypotheses	Definitions Example
VC-Dimension	Hypotheses	VC-Dimension	Hypotheses

What does the hypotheses space H look like?

Each hypothesis h corresponds to one subset of X

How many hypotheses can we choose from? How many subsets does X have?

$$|H| = 2^{|X|}$$

 $|H| = 2^{18} = 262144$

Training data alone is not sufficient to isolate one hypothesis!

The assumptions the learner uses to generalize

Examples (from Wikipedia):

- Maximum conditional independence
- Minimum cross-validation error
- Maximum margin
- Minimum description length
- Minimum features
- Nearest neighbors

1 Concepts and Hypotheses

- Definitions
- Example
- Hypotheses

PAC-Learning Consistent Learners

- 3 VC-Dimension
 - Example

Örjan Ekeberg Machine Learning

Concepts and Hypotheses PAC-Learning VC Dimension

Assumptions:

- Concept Learning
- $\bullet\,$ Training and test data from same distribution ${\cal D}\,$

What can go wrong?

- The result of leaning can be bad The resulting hypothesis makes too many errors
- Learning itself can fail The learning algorithm does not find any useful hypothesis

Örjan Ekeberg Machine Learning

Concepts and Hypotheses PAC-Learning VC-Dimension

True Error

The probability that a given hypothesis gives the wrong answer

 $\operatorname{error}_{\mathcal{D}}(h) \equiv P_{x \in \mathcal{D}} \left[h(x) \neq c(x) \right]$

How bad hypotheses are we prepared to accept?

Approximately Correct

A hypothesis h is called approximately correct if

 $\operatorname{error}_{\mathcal{D}}(h) < \epsilon$

Quantification of the risk that learning does not find an approximately correct hypothesis

 $P_L[\operatorname{error}_{\mathcal{D}}(h) \geq \epsilon]$

How often is it acceptable for learning to fail?

Örjan Ekeberg Machine Learning

Analysis of a Consistent Learner

- Assumtion: no errors in training examples
- $\bullet\,$ Examples are drawn from the distribution ${\cal D}$
- The solution is consistent with all training examples
- "Dangerous Hypotheses":

 $\operatorname{error}_{\mathcal{D}}(h) \geq \epsilon$

We do not want learning to produce a dangerous hypothesis!

How large is the risk that a dangerous hypothesis is consistent with all training examples?

PAC-learning

Probably Approximately Correct

Given

- ϵ limit on the error
- δ limit on the risk
- *n* size of the examples

Efficiently PAC-learnable

A concept is said to be efficiently PAC-learnable if there exists an algorithm which runs in polynomial time in

n, $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$

Örjan Ekeberg Machine Learning

Concepts and Hypotheses PAC-Learning Consistent Learners VC-Dimension

• Probability that one hypothesis *h* is contradicted by one example

 $\operatorname{error}_{\mathcal{D}}(h)$

• Probability that *h* is not contradicted

 $1 - \operatorname{error}_{\mathcal{D}}(h)$

 Risk that a dangerous hypothesis (error_D(h) ≥ ε) is not contradicted by a randomly drawn example

 $\leq (1-\epsilon)$

Concepts and Hypotheses PAC-Learning VC-Dimension Consistent Learners

Concepts and Hypotheses PAC-Learning VC-Dimension Consistent Learners

• Risk that a *dangerous hypothesis* is not contradicted by one randomly drawn example

 $\leq (1 - \epsilon)$

• Risk that a *dangerous hypothesis* is not contradicted my *m* randomly drawn examples

 $\leq (1-\epsilon)^m$

• How large is the risk that any dangerous hypothesis in *H* happens to be consistent with all examples:

$$\leq |H| \cdot (1-\epsilon)^m$$

 $\leq |H| \cdot e^{-\epsilon m}$

Örjan Ekeberg Machine Learning

Concepts and Hypotheses PAC-Learning VC-Dimension

1 Concepts and Hypotheses

- Definitions
- Example
- Hypotheses

PAC-Learning

• Consistent Learners

3 VC-Dimension

Example

How many training examples are needed?

How many examples m are needed to make the risk of ending up with a dangerous hypothesis less than δ ?

$$\delta \geq |H| \cdot e^{-\epsilon m}$$

$$e^{\epsilon m} \ge rac{|H|}{\delta}$$

$$m \geq rac{1}{\epsilon} \left[\ln |H| + \ln rac{1}{\delta}
ight]$$

Örjan Ekeberg Machine Learning

Concepts and Hypotheses PAC-Learning Exam VC-Dimension

Problem with |H|

- Gives too pessimistic estimates
- Can't be used when $|{\cal H}|=\infty$

Vapnik — Chervonenkis observation:

The important thing is not the *number of* hypotheses, but how they can form subsets in X

Örjan Ekeberg

Machine Learning

Scattering

A finite set S is scattered by the hypotheses H if every subset of S is described by a $h \in H$

The size of S is a measure of the expressive power of H

Örjan Ekeberg

VC Dimension VC(H) Size of the largest subset of X which can be scattered by H

- *H* Intervals on the real axis
- X Real numbers
- Can 2 points be scattered?
- Can 3 points be scattered?

Conclusion: VC(H) = 2

Machine Learning

Concepts and Hypotheses PAC-Learning VC-Dimension

Example:

- *H* Separating hyperplane
- X Points in \Re^r
- When r = 1

VC(H) = 2

• When r = 2

VC(H) = 3

• Generally

 $\operatorname{VC}(H) = r + 1$