

#### Kameraobjektiv har många linselement för att reducera avbildningsfelen.





# **Aberrations**







Lateral chromatic aberration

#### Image corner



Different imaging scales for different colors





## <u>Curvature of field</u>





## **Astigmatism**



Point source











## **Distortion**





### To minimize aberrations



- •Many lens elements
- •Suitable types of glass
- •Symmetric build-up
- Diaphragm (bländare) position



### Vignetting

(Image corners are darker than the center)







## <u>2 effects: Shadowing and $cos^4 \phi$ </u>

Shadowing:



Small lens opening = Less vignetting!



#### <u>COS<sup>4</sup> $\phi$ </u>: (Caused by basic physical processes)

ROYAL INSTITUTE OF TECHNOLOGY



#### Most pronounced for wide-angle lenses, negligible for tele-photo lenses



Fish-eye lenses

Introduce distortion to reduce vignetting



#### The image of a point object is blurred due to diffraction





#### Point spread function (psf)

## **Diffraction**



ROYAL INSTITUTE OF TECHNOLOGY



$$D\sin\Phi = 1.22\lambda$$
  $R \approx \frac{1.22\lambda f}{D} = 1.22\lambda F$  - F-number (bländartal)

Small F-numbers: Image quality is limited by aberrations Large F-numbers: Image quality is limited by diffraction

Best image quality is often obtained for  $F \approx 8$ (Best balance between aberrations and diffraction)