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Lecture 11: Dimensionality Reduction
and
Subspace Method
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Background: Schematic of classification
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Our keywords today:

e Discriminant function
Subspace Method
Similarity measures
— Angle

— Projection length

e Dimensionality reduction
— Principal Component Analysis (PCA)

Nearest Neighbor methods (revisiting)

* Binary classification c
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— Unseen data x

- Compute distances

to N1 + N2 samples

n-d feature space

« Find the nearest neighbour
- classify x to the same class




Discriminant function

* Need to remember all the samples?
— In .-NN we simply used all the training data
— Still cover only a small portion of possible patterns

e Define a class by a few representative patterns
— e.g. the centroid of class distribution

o** (i Extreme case: one vector per class

Direction cosine

Think of the new input and the prototype as vectors.

Compute cosine between the input vector x and vector

(x"a")

—————— =c0s 4
]l Ha® ]

g (x)=
“Simple similarity”
0 <cos’> A <1(The closer itis to 1, the more likely to be in C")
Extend the class representative to

a set of basis vectors
__, spans a subspace

Formulation: one prototype per class

— . 1 K
K classes: C ),"',C( )

K oto es: 1 K
pr t typ S. a(),...,a( )

Consider Euclidean distances between the new input x
O

and the prototypes: I x—g® H2= I x||2 —2a(”Tx+ | a

—> Choose the class that minimises the distance.

Discriminant function

Setting the “don’t know” category

e Reject if the distance is above the threshold

Ci




Training phase

e Given: Limited number of labeled data
(samples whose classes are known)

e The dimensionality often too high for limited
number of samples

One approach is to find redundant variables and
discard them, i.e. dimensionality reduction

(without losing essential information)

Information compression to extract the class
characteristics and throw away the rest!

Subspace

Subspace L is a collection of n-d vectors:
spanned by a basis, a set of lin. independent vectors

L(al,---,ap)={z|z=§§a,- (EER. 4, ER")}

Dimension of a subspace: A
the number of base vectors '

p=dim(Ll) <<n

Conveniently represented
by orthonormal basis {u,,--,u,}

Testing phase

e Classification methods
— Discriminant function
— Subspace method

e Various ways to measure the distance
— Euclidean / Mahalanobis distance
— Angle between vectors
— Projection length on subspaces

Subspace Method

e Exploit localization of pattern distributions

Samples in the same class such as a digit (or face
images of a person) are similar to each other.
They are localized in a subspace spanned by a set of basis u: .

ui : reference vectors
(orthonormal basis)

a.k.a CLAFIC
CLAss-Featuring Information Compression




e Variations of “9” covered by a subspace

Uo Ui

. ou, (o =-0.5---+0.5)
A NRERA A
Elllllllll

U, +ou,

(figure by Y. Kurosawa)

Similarity in Subspace Method

Projection length to the subspace

P-1
S = 2 (x,u,)’

p: dimension of subspace

Input x

ui : reference vectors
(orthonormal basis)

g subspace
u, P

Framework of Subspace Method

1. Training: for each class, compute a low-dimensional
subspace that represents the distribution in the class.

o, ®

2. Testing: determine the class of new unknown input by
comparing which subspace best approximates the input.

Training Testing
O [
& (S)O P# ... ..... Input
vector/' subspace 1 — Similarity 1
O
Subspace 1 T Subspace 2 — Similarity 2 E
: >
subspace 2 Projection :
: Subspace K — Similarity K
subspace K Ly, u )

Similarity in Subspace Method (example)

Projection length to the subspace

La

- |

2
S = (x, ul.) p: the dimension of subspace
= I (this can be determined for each class)
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Principal Component Analysis (PCA)

1. Maximum variance criterion

1. Maximizing variance 2. Min. approximation error

; i Reduce the effective number of variables

2 u 2 . . . .

! u (only dealing with components with larger variances)
) T T 2 .. .
Centroid E(x) E((x"u;— E(x'u;))") > Maximize (i=1,...,p)
Distribution is viewed =F I/IT x—FE(x 2 [P,
from the origin, (( ! ( )% COTndlthn.
not from the centroid = uiT E((x - E(x))(x - E(x))T )ui = uiTEui uu; = 5;'1‘
Xy
¥ Covariance matrix

_/Number of samples max[tr(U" ZU)]

CMean.V(ECtor Of)f :, E(x) = (l/r)zx . The transformation matrix U consists of p columns
ovariance matrix: ‘ Z= E((x;E(x))(x—E(x)) ) that are eigenvecors of the covariance matrix, 2,
Autocorrelation matrix: () = E(xx” ) corresponding to largest eigenvalues.

Example: Ninety observations simulated in 3-d

2. Minimum squared distance criterion

Averaged squared error between x and its _ 21
approximation to be minimized by a set {,,**",%,,} i}
/X residual //1/ / / I8 é Ny
2 .. . : b 8
E(|x=x"|*) >minimize (i=1,...,p) // S /M g .
. N\ A S
Approximated x' = E(x u;u, //l///? § o
i=1 / ) !
2 =2 - /
Ix"IF=lx 7 =1 % |7 ->maximize : - |
—1',0 —(;.5 UTO 0:5 1?0
First principal component
The basis consists of p columns that are eigenvecors The first 2 principal component directions span the plane that best fits the data.
of the autocorrelation matrix, Q, corresponding to It minimizes the sum of squared distances from each point to the plane.
largest eigenvalues. Figure from

An Introduction to Statistical Learning (James et al.)



Dimensionality of a class subspace

Eigenvalues of autocorrelation matrix Q: A, z..4...24, =0
The number of dimensions to be used:
— Too low - low capability to represent the class
— Too high—> issue of overlapping across classes

eCumulative contributions

PO Choose a dimention p"’

for each class ®"

L 0) 0 .
a(p®)= 2 a(p”) =k = a(p"” +1) (x: common value)

P
EA’]' The projection length to the subspace is
made uniform.

Experiments still needed to find a good dimensionality

Example 2: Human face classificaiton

Basis vectors of a person: his “dictionary”

(Eigenvectors of a large collection of his face)

(figure by K. Fukui)

PCA example 1: Hand-written digits
;[%ME M’_d,yooo

Feature extraction
Pattern vectors: normalized & blurred patterns

EPEEARIR -
W

(figure by Y. Kurosawa)

Example 3: Ship classification (profiles)

Profile vectors

Principal Comporll(/ent Analysis (PCA)

_‘.b

Eigenvectors

N

Reference dictionary

Eigenvectors for the greatest eigenvalues

g



Similarity in weighted Subspace Method

%

S = U; (x,ul.)z p: the dimension of subspace

i=0 T T weight: U,
Uy Wy U, Uy Uy Us Uy Uy, Uz U

A
l 25 N
uo ﬁ ﬁ u3 ﬁ us u6 u7 ug ug

(figure by Y. Kurosawa)

Ratio of between-classes variance to
within-class variance

Within-class variance Average in class @

1 & ] ;
oy = —2 2= EV@) (x=EV )
> re &
Total # of samples

0]

Average overall
Between-class variance
K

o, = %2 VQ(E@ (X) = E(x))" (E" (x) - E(x))

Number of samples in class o

Within-class var. between-class var. ratio

Useful dimension for classification?

2
J = O3 Between-class variance In short: distance between classes
g Usz Within-class var in ave | normalized by distance within class

- the larger the better!

Ideal distributions of input pattern vectors:
» Patterns from an identical class be close
= Patterns from different classes be apart

X, X,

X X

— Overlapping distributions harmful for classification




