Principles of Wireless Sensor Networks

https://www.kth.se/social/course/EL2745/

Lecture 12

Wireless Sensor Network Control Systems 1

Carlo Fischione
Associate Professor of Sensor Networks
e-mail:carlofi@kth.se
http://www.ee.kth.se/~carlofi/

KTH Royal Institute of Technology Stockholm, Sweden

October 13, 2014

Course content

- Part 1
 - Lec 1: Introduction to WSNs
 - ► Lec 2: Introduction to Programming WSNs
- Part 2
 - ► Lec 3: Wireless Channel
 - ► Lec 4: Physical Layer
 - ► Lec 5: Medium Access Control Layer
 - ► Lec 6: Routing
- Part 3
 - ► Lec 7: Distributed Detection
 - ► Lec 8: Static Distributed Estimation
 - ► Lec 9: Dynamic Distributed Estimation
 - ► Lec 10: Positioning and Localization
 - ► Lec 11: Time Synchronization
- Part 4
 - ▶ Lec 12: Wireless Sensor Network Control Systems 1
 - ▶ Lec 13: Wireless Sensor Network Control Systems 2
 - ► Lec 14: Summary and Project Presentations

Previous lecture

How to synchronize nodes?

Today's learning goals

- How the process state dynamics over time are mathematically modeled?
- How such state dynamics can be controlled by closing the loop process—controller—process?
- How to discretize the continuous time model of the dynamics?
- What is the concept of state stability of closed loop control systems?

- Wireless Sensor Network Control Systems (WSNCS)
- State space description of a control system
- Stability and asymptotic stability of a control system

- Wireless Sensor Network Control Systems (WSNCS)
- State space description of a control system
 - Linear model
 - Continuous time description
 - Discretization of state space model
 - ► Non-linear model
- Stability and asymptotic stability of a control system

Wireless Sensor Network Control Systems (WSNCS)

Closed-loop system

Wireless Sensor Network Control Systems

k: discrete time

h: sampling interval

- u(kh): control decision
- x(kh): state of the process/plant
- y(kh): output of the state (measured by sensors)
- The GOAL of the controller is to bring the state $x\left(kh\right)$ in a desired region by taking measurements $y\left(kh\right)$ and a control decision $u\left(kh\right)$
- ullet Delay and packet loss probability affect the way the measurements $y\left(t
 ight)$ are received in the controller

This lecture gives the basic control theory background for WSNCS. The effect of the network on the controller is studied next lecture

- Wireless Sensor Network Control Systems (WSNCS)
- State space description of a control system
 - ► Linear model
 - Continuous time description
 - Discretization of state space model
 - ► Non-linear model
- Stability and asymptotic stability of a control system

Continuous time description

Let $x\left(t\right)$ be the state (temperature,position,pollution...). We assume that the physical process is described by the time-invariant state space model

Linear model

$$\frac{dx\left(t\right)}{dt} \stackrel{\triangle}{=} \dot{x}\left(t\right) = Ax\left(t\right) + Bu\left(t\right) \qquad \text{state model}$$

$$y\left(t\right) = Cx\left(t\right) + Du\left(t\right) \qquad \text{measurement model}$$

$$(1)$$

where A, B, C, D are assumed to be known matrices

Continuous time description

Assuming that x(kh) is known, the solution of the simple differential equation (1) is

$$x(t) = e^{A(t-kh)} \cdot x(kh) + \int_{kh}^{t} e^{A(t-\tau)} Bu(t) d\tau \qquad t > kh$$
 (2)

Note that $u\left(t\right)$ can be properly chosen so that $x\left(t\right)$ stay in a desired region

Example: "The step response"

Suppose x(0) = 0 and $x(t) \in \mathbb{R}$

The step response is defined as the solution of (1) when we apply as input

$$u\left(t\right) = \left\{ \begin{array}{ll} 0 & t \le 0 \\ 1 & t > 0 \end{array} \right.$$

The state may evolve to a stabilized condition after possible oscillations

- Wireless Sensor Network Control Systems (WSNCS)
- State space description of a control system
 - ► Linear model
 - Continuous time description
 - Discretization of state space model
 - ► Non-linear model
- Stability and asymptotic stability of a control system

Discretization of state space model

Assume $u\left(t\right)$ constant in the interval $kh \leq t \leq kh+h$

Then, (2) becomes

$$x(t) = e^{A(t-kh)} \cdot x(kh) + \int_{kh}^{t} e^{A(t-\tau)} d\tau Bu(t) =$$

$$= e^{A(t-kh)} \cdot x(kh) + \int_{0}^{t-kh} e^{A\tau} d\tau Bu(kh) = \phi_t x(kh) + \Gamma_t u(kh)$$

Let t = kh + h

$$x(kh+h) = \phi x(kh) + \Gamma u(kh)$$
(3)

where
$$\phi=e^{Ah}$$
 and $\Gamma=\int\limits_0^h e^{A au}d au B$

Discretization of state space model

There are many ways to compute e^{Ah} , for example

$$\phi = e^{Ah} = I + Ah + \frac{A^2h^2}{2} + \dots$$

Recursively from (3),

$$x(kh + 2h) = \phi x(kh + h) + \Gamma u(kh + h)$$

Therefore, the solution of (3), given $x\left(0\right)$ and $u\left(kh\right)$ $\forall k$, is

$$x(kh) = \phi^{k} x(0) + \sum_{j=0}^{k-1} \phi^{k-1-j} \Gamma u(jh)$$

- Wireless Sensor Network Control Systems (WSNCS)
- State space description of a control system
 - Linear model
 - Continuous time description
 - Discretization of state space model
 - ► Non-linear model
- Stability and asymptotic stability of a control system

Non-linear model of the state

Observation

Control decision is chosen as a function of the state

$$u\left(t\right) = f\left(x\left(t\right)\right)$$

Therefore, consider a state that evolves according to a non-linear law

$$\dot{x}\left(t\right) = a\left(x\left(t\right)\right)$$

$$y\left(t\right) = c\left(x\left(t\right)\right)$$

where a and c are be non-linear functions in general

What is the solution of that system?

Non-linear model of the state

Non-linear differential equation

$$x(t+kh) = x(t) + \int_{t}^{t+kh} a(x(\tau)) d\tau$$

• In general, the integral difficult to solve

Example: a non linear motion

Movement of an object (e.g., mosquito motion)

$$\begin{aligned} \dot{x}_1 &= v_1 \\ \dot{x}_2 &= v_2 \\ \dot{v}_1 &= -\omega v_2 \\ \dot{v}_2 &= \omega v_1 \\ \dot{\omega} &= 0 \end{aligned}$$

- \bullet The way ω is chosen gives the movement
- $\dot{v}_1 = -\omega v_2 \Rightarrow \text{Non-linear}$

- Wireless Sensor Network Control Systems (WSNCS)
- State space description of a control system
 - Linear model
 - Continuous time description
 - Discretization of state space model
 - ► Non-linear model
- Stability and asymptotic stability of a control system

Stability

Let us consider the discrete-time differential equation

$$x\left(kh+h\right) = g\left(x\left(kh\right)\right) \tag{4}$$

where g can be linear or non-linear

Definition

A specific solution of (4), $x^*\left(kh\right)$, is called stable, if $\forall \varepsilon>0$ $\exists \delta\left(\varepsilon\right)\colon \ \forall$ other solution $x\left(kh\right)$

$$\|x(0) - x^*(0)\| \le \delta \Rightarrow \|x(kh) - x^*(kh)\| \le \varepsilon \quad \forall k$$

Asymptotic stability

We consider the same equation as on the previous slide:

$$x\left(kh+h\right)=g\left(x\left(kh\right)\right)\tag{5}$$

where g can be linear or non-linear.

Definition

A specific solution $x^*(k)$ of (5) is called **asymptotically stable** if it is stable and if there is a $\delta>0$ such that for every other solution x(k) it holds that:

$$||x(0) - x^*(0)|| \le \delta \Rightarrow ||x(k) - x^*(k)|| \to 0 \quad as \ k \to \infty$$

Example 1

Assume that $x^*(kh)=0$ is a solution of (5). The figure shows the typical behaviour of other solutions in case $x^*(kh)$ is stable or asymptotically stable.

The linear case

Consider a linear case, that is

$$x(kh+h) = A \cdot x(kh) \tag{6}$$

where A known matrix $\in \mathbb{R}^{n \times n}$

Definition

A linear difference equation of the form (6) is (asymptotically) stable if the constant solution $x^*(k)=0$ is (asymptotically) stable.

How do we choose matrix A in order to have

- 1. stability?
- 2. asymptotic stability?

The linear case

The answer is given by the following theorem:

Theorem (Stability of linear difference equations)

Let $\rho(A) = \max\{|\lambda|, \lambda \text{ is an eigenvalue of } A\}.$

- (i) $x(kh+h) = A \cdot x(kh)$ is stable if and only $\rho(A) < 1$.
- (ii) $x(kh+h) = A \cdot x(kh)$ is asymptotically stable if and only $\rho(A) < 1$.

The linear case: intuition

1.
$$||x(0) - 0|| \le \delta \Rightarrow ||x(kh)|| \le \varepsilon$$
 ?
$$||x(kh)|| = ||A \cdot x((k-1)h)|| = \dots = ||A^k \cdot x(0)|| \le ||A^k|| \cdot ||x(0)|| \le ||A||^k \cdot \delta$$

To achieve stability, choose matrix A that does not grow with k

This is when the maximum absolute eigenvalue of A, $\rho\left(A\right)\leq1$

2.
$$\lim_{k \to \infty} \|x(kh)\| \le \lim_{k \to \infty} \|A\|^k \cdot \delta \to 0$$

In this case, $\rho(A) < 1$

- In scalar case, A is constant and $\rho(A) = A$
- ullet If the eigenvalues are larger than $1 \Rightarrow$ instability

Summary

- We have seen the basic aspects of control systems
 - Mathematical description of the state evolution
 - Discretization
 - Stability

Next lecture

• WSNCS, robustness to packet delays and losses