School of Computer Science and Communication, KTH

2D1260 Finite Element Methods: Written Examination

Tuesday 2007-01-16, kl 8-13

Coordinator: Johan Hoffman

Aids: none. Time: 5 hours.
Answers may be given in English or in Swedish. All answers should be explained and calculations shown unless stated otherwise. A correct answer without explanation can be left without points. Do not leave integrals or systems of equations unsolved unless explicitly allowed. Each of the 5 problems gives 10 p, resulting in a total of 50 p: 20 p for grade 3, 30 p for grade 4, and 40 p for grade 5.

Problem 1: Consider the problem:

$$
\begin{aligned}
-\Delta u(x) & =1 \quad x \in \Omega \subset \mathbb{R}^{2} \\
u(x) & =0 \quad x \in \partial \Omega
\end{aligned}
$$

with $x=\left(x_{1}, x_{2}\right)$ and Ω defined in Fig. 1.
(a) Formulate a finite element method (FEM) using a continuous piecewise linear approximation (cG(1)) defined on the mesh in Fig. 1.
(b) Compute the corresponding matrix and vector. You do not have to solve the resulting system of equations. Hint: Many element integrals are the same.

Figure 1: Triangulation (mesh) of domain Ω.

Note: The exam continues on the next page!

Problem 2: Consider the problem:

$$
\begin{aligned}
& -\Delta u(x)+\alpha u(x)=f(x), \quad x \in \Omega \subset \mathbb{R}^{3}, \\
& \beta \partial_{n} u(x)+\gamma u(x)=g(x), \quad x \in \Gamma,
\end{aligned}
$$

with $\partial_{n} u=\nabla u \cdot n, n$ the outward normal of the boundary Γ, and α, β, γ are non-negative constants.
State the Lax-Milgram theorem. Determine if the assumptions of the Lax-Milgram theorem are satisfied in the following cases:
(a) $\alpha=0, \beta=0, \gamma=1, g=0, f \in L_{2}(\Omega)$
(b) $\alpha=0, \beta=1, \gamma=0, g=0, f \in L_{2}(\Omega)$
(c) $\alpha=1, \beta=1, \gamma=0, g \in L_{2}(\Gamma), f=0$

For each case (a)-(c); derive a bilinear form $a: V \times V \rightarrow \mathbb{R}$ and a linear form $L: V \rightarrow \mathbb{R}$, and specify the Hilbert space V and the norm $\|\cdot\|_{V}$.
Hint: The following Trace Inequality may be useful: There exists a constant C, such that for all $v \in H^{1}(\Omega)$, we have that

$$
\|v\|_{L_{2}(\Gamma)} \leq C\|v\|_{H^{1}(\Omega)}
$$

Problem 3: Consider the problem:

$$
\begin{gathered}
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x) \quad x \in(0,1) \\
u(0)=u(1)=0
\end{gathered}
$$

The energy norm $\|\cdot\|_{E}$ for this problem is defined as $\|v\|_{E}=\left\|v^{\prime}\right\|_{a}$, with the weighted L_{2} norm

$$
\|w\|_{a}=\left(\int_{0}^{1} a(x) w^{2}(x) d x\right)^{1 / 2}
$$

(a) Formulate the $\mathrm{cG}(1)$ method for the problem (FEM with a continuous piecewise linear approximation on a subdivision \mathcal{T}_{h} of $(0,1)$).
(b) Prove that the $\mathrm{cG}(1)$ solution U is the best possible solution in the space $V_{h}=\left\{\right.$ continuous piecewise linear functions v on \mathcal{T}_{h} with $\left.v(0)=v(1)=0\right\}$, with respect to the norm $\|\cdot\|_{E}$.
(c) Prove the a priori error estimate: $\|u-U\|_{E} \leq C_{i}\left\|h u^{\prime \prime}\right\|_{a}$
(d) Prove the a posteriori error estimate: $\|u-U\|_{E} \leq C_{i}\|h R(U)\|_{a^{-1}}$

The residual $R(U)=f+\left(a U^{\prime}\right)^{\prime}$ is defined on each subinterval $I_{i}=\left(x_{i-1}, x_{i}\right)$, where x_{i} are the nodes, and C_{i} is an interpolation constant.

Note: The exam continues on the next page!

Problem 4: Consider the problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}(x, t)-\Delta u(x, t)=0, \quad \forall(x, t) \in \Omega \times(0, T], \\
& u(x, t)=0, \quad \forall x \in \partial \Omega, \\
& u(x, 0)=u_{0}(x) .
\end{aligned}
$$

Prove the following stability estimate:

$$
\frac{1}{2}\|u(T)\|^{2}+\int_{0}^{T}\|\nabla u\|^{2} d t=\frac{1}{2}\left\|u_{0}\right\|^{2}
$$

where $\|\cdot\|$ is the standard L_{2}-norm of functions defined on Ω.

Problem 5: Answer the following questions related to standard FEM algorithms (it may be helpful to illustrate your answers with pictures):
(a) What is a least squares stabilized finite element method?
(b) Describe how a mapping to a reference element is used to compute element integrals, in the case of triangular elements (you do not have to carry out any computations, just illustrate the idea and function of the algorithm).
(c) What is a hanging node?
(d) Describe the steps in a red-green mesh refinement algorithm for triangles.
(e) What is the empty circle property of a Delaunay triangulation?

Good Luck!
Johan

Solutions to exam

Problem 1: See pages 360-363 in the CDE book.
(a) Find $U \in V_{h}$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla U(x) \cdot \nabla v(x) d x=\int_{\Omega} v(x) d x \quad \forall v \in V_{h} \tag{1}
\end{equation*}
$$

(b) $V_{h}=\left\{\right.$ continuous piecewise linear functions v on \mathcal{T}_{h} such that $\mathrm{v}=0$ on $\left.\partial \Omega\right\}$, with \mathcal{T}_{h} the triangulation of Ω in Fig. 2, with $h=1$. There are 4 degrees of freedom; the nodes $N_{1}, N_{2}, N_{3}, N_{4}$.

A basis for V_{h} is $\left\{\phi_{i}\right\}_{i=1}^{4}$; with $\phi_{i} \in V_{h}$, and $\phi_{i}\left(N_{j}\right)=1$ if $j=i$ and $\phi_{i}(N j)=0$ if $j \neq i$. Set $U(x)=\sum_{i=1}^{4} \xi_{i} \phi_{i}(x)$, then (1) is equivalent to $A \xi=b$ where A is a 4×4 matrix, and b is a 4 -vector, defined by

$$
A_{i j}=\int_{\Omega} \nabla \phi_{i}(x) \cdot \nabla \phi_{j}(x) d x, \quad b_{i}=\int_{\Omega} \phi_{i}(x) d x
$$

A_{11} involves integration over elements $e_{1}, e_{2}, e_{3}, e_{5}, e_{6}, e_{7}$, where e_{1}, e_{7} are of the type in Fig. 15.8 at page 362 in the CDE book, with integral $\int_{e_{1}} \nabla \phi_{1} \cdot \nabla \phi_{1} d x=1$, and $e_{2}, e_{3}, e_{5}, e_{6}$ are of the type in Fig.15.9, with integral $\int_{e_{2}} \nabla \phi_{1} \cdot \nabla \phi_{1} d x=1 / 2$. Thus

$$
A_{11}=\int_{e_{1}}+\int_{e_{2}}+\int_{e_{3}}+\int_{e_{5}}+\int_{e_{6}}+\int_{e_{7}}=1+1 / 2+1 / 2+1 / 2+1 / 2+1=4
$$

A_{22} involves integration over elements $e_{3}, e_{4}, e_{7}, e_{8}, e_{9}$, where e_{3}, e_{4}, e_{9} are of the type in Fig.15.8 at page 362 in the CDE book, with integral $\int_{e_{3}} \nabla \phi_{2} \cdot \nabla \phi_{2} d x=1$, and e_{7}, e_{8} are of the type in Fig.15.9, with integral $\int_{e_{7}} \nabla \phi_{2} \cdot \nabla \phi_{2} d x=1 / 2$. Thus

$$
A_{22}=\int_{e_{3}}+\int_{e_{4}}+\int_{e_{7}}+\int_{e_{8}}+\int_{e_{9}}=1+1+1 / 2+1 / 2+1=4
$$

We further have that $A_{33}=A_{22}$ and $A_{44}=A_{11}$.
A_{12} involves integration over elements e_{3}, e_{7}, which are of the type in Fig.15.10 at page 363 in the CDE book, with integral $\int_{e_{3}} \nabla \phi_{1} \cdot \nabla \phi_{2} d x=-1 / 2$. Thus

$$
A_{12}=\int_{e_{3}}+\int_{e_{7}}=-1 / 2-1 / 2=-1
$$

A_{13} involves integration over elements e_{6}, e_{7}, which are of the type in Fig.15.10 at page 363 in the CDE book, with integral $\int_{e_{6}} \nabla \phi_{1} \cdot \nabla \phi_{3} d x=-1 / 2$. Thus

$$
A_{13}=\int_{e_{6}}+\int_{e_{7}}=-1 / 2-1 / 2=-1
$$

$A_{14}=0$ since there is no overlap of ϕ_{1} and ϕ_{4}.
$A_{21}=A_{12}$
$A_{23}=0$ by Problem 15.21 in the book.
A_{24} involves integration over elements e_{8}, e_{9}, which are of the type in Fig.15.10 at page 363 in the CDE book, with integral $\int_{e_{8}} \nabla \phi_{2} \cdot \nabla \phi_{4} d x=-1 / 2$. Thus

$$
A_{24}=\int_{e_{8}}+\int_{e_{9}}=-1 / 2-1 / 2=-1
$$

$A_{31}=A_{13}=-1$
$A_{32}=A_{23}=0$
A_{34} involves integration over elements e_{8}, e_{12}, which are of the type in Fig.15.10 at page 363 in the CDE book, with integral $\int_{e_{8}} \nabla \phi_{3} \cdot \nabla \phi_{4} d x=-1 / 2$. Thus

$$
A_{34}=\int_{e_{8}}+\int_{e_{12}}=-1 / 2-1 / 2=-1
$$

$A_{41}=A_{14}=0$
$A_{42}=A_{24}=-1$
$A_{43}=A_{34}=-1$

$$
b_{1}=\int_{\Omega} \phi_{1}(x) d x=\text { volume under } \phi_{1}=6 \times \frac{\frac{h^{2}}{2} \times 1}{3}=h^{2}=1, \text { with } b_{4}=b_{1},
$$

and $b_{2}=\int_{\Omega} \phi_{1}(x) d x=$ volume under $\phi_{2}=5 \times \frac{\frac{h^{2}}{2} \times 1}{3}=\frac{5}{6} h^{2}=\frac{5}{6}$, with $b_{3}=b_{2}$.

Figure 2: Triangulation (mesh) of domain Ω.

Problem 2: Theorem 21.1 in the CDE book.
(a) Section 21.4.3 in CDE book. Use the Poincare-Friedrich inequality (Theorem 21.4) to prove that $a(\cdot, \cdot)$ is elliptic. Continuity of $a(\cdot, \cdot)$ follows by

$$
\begin{aligned}
|a(v, w)|= & \int_{\Omega} \nabla v \cdot \nabla w d x \leq\|\nabla v\|\|\nabla w\| \\
& \leq\left(\|\nabla v\|^{2}+\|v\|^{2}\right)^{1 / 2}\left(\|\nabla w\|^{2}+\|w\|^{2}\right)^{1 / 2}=\|v\|_{V}\|w\|_{V}
\end{aligned}
$$

(b) The assumptions of the Lax-Milgram theorem are not satisfied: With $V=$ $H^{1}(\Omega)$ we can prove that $a(\cdot, \cdot)$ and $L(\cdot)$ are continuous, but we cannot prove that $a(\cdot, \cdot)$ is elliptic; we cannot bound the L_{2}-norm of the solution using PoincareFriedrich inequality (Theorem 21.4) since we do not know anything about the solution on the boundary (we have only Neumann boundary conditions).
(c) Section 21.4.4 in the CDE book. Continuity of $a(\cdot, \cdot)$ follows by

$$
\begin{aligned}
|a(v, w)|= & \int_{\Omega}(\nabla v \cdot \nabla w+v w) d x \leq\|\nabla v\|\|\nabla w\|+\|v\|\|w\| \\
& =(\|\nabla v\|,\|v\|) \cdot(\|\nabla w\|,\|w\|) \leq\|v\|_{V}\|w\|_{V}
\end{aligned}
$$

and continuity of $L(\cdot)$ follows by

$$
|L(v)|=\int_{\Gamma} g v d s \leq\|g\|_{L_{2}(\Gamma)}\|v\|_{L_{2}(\Gamma)} \leq\|g\|_{L_{2}(\Gamma)} C\|v\|_{H^{1}(\Omega)},
$$

so that $\kappa_{3}=C\|g\|_{L_{2}(\Gamma)}$.

Problem 3:

(a) Find $U \in V_{h}$ such that $\int_{0}^{1} a U^{\prime} v^{\prime} d x=\int_{0}^{1} f v d x$ for all $v \in V_{h}$
(b) Section 8.2.1
(c) Section 8.2.1
(d) Section 8.2.2

Problem 4:

Section 16.3

Problem 5: See section 18.3 in the CDE book, and the lecture notes from lecture 2, slides avaliable at:
http://www.csc.kth.se/utbildning/kth/kurser/2D1260/fem06/

