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Basic Idea: Test the attributes (features) sequentially
= Ask questions about the target/status sequentially

(the next question depends on the answer to the
current)

Useful also (but not limited to) when nominal data are involved,
e.g. in medical diagnosis, credit risk analysis etc.

Example: building a concept of whether someone will play
tennis.
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The whole analysis strategy can be seen as a tree.

Temp

Sky

Wind

Sunny Cloudy Rainy

Windy Calm Warm Cold

No

NoYesYesNo

Each leaf node bears a category label, and the test pattern is
assigned the category of the leaf node reached.
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What does the tree encode?

(Sunny ∧ Calm) ∨ (Cloudy ∧Warm)

Logical expressions of the conjunction of decisions along the
path.

Arbitrary boolean functions can be represented!
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Training a decision tree given a set of labeled training data.

How to grow/construct the tree automatically?

1 Choose a test, and split the input data into subsets
2 Terminate: call branches with a unique class labels leaves

(no need for further quesitons)
3 Grow: recursively extend other branches

(with subsets bearing mixtures of labels)

Greedy approach to choose a test:
Choose the attribute which tells us most about the answer

In sum, we need to find good questions to ask.
(more than one attribute could be involved in one question)
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How to measure information gain?

The Shannon information content of an outcome is:

log2
1
pi

(pi : probability for event i)

The Entropy — measure of uncertainty (unpredictability)

Entropy =
∑

i

−pi log2 pi

is a sensible measure of expected information content.
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Example: tossing a coin
phead = 0.5; ptail = 0.5

Entropy =
∑

i

−pi log2 pi =

= −0.5 log2 0.5− 0.5 log2 0.5 = −0.5 log2 0.5︸ ︷︷ ︸
−1

−0.5 log2 0.5︸ ︷︷ ︸
−1

=

= 1

The result of a coin-toss has 1 bit of information
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Example: rolling a die
p1 = 1

6 ; p2 = 1
6 ; . . . p6 = 1

6

Entropy =
∑

i

−pi log2 pi =

= 6× (−1
6

log2
1
6
) =

= − log2
1
6
= log2 6 ≈ 2.58

The result of a die-roll has 2.58 bit of information
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Example: rolling a fake die
p1 = 0.1; . . . p5 = 0.1; p6 = 0.5

Entropy =
∑

i

−pi log2 pi =

= −5 · 0.1 log2 0.1− 0.5 log2 0.5 =

≈ 2.16

A real die is more unpredictable (2.58 bit) than a fake (2.16 bit)
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Unpredictability of a dataset (think of a subset at a node)

100 examples, 42 positive

− 58
100

log2
58

100
− 42

100
log2

42
100

= 0.981

100 examples, 3 positive

− 97
100

log2
97

100
− 3

100
log2

3
100

= 0.194
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Back to the decision trees

Smart idea:
Ask about the attribute which maximizes the expected
reduction of the entropy.

Information gain
Assume that we ask about attribute A for a dataset S

Gain = Ent(S)︸ ︷︷ ︸
before

−
∑

v∈Values(A)

|Sv |
|S|︸ ︷︷ ︸

weighted
sum

Ent(Sv )︸ ︷︷ ︸
after
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Gini impurity: Another definition of predictability (impurity).

∑
i

pi(1− pi) = 1−
∑

i

p2
i

(pi : probability for event i)

The expected error rate at a node, N, if the category label is
randomly selected from the class distribution present at N.

Similar to the entropy but more strongly peaked at equal
probabilities.
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Overfitting

When the learned models are overly specialized for the training
samples.

Good results on training data, but generalizes poorly.
When does this occur?

Non-representative sample
Noisy examples
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What can be done about it?
Choose a simpler model and accept some errors for the
training examples
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Which hypothesis should be preferred when several are
compatible with the data?

Occam’s principle (Occam’s razor)

William from Ockham, Theologian and Philosopher
(1288–1348)

”Entities should not be multiplied beyond necessity”

The simplest explanation compatible with data
tends to be the right one
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Why prefer short hypotheses?

Philosophical argument:
It is more likely that the reality from which the examples come
have a simple generating mechanism.

Pragmatic argument:
Simple hypotheses tend to generalize better.
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Separate the available data into two sets of examples
Training set T : to form the learned model
Validation set V : to evaluate the accuracy of this model

The motivations:
The training may be misled by random errors, but the
validation set is unlikely to exhibit the same random
fluctuations
The validation set to provide a safety check against
overfitting the spurious characteristics of the training set

(V need be large enough to provide statistically meaningful
instances)
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Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:
Evaluate impact on validation set of pruning each possible
node (plus those below it)
Greedily remove the one that most improves validation set
accuracy

Produces smallest version of most accurate subtree
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Possible ways of improving/extending the decision trees

Avoid overfitting
Stop growing when data split not statistically significant
Grow full tree, then post-prune (e.g. Reduced error pruning)

A collection of trees (Ensemble learning: in Lecture 10)
Bootstrap aggregating (bagging)
Decision Forests
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