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e Function approximation

Lecture 6: Regression Introduction e Linear Regression
— Least squares
— RANSAC
Atsuto Maki
September, 2014 * KNN Regression
DD2431, CSC/KTH Regression => Real-valued output
Function approximation Linear Regression

e How do we fit this dataset D?
D= {(xl’y1)7(x2’y2)7°"’(xN’yN)}

of N pairs of inputs xi and targets yi ER.
D can be measurements in an experiment.

Linear regression tries to estimate the function fand
1 predict the output by

d
f(x)= Ewixi =w'x
i=0

Income
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How to measure the error:
— e ——— * Tosee how well f(x) approximates f(x),

10 12 14 16 18 20 22

e Task of regression: Ve of Ecaton square error is used: (f(x)- f(x))’

to predict target associated to any arbitrary input . 1Y% -
* Mean Square Error: E, (f)= —E(f(xn) - yn)2
N n=l1

Note: Here we have a single input feature, but inputs to (in-sample)
regression tasks are often vectors x of multiple input features.




Minimizing in-sample MSE

Ein can be expressed as:

2

N
E (w)= %Z(WT)C" -y) = %HXW - YH

where T
X Vi
X= R Y= :

Ay Yy

We want to compute the parameters w.

The linear regression algorithm

Construct the matrix X and the vector y from the data set

(x1,91), ", (XN, yn) as follows

-
S %
=
S Y2
X= : ) y =
-
XN YN
N - >4
input data matrix target vector

Compute the pseudo-inverse X = (X"X) X"

Return w = Xy

Sales

Residual sum of squares (RSS)

The sum of squared errors is a convex function of w
E,(w)=|xw-Y|
mn

The gradient with respect to the weights is:

ain"” (w)=2X" (Xw-Y)

The weight vector that sets the gradient to zero
minimizes the errors . r
X Xw=XY

W= (XTX)_I X'y

Examples of least squares fit
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Figures from An Introduction to Statistical Learning (G. James et al.)



Examples of plots of RSS
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Figures from An Introduction to Statistical Learning (G. James et al.)

k-NN Regression (non-parametric)

* Similar to the k-NN classifier

* Toregress Y for a given value of X, consider k
closest points to X in training data and take
the average of the responses.

1
f==3,
kx,EN,«
* Larger values of K provide a smoother and less
variable fit (lower variance!)

Least squares line

x
x

* Red: the true relationship f(x) = 2 + 3x, the population regression line

* Blue: the least squares line, estimate based on the observed data

* Light blue (in right): least squares lines, each based on a separate
random set of observations
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Example plots of f(x) with KNN regression
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Part Il: we will visit Ridge regression

Similar to least squares but minimizes different quantity:
e Linear regression + regularization

d
— Ridge regression RSS + )LE w?
— The Lasso (a more recent alternative) i=1

The second term is called shrinkage penalty

* Shrinkage penalty: small when wi are close to zero

* The parameter A : controls the relative impact of the two terms,
the selection is critical!

Ridge regression coefficients Ridge Regression Bias/Variance
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As ; increases, the standardized coefficients shrinks
towards zero (but not exactly forced to zero).

Figures from An Introduction to Statistical Learning (G. James et al.) Figures from An Introduction to Statistical Learning (G. James et al.)

Increase \ decreases variance while increasing bias



The Lasso
(Least Absolute Shrinkage and Selection Operator)

Similar to ridge regression but with slightly different term:

d
RSS+ 2. |w,|
i-1
The shrinkage penalty is now replaced by /i norm

* Ridge regression: it includes all features in the final model,
making it harder to interpret — its drawback

* The lasso could be proven mathematically that some coefficients
end up being set to exactly zero
— variable selection

— vyielding sparse model

The variable selection property

The regression coefficient estimates: the first point
where an ellipse contacts the constraint region
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The solid blue areas are the constraint regions for
Left: the Lasso Right: Ridge regression
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Standardized Coefficients
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Comparison of estimated coefficients
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