

Lecture 6: Regression Introduction

Atsuto Maki September, 2014

DD2431, CSC/KTH

Function approximation

• How do we fit this dataset *D*?

$$D = \left\{ (x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N) \right\}_{\frac{g}{g}}$$
 of N pairs of inputs x_i and targets $y_i \in R$.

 D can be measurements in an experiment.

• Task of regression:

to predict target associated to any arbitrary input

Note: Here we have a single input feature, but inputs to regression tasks are often vectors **x** of multiple input features.

Part I: we will visit

- Function approximation
- Linear Regression
 - Least squares
 - RANSAC
- KNN Regression

Regression => Real-valued output

Linear Regression

Linear regression tries to estimate the function f and predict the output by

$$\hat{f}(x) = \sum_{i=0}^{d} w_i x_i = w^T x$$

How to measure the error:

- To see how well $\hat{f}(x)$ approximates f(x), square error is used: $(\hat{f}(x) f(x))^2$
- Mean Square Error: $E_{in}(\hat{f}) = \frac{1}{N} \sum_{n=1}^{N} (\hat{f}(x_n) y_n)^2$ (in-sample)

Minimizing in-sample MSE

 E_{in} can be expressed as:

$$E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} (w^{T} x_{n} - y_{n})^{2} = \frac{1}{N} ||Xw - Y||^{2}$$

where

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

We want to compute the parameters w.

The linear regression algorithm

Construct the matrix X and the vector \mathbf{y} from the data set $(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$ as follows

Compute the pseudo-inverse $X^\dagger = (X^{\scriptscriptstyle extsf{T}} X)^{-1} X^{\scriptscriptstyle extsf{T}}$

Return $\mathbf{w} = X^{\dagger} \mathbf{y}$

Residual sum of squares (RSS)

The sum of squared errors is a convex function of w

$$E_{in}(w) = \left\| Xw - Y \right\|^2$$

The gradient with respect to the weights is:

$$\frac{\partial}{\partial w} E_{in}(w) = 2X^T (Xw - Y)$$

The weight vector that sets the gradient to zero minimizes the errors $X^T X w = X^T Y$

AW = X I $W = \left(X^T X\right)^{-1} X^T Y$

Examples of least squares fit

Examples of plots of RSS

Figures from An Introduction to Statistical Learning (G. James et al.)

k-NN Regression (non-parametric)

- Similar to the k-NN classifier
- To regress Y for a given value of X, consider k closest points to X in training data and take the average of the responses.

$$f(x) = \frac{1}{k} \sum_{x_i \in N_i} y_i$$

• Larger values of K provide a smoother and less variable fit (lower variance!)

Least squares line

- Red: the true relationship f(x) = 2 + 3x, the population regression line
- Blue: the least squares line, estimate based on the observed data
- Light blue (in right): least squares lines, each based on a separate random set of observations

Figures from An Introduction to Statistical Learning (G. James et al.)

Example plots of $\hat{f}(x)$ with KNN regression

Part II: we will visit

- Linear regression + regularization
 - Ridge regression
 - The Lasso (a more recent alternative)

Ridge regression coefficients

As λ increases, the standardized coefficients shrinks towards zero (but not exactly forced to zero).

Figures from An Introduction to Statistical Learning (G. James et al.)

Ridge regression

Similar to least squares but minimizes different quantity:

$$RSS + \lambda \sum_{i=1}^{d} w_i^2$$

The second term is called shrinkage penalty

- Shrinkage penalty: small when wi are close to zero
- The parameter λ: controls the relative impact of the two terms, the selection is critical!

Ridge Regression Bias/Variance

Increase λ decreases variance while increasing bias

The Lasso

(Least Absolute Shrinkage and Selection Operator)

Similar to ridge regression but with slightly different term:

$$RSS + \lambda \sum_{i=1}^{d} \left| w_i \right|$$

The shrinkage penalty is now replaced by l_1 norm

- Ridge regression: it includes all features in the final model, making it harder to interpret – its drawback
- The lasso could be proven mathematically that some coefficients end up being set to exactly zero
 - variable selection
 - yielding sparse model

The variable selection property

The regression coefficient estimates: the first point where an ellipse contacts the constraint region

The solid blue areas are the constraint regions for Left: the Lasso Right: Ridge regression

Figures from An Introduction to Statistical Learning (G. James et al.)

Comparison of estimated coefficients

Figures from An Introduction to Statistical Learning (G. James et al.)