
Solutions to Exam in EL2745 Principles of Wireless Sensor Networks, March 14, 2013

1. BPSK modulation over fading channels

(a) See Lectures 4 and 5

(b) The general form for BPSK follows the equation:

sn(t) =

√
2Eb

Tb
cos(2π f t +π(1−n)), n = 0,1.

This yields two phases 0 and π. Specifically, binary data is often con-
veyed via the following signals:

s0(t) =

√
2Eb

Tb
cos(2π f t +π) =−

√
2Eb

Tb
cos(2π f t)

s1(t) =

√
2Eb

Tb
cos(2π f t)

Hence, the signal-space can be represented by

φ(t) =

√
2
Tb

cos(2π f t)

where 1 is represented by
√

Ebφ(t) and 0 is represented by−
√

Ebφ(t).
Now we comment on the channel model. The transmitted signal that
gets corrupted by noise n typically refereed as added white Gausssian
noise. It is called white since the spectrum of the noise is flat for all
frequencies. Moreover, the values of the noise n follows a zero mean
gaussian probability distribution function with variance σ2 = N0/2 .
So for above model, the received signal take the form

y(t) = s0(t)+n
y(t) = s1(t)+n

The conditional probability distribution function (PDF) of y for the
two cases are:

f (y|s0) =
1√
πN0

e−
(y+
√

Eb)
2

N0

f (y|s1) =
1√
πN0

e−
(y−
√

Eb)
2

N0

Assuming that s0 and s1 are equally probable, the threshold 0 forms
the optimal decision boundary. Therefore, if the received signal y is
greater than 0, then the receiver assumes s1 was transmitted and vise
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versa. With this threshold the probability of error given s1 is transmit-
ted is

p(e|s1) =
1√
πN0

∫ 0

−∞

e−
(y−
√

Eb)
2

N0 dy =
1√
π

∫
∞√

Eb
N0

e−z2
dz

= Q
(√

2Eb

N0

)
=

1
2

erfc
(√

Eb

N0

)
,

where erfc(x) = 2√
π

∫
∞

x e−x2
dx is the complementary error function.

Similarly, the probability of error given s0 is transmitted is

p(e|s0) =
1√
πN0

∫
∞

0
e−

(y+
√

Eb)
2

N0 dy =
1√
π

∫
∞√

Eb
N0

e−z2
dz

= Q
(√

2Eb

N0

)
=

1
2

erfc
(√

Eb

N0

)
.

Hence, the total probability of error is

Pb = p(s1)p(e|s1)+ p(s0)p(e|s0) =
1
2

erfc
(√

Eb

N0

)
.

Note that the probabilities p(s0) and p(s1) are equally likely.

(c) Let P(γ) be the probability of error for a digital modulation as a func-
tion of Eb/N0, γ, in the Gaussian channel. Let the channel amplitude
be denoted by the random variable α, and let the average SNR normal-
ized per bit be denoted by γ? = E[α2]Eb/N0. Then to obtain P(e) for a
Rayleigh fading channel P(γ) must be integrated over the probability
that a given γ is encountered:

P(e) =
∫

∞

0
P(γ)p(γ)dγ,

For Rayleigh fading,

p(γ) =
1
γ?

e−γ/γ?.

In the case of coherent BPSK, the integration can actually be computed
yielding

P(e) =
1
2

[
1−

√
γ?

1+ γ?

]
.

At high SNR like OQPSK systems, the approximation (1+ x)1/2 ∼
1+ x/2 can be used, giving

P(e)∼ 1
4γ?

compared with P(e) = Q(
√

2γ?) for the Gaussian channels.
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Figure 1: 2-state Markov chain describing to Gilbert Elliott model.

(d) By the Stirling approximation we have

f (θ)= f (µ)+(θ−µ)
f (µ+h)− f (µ−h)

2h
+

1
2
(θ−µ)2 f (µ+h)−2 f (µ)+ f (µ−h)

h2 +· · · ,

then, taking the expectation we have

E f (θ)∼ f (µ)+
1
2

f (µ+h)−2 f (µ)+ f (µ−h)
h2 σ

2.

It has been shown that h=
√

3 yields a good result. So we obtain Q(γ).
Given a log-normal random variable z with mean µz and variance σ2

z ,
we calculate the average probability of error as the average of Q(γ).
Namely,

E{Q(z)} ∼ 2
3

Q(µz)+
1
6

Q(µz +
√

3σz)+
1
6

Q(µz−
√

3σz).

2. Energy harvesting in WSNs

(b) We form a GE model as illustrated in Fig. 1.

(b) Steady state probabilities are derived via

πG +πB = 1,
πG = (1− k)πG + rπB

which yields
πG =

r
k+ r

,

and
πB = 1− r

k+ r
=

k
k+ r

.

(c) steady state probability of energy generation is given by

pg = pπG +qπB = 0.9
0.2

0.1+0.2
+0.3

0.1
0.1+0.2

= 0.7
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(d) According to its definition, the harvesting burst is a random variable with
the geometric distribution. We have

p(burst of length t) = k(1− k)t−1 = 0.1(0.9)t−1

The mean value of harvesting burst then is given by

AHB = ∑
t≥1

tk(1− k)t−1 =
1
k
= 10 .

1. Neighbor discovery in WSNs

(a) The probability that node i successfully discovers a given neighbor in
a given slot is given by

ps = p(1− p)n−1

(b) The optimal transmission probability p? is achieved by setting the
derivative of the concave function ps to 0. That is

p′s = 0⇔ (1− p)n−1− p(n−1)(1− p)n−2 = 0

and hence, p? = 1/n. Substituting p? in ps we obtain

ps =
1
n

(
1− 1

n

)n−1

≈ 1
ne

.

(c) Let E[W0] denotes the mean time until discovering the first neighbor.
It is easy to verify that W0 is a geometric random variable with the
parameter nps, namely

E[W0] =
∞

∑
i=0

inps(1−nps)
i−1 =

1
nps

.

Now let E[W1] be the mean time of the first frame i.e, the time between
when first neighbor discovered until the slot that second neighbor is
discovered. Here W1 is a geometric random variable with parameter
(n−1)ps. So we calculate E[W1] as the following

E[W1] =
∞

∑
i=0

i(n−1)ps(1− (n−1)ps)
i−1 =

1
(n−1)ps

.

Following the same line of reasoning, we conclude that the average
duration of frame i is equal to

E[Wi] =
1

(n− i)ps
.
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(d) The mean time for discovering n neighbors is a summation of E[Wi]’s.
Namely,

E[W ] =
N−1

∑
i=0

E[Wi] =
N−1

∑
i=0

1
(N− i)ps

=
1
ps

N

∑
i=1

1
i
.

Considering that N = 4 and the slot time is 81 ms, we have

ps =
1
4

(
1− 1

4

)3

=
33

44

E[t] = 81 ·E[W ] = 81
1
ps

4

∑
i=1

1
i

= 81 ·4
(

4
3

)3(
1+

1
2
+

1
3
+

1
4

)
= 1.6 s .

2. Distributed detection/estimation

(a) From the problem, we can make the simple transformation

ỹk = x̃+ ñk ,

where ỹk = yk− 2, x̃ = x− 1 and ñk = nk− 1. It follows that x̃ is in
the interval [-1,1], while ñk is uniformly distributed in interval [-1,1].
Thus, we find that

Pr(mk = 1) =
∫ 1

−x̃
p(ñ)dñ =

1
2
(1+ x̃)

Pr(mk = 0) =
∫ −x̃

−1
p(ñ)dñ =

1
2
(1− x̃) .

Then

E(mk) =
1
2
(1+ x̃) (1)

E(mk−E(mk))
2 =

1
4
(1− x̃2) (2)

(b) From Eq.(2), we obtain

E(mk−E(mk))
2 =

1
4
(1− x̃2)≤ 1

4

(c) From Eqs.(1) and (2) and the given fusion function, we have

E( ˆ̃x) =
2
N

N

∑
k=1

E(mk)−1

=
2
N

N

∑
k=1

1
2
(1+ x̃)−1 = x̃ ,
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whereas x̂ = ˆ̃x+1 and

E( ˆ̃x− x̃)2 = E

((
2
N

N

∑
k=1

mk−1

)
− x̃

)2

=
4

N2 E

(
N

∑
k=1

mk−
N

∑
k=1

1
2
(1+ x̃)

)2

=
4

N2 E

(
N

∑
k=1

(mk−E(mk))

)2

. (3)

Since mk’s are independent, we calculate Eq.(3) as

4
N2 E

(
N

∑
k=1

(mk−E(mk))

)2

=
4

N2

N

∑
k=1

E(mk−E(mk))
2

=
1
N
(1− x̃)2 ≤ 1

N

(d) Based on the results above, we need more than 1/ε nodes to satisfy
the variance bound.

3. Networked Control System

(a) Since τ< h, at most two controllers samples need be applied during the
k-th sampling period: u((k− 1)h) and u(kh). The dynamical system
can be rewritten as

ẋ(t) = Ax(t)+Bu(t), t ∈ [kh+ τ,(k+1)h+ τ)

y(t) =Cx(t) ,

u(t+) =−x(t− τ), t ∈ {kh+ τ, k = 0,1,2, . . .}

where u(t+) is a piecewise continuous and changes values only at kh+
τ. By sampling the system with period h, we obtain

x((k+1)h) = Φx(kh)+Γ0(τ)u(kh)+Γ1(τ)u((k−1)h)
y(hk) =Cx(kh) ,

where

Φ = eAh = eah = 1 ,

Γ0(τ) =
∫ h−τ

0
eAsBds = h− τ ,

Γ1(τ) =
∫ h

h−τ

eAsBds = τ .

given that A = 0,B = 1,C = 1.
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(b) Time Division Multiple Access (TDMA) MACs typically introduce a
constant delay. The IEEE 802.15.4 MAC in the slotted (or beacon en-
abled) modality supports TDMA in the contention free period (CFP).

(c) Let z(kh) = [xT (kh),uT ((k− 1)h)]T be the augmented state vector,
then the augmented closed loop system is

z((k+1)h) = Φ̃z(kh) ,

where

Φ̃ =

[
Φ−Γ0(τ) Γ1(τ)
−1 0

]
.

Using the results obtained in (a), we can obtain

Φ̃ =

[
1− (h− τ) τ

−1 0

]
=

[
τ τ

−1 0

]
,

where we used that h = 1.

(d) The characteristic polynomial of this matrix is

λ
2− τλ+ τ =

(
λ− τ

2

)2
+ τ− τ2

4

Thus

λ =
τ

2
±
√

τ− τ2

4
,

whose absolute values are
√

τ that means the system is stable when
τ < h = 1.

(e) We use the following result to study the stability of the system:

Theorem 1 Consider the system given in Fig. 2. Suppose that the
closed-loop system without packet losses is stable. Then

• if the open-loop system is marginally stable, then the system is
exponentially stable for all 0 < r ≤ 1.
• if the open-loop system is unstable, then the system is exponen-

tially stable for all

1
1− γ1/γ2

< r ≤ 1 ,

where γ1 = log[λ2
max(Φ−Γ)], γ2 = log[λ2

max(Φ)]

Here we have

Φ = eAh = 1 ,

Γ =
∫ h

0
eAsBds = h = 1 .
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Thus, γ1 =−∞ that implies the system is stable for all packet loss rate.
These conditions are only sufficient. If they are not satisfied, then one
has to look for other theoretical results that ensure stability in the pres-
ence of packet losses. Another option is to tune the protocol parame-
ters and the controller parameters (if they can be tuned). One example
of protocol parameter is the duration of the time slots in a TDMA
protocol or the number of retransmissions in a CSMA protocol. One
example of control parameter is the constant K in a state feedback
control low u(kh) =−Kx(kh).
A typical MAC category introducing packet losses is CSMA or AL-
HOA. The reason of packet losses can be the collision at the receiver
of packets transmitted by different senders at the same time.
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