IK2554 Practical Voice Over IP (VoIP): SIP and related protocols
Fall 2010, Period 1

Lecture notes of G. Q. Maguire Jr.

For use in conjunction with:

Module 1: Introduction

Welcome to the course!

Staff Associated with the Course

Instructor (Kursansvarig)

Goals, Scope and Method

Goals of the Course

Scope and Method

Learning Outcomes

Prerequisites

Contents

Topics

Examination requirements

Grades: A..F (ECTS grades)

Project

Assignment Registration and Report

Literature

Observe proper academic ethics and properly cite your sources!

Ethics, Rights, and Responsibilities
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTP and H.323 for IP Telephony</td>
<td>103</td>
</tr>
<tr>
<td>RTP, RTCP, and RTSP</td>
<td>104</td>
</tr>
<tr>
<td>Real-Time Delivery</td>
<td>105</td>
</tr>
<tr>
<td>Packet delay</td>
<td>106</td>
</tr>
<tr>
<td>Dealing with Delay jitter</td>
<td>107</td>
</tr>
<tr>
<td>Delay and delay variance (jitter)</td>
<td>108</td>
</tr>
<tr>
<td>Perceived voice quality</td>
<td>109</td>
</tr>
<tr>
<td>Playout delay</td>
<td>110</td>
</tr>
<tr>
<td>When to play</td>
<td>111</td>
</tr>
<tr>
<td>Retransmission, Loss, and Recovery</td>
<td>112</td>
</tr>
<tr>
<td>Patterns of Loss</td>
<td>113</td>
</tr>
<tr>
<td>Loss concealment</td>
<td>114</td>
</tr>
<tr>
<td>VoIP need not be “toll quality”</td>
<td>115</td>
</tr>
<tr>
<td>RTP: Real-Time Transport Protocol</td>
<td>116</td>
</tr>
<tr>
<td>Payload types</td>
<td>117</td>
</tr>
<tr>
<td>Audio Encodings</td>
<td>118</td>
</tr>
<tr>
<td>Other important types of data</td>
<td>119</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>SIP Via</td>
<td>161</td>
</tr>
<tr>
<td>Dialog (Call leg) Information</td>
<td>162</td>
</tr>
<tr>
<td>SIP CSeq</td>
<td>163</td>
</tr>
<tr>
<td>SIP Contact</td>
<td>164</td>
</tr>
<tr>
<td>SIP Content Type and Length</td>
<td>165</td>
</tr>
<tr>
<td>SIP Max-Forwards</td>
<td>166</td>
</tr>
<tr>
<td>Other header fields</td>
<td>167</td>
</tr>
<tr>
<td>Several types of SIP Servers</td>
<td>168</td>
</tr>
<tr>
<td>SIP Trapezoid</td>
<td>169</td>
</tr>
<tr>
<td>SIP Call Setup</td>
<td>170</td>
</tr>
<tr>
<td>SIP Call Setup Attempt</td>
<td>171</td>
</tr>
<tr>
<td>SIP Call Setup Attempt</td>
<td>172</td>
</tr>
<tr>
<td>SIP Presence</td>
<td>173</td>
</tr>
<tr>
<td>SIP B not Present</td>
<td>174</td>
</tr>
<tr>
<td>SIP Registration Example</td>
<td>175</td>
</tr>
<tr>
<td>Purpose of registration</td>
<td>176</td>
</tr>
<tr>
<td>REGISTERing</td>
<td>177</td>
</tr>
</tbody>
</table>
SIP Call Setup Attempt .. 178
SIP Session Termination using BYE ... 179
SIP Session Termination using CANCEL .. 180
CANCEL and OPTIONS .. 181
Unsuccessful final responses are hop-by-hop ... 182
Authentication ... 183
SIP Method Extensions in other RFCs ... 184
SIP Extensions and Features .. 185
SIP Presence - Signed In ... 186
SUBSCRIBE and NOTIFY ... 187
SIP Instant Messaging Example ... 188
SIP Instant Messaging Example (continued) ... 189
Message example ... 190
Midcall signaling .. 191
Call Control .. 192
Example of using REFER .. 193
QoS and Call Setup .. 194
SIP Message retransmission ... 196
RFC 3261 - Routing Changes ... 197
RFC 3261 - New Services ... 198
Compression of SIP ... 199
Intelligent Network service using SIP ... 200
Capability Set 1: Services .. 201
Capability Set 2 .. 202
Features ... 203
SIP development, evolution, ... 209
Gateways ... 210
Significance .. 211
P2P SIP .. 212
References and Further Reading .. 213
SIP .. 213
ITU Services CS-1 and CS-2 ... 218
Module 4: Session Announcement Protocol (SAP) ... 220
Session Announcement Protocol (SAP) ... 221
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References and Further Reading</td>
<td>222</td>
</tr>
<tr>
<td>Module 5: Session Description Protocol (SDP)</td>
<td>223</td>
</tr>
<tr>
<td>Session Description Protocol (SDP)</td>
<td>224</td>
</tr>
<tr>
<td>Session Description Protocol (SDP)</td>
<td>225</td>
</tr>
<tr>
<td>SDP Message Details</td>
<td>228</td>
</tr>
<tr>
<td>Session description</td>
<td>229</td>
</tr>
<tr>
<td>SDP Offer/Response Example</td>
<td>230</td>
</tr>
<tr>
<td>SDP Response Example</td>
<td>231</td>
</tr>
<tr>
<td>Session Modification</td>
<td>232</td>
</tr>
<tr>
<td>Session modification (continued)</td>
<td>233</td>
</tr>
<tr>
<td>Start and Stop Times</td>
<td>234</td>
</tr>
<tr>
<td>Grouping of Media Lines in the Session Description Protocol (SDP)</td>
<td>235</td>
</tr>
<tr>
<td>Lip Synchronization</td>
<td>236</td>
</tr>
<tr>
<td>Next generation of SDP (SDPng)</td>
<td>237</td>
</tr>
<tr>
<td>SDPng structure</td>
<td>238</td>
</tr>
<tr>
<td>Why XML?</td>
<td>239</td>
</tr>
</tbody>
</table>
References and Further Reading .. 354
User Preferences .. 354
Module 11: SIP Security, NATs, and Firewalls 355
SIP Security ... 356
SIP Digest Authentication ... 357
SIP and S/MIME .. 358
SDP & RTP security .. 359
Secure Call Setup [201] .. 365
Efficient Stream Loss-tolerant Authentication (TESLA) 366
Elisabetta Carrara ... 367
NATs and Firewalls ... 368
Types of NAT .. 370
Cone vs. Symmetric NAT ... 371
NAT traversal methods ... 372
STUN (Simple Traversal of UDP through NATs (Network Address Translation)) 374
STUN steps .. 375
UDP and TCP Firewall Traversal problems 376
UDP and TCP NAT Traversal problems .. 377
Other NAT traversal protocols ... 378
 Traversal Using Relay Nat (TURN) .. 378
 ICE .. 378
 HIP ... 378
SIP Application Level Gateway (ALG) for Firewall Traversal 379
Middlebox communications (MIDCOM) .. 380
 Application aware Middlebox ... 381
Security flaws in Abstract Syntax Notation One (ASN.1) 382
Swedish Electronic Communications Act .. 384
Recording of Call Contents .. 385
Privacy & Lawful Intercept (LI) ... 386
Reasonably Available Information ... 387
EU privacy and Lawful Intercept (LI) ... 388
Intercept architecture .. 389
Lawful Intercept - some additional problems 390
Data Retention Directive .. 391
Article 5: Categories of data to be retained .. 392
SIP Recording .. 396
SIP Recording Architecture ... 398
SIP extentions for SIP recording .. 399
Voice over IP Security Alliance .. 400
Spam over Internet Telephony (SPIT) .. 401
VoIP Security: Attacks and Countermeasures ... 402
References and Further Reading ... 403
SIP Security .. 403
RTP encryption .. 405
NATs and Firewalls ... 408
Privacy .. 412
VoIP Security ... 418
SIP recording .. 419
Module 12: SIP Telephony ... 420
SIP Telephony ... 421
Telephony Routing over IP (TRIP) .. 422
Call Control Services .. 423
Call Center Redesign using SIP .. 424
Additional SIP Telephony services .. 425
Emergency Telecommunication Service (ETS)\[278\]........................... 426
Emergency Services (E911) .. 428
Public Safety Answering Point (PSAP)... 429
Vonage 911 service... 430
Vonage equips PSAPs with VoIP... 431
Geographic Location/Privacy Working Group (GEOPRIV)................. 432
References and Further Reading... 433

Module 13: SIP Conferencing ... 439
Conferencing... 440
Conferencing Models \[285\].. 441
SIP Conferencing.. 442
Realizing conferences ... 443
Centralized Conferencing Framework.. 444
Distributed Conferencing (DCON).. 445
VoIP quality over IEEE 802.11b .. 485
Measurements of VoIP QoS ... 486
Application Policy Server (APS) .. 487
References and Further Reading ... 488
Module 16: SIP Applications ... 496
Session Initiation Protocol Project INvestiGation (SIPPING) 497
Application Service Components ... 499
Advantages ... 500
Collecting DTMF digits for use within a service 501
Response “3. 200 OK” looks like: ... 502
Controller issues a “re-Invite” at 11 which looks like: 503
Voice Portal Service using Interactive Voice Response (IVR) 504
Managing Services ... 505
Context aware SIP services ... 506
Unified communications ... 507
SIP Web APIs ... 508
Simpler approach to SIP applications ... 509
Lots more services ... 510
Not all emergencies should go to the local authorities nor should they all be voice sessions ... 531
Meta data .. 532
References and Further Reading... 533
Phone Services - 533
Network Appliances - 533
Text - 534
Log file format - 536
Module 18: VOCAL ... 537
VOCAL System Overview ... 538
VOCAL Servers... 539
Scaling of a VOCAL system ... 540
For comparison with a PBX ... 541
Marshal server (MS) ... 542
Redirect Server (RS)... 543
Feature Server (FS)... 544
Residential Gateway (RG).. 545
Residential Gateways.. 546
References and Further Reading... 547
Seven Myths About VoIP .. 565
Your projects ... 566
IK2554 Practical Voice Over IP (VoIP): SIP and related protocols
Fall 2010, Period 1

Module 1: Introduction

Lecture notes of G. Q. Maguire Jr.

For use in conjunction with:

Welcome to the course!

The course should be fun.

We will dig deeper into Voice over IP - with a focus on SIP and related protocols, and will also examine some of the other protocols which are used.

Information about the course is available from the course web page

http://www.ict.kth.se/courses/IK2554/
Staff Associated with the Course

Instructor (Kursansvarig)

prof. Gerald Q. Maguire Jr. <maguire@kth.se>
Goals, Scope and Method

Goals of the Course

• To understand what Voice over IP (VoIP) systems are, their basic architectures, and the underlying protocols
• To be able to read and understand the literature.
• To provide a basis for your own research and development in this area.

Scope and Method

• You are encouraged to examine: SIP Express Router\(^1\), Minisip\(^2\), Open SIP Server (OpenSIPS)\(^3\), … \(^4\)
 • to understand both the details of the system(s) and
 • to abstract from these details some architectural features and examine some places where it can be extended (thus using it as a platform on which you can explore).
• You will demonstrate your knowledge by writing a written report and giving an oral presentation describing your project.

1. The source code is available from http://www.iptel.org/ser/
2. The source code is available from http://www.minisip.org/
3. The source code is available from http://www.opensips.org/
Learning Outcomes

Following this course a student should be able to:

- Understand the relevant protocols (particularly SIP, SDP, RTP, and SRTP): what they are, how they can be used, and how they can be extended.
- Enable you to utilize SIP in Presence and event-based communications.
- Understand how SIP can provide application-level mobility along with other forms of mobility.
- Understand how SIP can be used to facilitate communications access for users with disabilities (for example using real-time text, text-to-speech, and speech-to-text) and to know what the basic requirements are to provide such services.
- Understand SIP can be used as part of Internet-based emergency services and to know what the basic requirements are to provide such services.
- Contrast "peer-to-peer" voice over IP systems (i.e., how they differ, how they might scale, what are the peers, ...)
- Know the relevant standards and specifications - both of the protocols and of the requirements (for example, concerning legal intercept).
- Understand the key issues regarding quality-of-service and security.
• Evaluate existing voice over IP and other related services (including presence, mobile presence, location-aware, context-aware, and other services)

• Design and evaluate new SIP based services

• Read the current literature at the level of conference papers in this area.
 - While you may not be able to understand all of the papers in journals, magazines, and conferences in this area - you **should** be able to read 90% or more of them and have good comprehension. In this area it is especially important that develop a habit of reading the journals, trade papers, etc. In addition, **you should also be aware of standardization activities, new products/services, and public policy in the area.**

• Demonstrate knowledge of this area both **orally** and in your **writing**.
 - By **writing** a paper suitable for submission to conferences and journals in the area.

This course should prepare you for starting a thesis project in this area (for undergraduate students) or beginning a thesis or dissertation (for graduate students).
Prerequisites

- Internetwork (IK1550) or
- Equivalent knowledge in Computer Communications (this requires permission of the instructor)
Contents

The focus of the course is on what Voice over IP (VoIP) systems are, their basic architectures, and the underlying protocols. We will primarily focus on the Session Initiation Protocol (SIP) and related protocols.

The course consists of ~10 hours of lectures and a project of ~50 (or more) hours.
Topics

- Session Initiation Protocol (SIP)
- Real-time Transport Protocol (RTP)
- Real-time Streaming Protocol (RTSP)
- SIP User Agents
- Location Server, Redirect Server, SIP Proxy Server, Registrar Server, ... , Provisioning Server, Feature Server
- Call Processing Language (CPL)
- SIP SIMPLE
Examination requirements

- Written and Oral project reports
Grades: A..F (ECTS grades)

- To get an "A" you need to write an outstanding or excellent paper and give an outstanding or excellent oral presentation. (Note that at least one of these needs to be excellent.)
- To get a "B" you need to write a very good paper, i.e., it should be either a very good review or present a new idea; and you have to give a very good oral presentation.
- To get a "C" you need to write a paper which shows that you understand the basic ideas underlying voice over IP and that you understand one (or more) particular aspects at the level of an average masters student. In addition, you must be able to present the results of your paper in a clear, concise, and professional manner - and answer questions (as would be expected at a typical international conference in this area.)
To get a "D" you need to demonstrate that you understand the basic ideas underlying voice over IP, however, your depth of knowledge is shallow and you are unable to orally answer indepth questions on the topic of your paper.

If your paper has some errors (including incomplete references) or you are unable to answer any indepth questions following your oral presentation the grade will be an "E".

If your paper has serious errors or you are unable to answer basic questions following your oral presentation the grade will be an "F".

If your paper or oral presentation are close to passing, but not at the passing level, then you will be offered the opportunity for "komplettering", i.e., students whose written paper does not pass can submit a revised version of their paper (or a completely new paper) - which will be evaluated; similarly students whose oral presentation is unacceptable may be offered a second opportunity to give their oral presentation. If a student fails the second oral presentation, they must submit a new paper on a new topic in order to give an oral presentation on this new topic.
Project

Goals: to gain analytical or practical experience and to show that you have mastered some knowledge in this area and to encourage you to find a topic which interests you (since this will motivate you to really understand the material)

- Can be done in a group of 1 to 3 students (formed by yourself). Each student must contribute to the final written and oral reports.
- Discuss your ideas about topics with the instructor before starting.
Assignment Registration and Report

- Registration: Monday 20 September 2010 at 23:59, to <maguire@kth.se>, subject=IK2554 topic
 - Group members, leader; Topic selected
- Written report: a technical paper
 - The length of the final report should be 10 pages (roughly 5,000 words) for each student; it should not be longer than 12 pages for each student - papers which are longer than 12 pages per student will be graded as "F".
 - The report may be in the form of a collections of papers, with each paper suitable for submission to a conference or journal
 - Contribution by each member of the group - must be clear (the role of each member of the group must be explained in the overall introduction).
 - The report should clearly describe: 1) what you have done; 2) who did what; if you have done some implementation and measurements you should describe the methods and tools used, along with the test or implementation results, and your analysis.

Final Report: written report due Friday 15 October 2010 at 23:59 and oral presentations individually scheduled 21 and 22 October 2010 (from 08:00-18:00)\(^1\) at a location to be announced.

\(^1\) Alternative dates can be scheduled with the instructor’s permission.
- Send email with URL link for a **PDF** or **PostScript** file to <maguire@kth.se>
- Late assignments will **not** be accepted
 (i.e., there is no guarantee that they will be graded before the end of the term)

Note that it is OK to start working *well in advance* of the deadlines!
Literature

The course will mainly be based on the book[3]:

We will refer to other books, articles, and RFCs as necessary. A list of interesting literature will be available on the course web page and in the references and further reading section of each lecture module.
Observe proper academic ethics and properly cite your sources!

You will be searching & reading the literature in conjunction with your projects. Please make sure that you properly reference your sources in your report - keep in mind the **KTH Ethics policies**.

In particular:

- If you use someone else’s words - they must be clearly indicated as a quotation (with a proper citation).
- Note also that individual figures have their own copyrights, so if you are going to use a figure/picture/… from some other source, you need to both cite this source & have the copyright owner’s permission to use it.
There is a policy of zero tolerance for cheating, plagiarism, etc. - for details see
http://www.kth.se/dokument/student/student_rights.pdf

See also the KTH Ethics Policies at:
http://www.kth.se/info/kth-handboken/I/7/1.html

Before starting to work on your paper read the page about plagiarism at
http://www.kth.se/student/studentratt/plagiering-1.38496?l=en_UK
Lecture Plan

- Introduction
 - Course arrangement
 - Set the context of VoIP, both technically and economically
- VoIP details
 - Session Initiation Protocol (SIP)
 - Session Description Protocol (SDP)
 - DNS and ENUM
- Mobility
- Service Creation
- User preferences
- Security, NATs, and Firewalls
- SIP Telephony
- Conferencing
- Mixed Internet - PSTN services
- AAA and QoS
- More than just voice!
Voice over IP (VoIP)

VoIP is an end-to-end architecture[20] which exploits processing in the end points.

Unlike the traditional Public Switch Telephony Network - where processing is done inside the network.

Network Convergence:
In the past, many different networks - each optimized for a specific use: POTS, data networks (such as X.25), broadcast radio and television, … and each of these in turn often had specific national, regional, or proprietary implementations)

⇒ (Now) we think about a converged network which is a global network
We will focus on VoIP, largely *independently* of the underlying network, i.e., LAN, Cellular, WLAN, PAN, *ad hoc*, ….
Internetworking

Internetworking is

- based on the interconnection (concatenation) of multiple networks
- accommodates multiple underlying hardware technologies by providing a way to interconnect heterogeneous networks and makes them inter-operate.

Public Switched Telephony System (PSTN) uses a fixed sampling rate, typically 8 kHz and encoded to 8 bits, this results in 64 kbps voice coding; however, VoIP is not limited to using this coding and could have higher or lower data rates depending on the CODEC(s) used, the available bandwidth between the end points, and the user’s preference(s).

One of the interesting possibilities which VoIP offers is quality which is:

- **better** that “toll grade” telephony or
- **worse** than “toll grade” telephony (but perhaps still acceptable)

This is unlike the fixed quality of traditional phone systems.
VoIP a major market

Voice over IP has developed as a major market - which began with H.323 and has now moved to SIP. There are increasing numbers of users and a large variety of VoIP hardware and software on the market. With increasing numbers of vendors, the competition is heating up - is it a maturing market?

“Cisco began selling its VoIP gear to corporations around 1997, but until the past year, sales were slow. Cisco notes that it took more than three years to sell its first 1 million VoIP phones, but the next 1 million took only 12 months.”

Ben Charny, “Is VoIP pioneer Cisco losing momentum?”, CNET News.com, September 17, 2003, 4:00 AM PT

As of July 30, 2005, Cisco had shipped their 6 millionth IP phone[10] and 10 Million by November 2006[17]. As of 2007, their unified communications sales had increased US$350M (since 2005) due to sales of IP phones and associated software (page 34 of [15]) with a further increase by US$825M in 2008[16].
Handsets

There are now lots of USB attached VoIP handsets

WLAN Handsets

- starting with Symbol Technologies’s NetVision® *Data Phone*
 - runs speech recognition software in a network attached server
 - unfortunately it uses a proprietary protocol between the handset and their server, but I expect others will make similar devices which will not have this mis-feature.
- for more type “SIP handsets” into your favorite search engine!

VoIP cellular handsets combining IEEE 802.11 (WLAN) with wide area cellular connectivity.
VoIP Chipsets

LSI Corporation (former Agere Systems) VoIP Phone-On-A-Chip - target is **business** telephone **handsets** and **speakerphones**. The developed two ICs:

- **T8302 IPT_ARM (Advanced RISC Machine)**
 - Up to 57.6 MHz general-purpose processor
 - controls the system I/O: two 10/100Base-T Ethernets, USB, IrDA, SPI, 16 programmable I/O pins (some could be used to interface to an LCD module), …
 - general telephone control features: 7 row outputs and 8 column inputs/outputs to control up to 56 LEDs and scan up to 56 keys, 6 different flash rates, …
- **T8301 IPT_DSP (digital signal processor)**
 - Based on Agere Systems DSP1627 digital signal processor core running at 80 MIPS
 - single-cycle multiply accumulate instruction supports voice compression/decompression and echo cancellation algorithms
 - Includes two 16-bit digital-to-analog (D/A), one 16-bit analog-to-digital converters (A/D), low-pass filters, audio amplifier, lots of buffers (for for input and output)

A special feature is **acoustic** echo cancellation to enable high quality speakerphone. See also [4]. Note also chips from: Infineon, TI, Fujitsu, Conexant Systems, DSP Group, … .
Deregulation ⇒ New operators

Lots of new actors appeared as operators:

- Verizon/MCI (formerly Worldcom) - http://www.verizon.com/
- Qwest - http://www.qwest.com/
 - (3)Voice, an IP based long distance service using Softswitch technology
- Vonage - http://www.vonage.com
 - 2.5 million subscriber lines as of June 30, 2009 [19]
- TringMe - http://tringme.com/
 - Web based VoIP (using Adobe’s Flash)
- …
Deregulation ⇒ New Suppliers

Lots of new actors as equipment suppliers:

- Cisco, 3Com, Nortel Networks, …

Traditional telecom equipment vendors buying datacom vendors.

Lots of mergers and acquisitions among datacom vendors.

As of Fall 2002, many of these vendors (similar to operators) were reorganizing, selling off divisions, reducing staffing, … -- due to the Telecom meltdown!

However, some have survived (or been reborn).

For a list of SIP products see: http://www.pulver.com/products/sip/
Let them fail fast!

“We hold that the primary cause of current telecom troubles is that Internet-based end-to-end data networking has subsumed (and will subsume) the value that was formerly embodied in other communications networks. This, in turn, is causing the immediate obsolescence of the vertically integrated, circuit-based telephony industry of 127 years vintage.”

The extent of this transformation is well described in their complete letter which recommends that the FCC:

• “Resist at all costs the telephone industry’s calls for bailouts. The policy should be one of "fast failure."
• Acknowledge that non-Internet communications equipment, while not yet extinct, is economically obsolete and forbear from actions that would artificially prolong its use.
• Discourage attempts by incumbent telephone companies to thwart municipal, publicly-owned and other communications initiatives that don’t fit the telephone company business model.
• Accelerate FCC exploration of innovative spectrum use and aggressively expand unlicensed spectrum allocation.”
Latency

For example:

Round-trip times from 130.237.15.xxx
(as of 2009.08.14) for 10 pings (with DNS to IP cached)

<table>
<thead>
<tr>
<th>Destination</th>
<th>min (ms)</th>
<th>avg (ms)</th>
<th>max (ms)</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local LANs (www.wireless.kth.se)</td>
<td>0.389</td>
<td>0.437</td>
<td>0.506</td>
<td>3</td>
</tr>
<tr>
<td>to northern Sweden (cdt-lisa.cdt.luth.se)</td>
<td>13.190</td>
<td>13.251</td>
<td>13.308</td>
<td>8</td>
</tr>
<tr>
<td>To my machine in eastern US (via an ADSL link)</td>
<td>116.904</td>
<td>117.391</td>
<td>118.248</td>
<td>19</td>
</tr>
<tr>
<td>To US west coast (www.stanford.edu)</td>
<td>201.257</td>
<td>201.517</td>
<td>201.768</td>
<td>21</td>
</tr>
<tr>
<td>To Australia (www.uow.edu.au) {via the US west coast}</td>
<td>339.729</td>
<td>339.790</td>
<td>339.854</td>
<td>22</td>
</tr>
</tbody>
</table>

Figure 2: Usability of a voice circuit as a function of end-to-end delay (adapted from a drawing by Cisco\(^a\))

\(^a\) This was at http://www.packeteer.com/solutions/voip/sld006.htm
VoIP Modes of Operation

- PC to PC
- PC-to-Telephone calls
- Telephone-to-PC calls
- Telephone-to-Telephone calls via the Internet

- Premises to Premises
 - use IP to tunnel from one PBX/Exchange to another
 - see Time Warner’s “Telecom One Solution”

- Premises to Network
 - use IP to tunnel from one PBX/Exchange to a gateway of an operator

- Network to Network
 - from one operator to another or from one operator’s regional/national network to the same operator in another region or nation
IP based data+voice infrastructure
Use access servers filled with digital modems (currently (formerly?) used for analog modem pools) as voice gateways or special purpose gateways such as that of Li Wei [5]. (Li Wei created the first E1 to Ethernet gateway that looked like part of a Ericsson PBX - hence all of the services of this distributed PBX were available.)

Many Analog Telephony Adapters (ATAs) exist: Cisco ATA 186, Linksys SPA2102, Linksys SPA3000 or SPA3102 (FXS + FXO port for gatewaying to/from PSTN), ….
Figure 3: www.BitCall.com USB-PPG V1.1 - a personal phone gateway based upon a Tiger560B chip, Winbond 681511 Single-channel Voiceband CODEC, and a Clare CPC5621A LITELINK III Phone Line Interface IC - Data Access Arrangement (DAA).
Voice over IP (VoIP) Gateways

Gateways not only provide basic telephony and fax services, but can also enable lots of value-added services, e.g., call-centers, integrated messaging, least-cost routing, … .

Such gateways provide three basic functions:

- **Interface between the PSTN network and the Internet**
 Terminate incoming synchronous voice calls, compress the voice, encapsulate it into packets, and send it as IP packets. Incoming IP voice packets are unpacked, decompressed, buffered, and then sent out as synchronous voice to the PSTN connection.

- **Global directory mapping**
 Translate between the names and IP addresses of the Internet world and the E.164 telephone numbering scheme of the PSTN network.

- **Authentication and billing**

Voice representation

Commonly: ITU G.723.1 algorithm for voice encoding/decoding or G.729 (CS-ACELP voice compression).
Signaling

Based on the H.323 or SIP (on the LAN) and conventional signaling will be used on telephone networks.

NB: In conventional telephony networks signalling **only** happens at the *beginning* and *end* of a *call*. See Theo Kanter’s dissertation for what can be enabled via SIP so that you can react to other events.

Fax Support

Both store-and-forward and real-time fax modes.

- In store-and-forward the system records the entire FAX before transmission.

Management

Full SNMP management capabilities via MIBs (Management Information Base)

- provided to control all functions of the Gateway
- Extensive statistical data will be collected on dropped calls, lost/resent packets, and network delays.
Compatibility

De jure standards:
- ITU G 723.1/G.729 and H.323
- VoIP Forum IA 1.0

De facto standards:
- Netscape’s Cooltalk
- Microsoft’s NetMeeting (formerly H.323, now SIP)
- Adobe Pacifica (http://pac.ifica.net/) - SIP based high quality VoIP for Flash

Session Initiation Protocol (SIP) [RFC 2543] is much simpler than H.323
Cisco’s Voice Over IP

Cisco 3600 series routers\(^1\) to carry live voice traffic (e.g., telephone calls and faxes) over an IP network. (This was the first of the Cisco routers to support VoIP.)

They state that this could be used for:

- Toll bypass
- Remote PBX presence over WANs
- Unified voice/data trunking
- POTS-Internet telephony gateways

Uses Real-Time Transport Protocol (RTP) for carrying packetized audio and video traffic over an IP network.

\(^1\) The Cisco 3600 series was introduced in 1996 and their end of life was 31 December 2003. So this represents ancient history, but illustrates the many issues that have to be addressed by a gateway in order to support existing users and devices.
Cisco 3600 supports a selection of CODECs:

- G.711 A-Law 64,000 bits per second (bps)
- G.711 u-Law 64,000 bps
- G.729 8000 bps

Cisco 3800 supports even more CODECs:

- ITU G.726 standard, 32k rate
- ITU G.726 standard, 24k rate
- ITU G.726 standard, 16k rate
- ITU G.728 standard, 16k rate (default)
- ITU G.729 standard, 8k rate

By using **Voice Activity Detection (VAD)** - you only need to send traffic if there is something to send {Note: telecom operators like this because it enables even higher levels of statistical multiplexing}.

An interesting aspect is that users worry when they hear *absolute* silence, so to help make them comfortable it is useful to play noise when there is nothing useful to output. Cisco provide a “**comfort-noise** command to generate background noise to fill silent gaps during calls if VAD is activated”.

Cisco 3600 series router can be used as the voice gateway with software such as Microsoft NetMeeting.

Cisco 3800 also supports “fax-relay” - at various rates either current voice rate or 2,400/4,800/7,200/9,600/14,400 bps fax rates.

For further information see

http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113t/113t_1/voip/config.htm
Intranet Telephone System

On January 19, 1998, Symbol Technologies (now part of Motorola, Inc.) and Cisco Systems announced that they had combined the Symbol Technologies’ NetVision™ wireless LAN handset and Cisco 3600 to provide a complete wireless local area network telephone system based on Voice-Over-IP technology.

The handset uses a wireless LAN (IEEE 802.11) infrastructure and a voice gateway via Cisco 3600 voice/ fax modules. The system conforms to H.323.

"I believe that this is the first wireless local area network telephone based on this technology" -- Jeff Pulver

Seamless roaming via Symbol’s pre-emptive roaming algorithm with load balancing.

Claims each cell can accommodate ~25 simultaneous, full-duplex phone calls.

Wireless LANs

“The wireless workplace will soon be upon us”

Telia has strengthened its position within the area of radio-based data solutions through the acquisition of Global Cast Internetworking. The company will primarily enhance Telia Mobile’s offering in wireless LANs and develop solutions that will lead to the introduction of the wireless office. A number of different alternatives to fixed data connections are currently under development and, later wireless IP telephony will also be introduced.

…

The acquisition means that Telia Mobile has secured the resources it needs to maintain its continued expansion and product development within the field of radio-based LAN solutions. Radio LANs are particularly suitable for use by small and medium-sized companies as well as by operators of public buildings such as airports and railway stations.

Today’s radio-LAN technology is based on inexpensive products that do not require frequency certification. They are easy to install and are often used to replace cabled data networks in, for example, large buildings.

…”

[emphasis added by Maguire]

Femto cell and UMA

Unlicensed Mobile Access (UMA) providing local telephone access via Wii-Fi/Bluetooth/other unlicensed wireless link technology.

Being embraced by a number of major telecom operators: British Telecom, TeliaSonera, Orange/France Telecom, T-Mobile US, Netcom, and others.

See http://www.umatoday.com/
VoIP vs. traditional telephony

As of 2003 approx. 14% of International traffic to/from the US is via VoIP, based on 24 billions minutes vs. 170.7 billion minutes via PSTN [11] (the article cites the source of data as TeleGeography Research Group/Primetrica Inc.) For further statistics see: [source link]

There is a move for traditional operators to replace their exchanges with IP telephony, see Niels Herbert and Göte Andersson, “Telia ersätter all AXE med IP-telefoni”, Elektronik Tidningen, #3, 4 March 2005, page 4.

For information about the development of the AXE switches see [12].

"What is the reality in the battle over packet-versus-circuit telephony, and what is hype?

Looking at the potential savings by cost element, it is clear that in 1998, access arbitrage is the major economic driver behind VOIP. By 2003, we anticipate that switched-access arbitrage will diminish in importance, as the ESP exemption disappears and/or access rates drop to true underlying cost.

However, we believe that the convergence between voice and data via packetized networks will offset the disappearance of a gap in switched access costs. As a result, VOIP will continue to enjoy a substantial advantage over circuit-switched voice. Indeed, as voice/data convergence occurs, we see standalone circuit-switched voice becoming economically nonviable."

Note: Enhanced Service Provider (ESP) exemption means that ISPs do not pay access charges to local phone companies {since the ISP just receives calls from users}
VoIP vs. traditional telephony

Henning Schulzrinne in a slide entitled “Why should carriers worry?”¹ nicely states the threats to traditional operators:

- Evolution from application-specific infrastructure ⇒ **Content-neutral** bandwidth delivery mechanism - takes away the large margins which the operators are used to (and **want!**):
 - “GPRS: $4-10/MB, SMS: >$62.50/MB, voice (mobile and landline): $1.70/MB”
- Only operators can offer services ⇒ Anybody can offer phone services
- SIP only needs to handle signaling, not media traffic
- High barriers to entry ⇒ No regulatory hurdles²

In addition to this we can add:

- Only vendors can create services ⇒ anybody can create a service

NB. These new services can be far broader than traditional telephony services.

¹. Henning Schulzrinne, “When will the telephone network disappear?”, as part of Intensive Graduate Course "Internet Multimedia", University of Oulu, 3-6 June 2002.
². see “Regulations in Sweden” on page 88
Mixing voice and data in the LAN goes back to at least this patent:

US 4581735: Local area network packet protocol for combined voice and data transmission

INVENTORS: Lois E. Flamm and John O. Limb

ASSIGNEES: AT&T Bell Laboratories, Murray Hill, NJ

ISSUED: Apr. 8, 1986

FILED: May 31, 1983

ABSTRACT: In order to control the transfer of packets of information among a plurality of stations, the instant communications system, station and protocol contemplate first and second oppositely directed signal paths. At least two stations are coupled to both the first and the second signal paths. A station reads one signal from a path and writes another signal on the path. The one signal is read by an arrangement which electrically precedes the arrangement for writing the other signal. Packets are transmitted in a regular, cyclic sequence. A head station on a forward path writes a start cycle code for enabling each station to transmit one or more packets. If a station has a packet to transmit, it can read the bus field of a packet on the forward path. Responsive thereto, a logical interpretation may be
made as to whether the forward path is busy or is not busy. If the path is not busy, the packet may be written on the path by overwriting any signal thereon including the busy field. If the path is busy, the station may defer the writing until the path is detected as not busy. In order to accommodate different types of traffic, the head station may write different start cycle codes. For example, a start-of-voice code may enable stations to transmit voice packets; a start-of-data code may enable stations to transmit data packets, etc. for the different types of traffic. Further, the start cycle codes may be written in a regular, e.g., periodic, fashion to mitigate deleterious effects, such as speech clipping. Still further, the last station on the forward path may write end cycle codes in packets on a reverse path for communicating control information to the head station. Responsive to the control information, the head station may modify the cycle to permit the respective stations to, for example, transmit more than one packet per cycle or to vary the number of packet time slots, which are allocated to each of the different types of traffic.
Deregulation ⇒ Trends

- replacing multiplexors with Routers/Switches/… << 1/10 circuit switched costs
- Standard telco interfaces being replaced by datacom interfaces
- New Alliances:
 - telecom operators & vendors working with traditional data & data communications vendors
- future developments building on VoIP
 - Fax broadcast, Improved quality of service, Multipoint audio bridging, Text-to-speech conversion and Speech-to-Text conversion, Voice response systems, …
 - Replacing the wireless voice network’s infrastructure with IP:
 U. C. Berkeley’s ICEBERG: Internet-based core for CEllular networks BEyond the thiRd Generation

See the Univ. of California at Berkeley ICEBERG project report:
http://iceberg.cs.berkeley.edu/release/

⇒Telecom (only) operators have no future
⇒Telecom (only) companies have no future
Carriers offering VoIP

“Equant, a network services provider, will announce tomorrow that it is introducing voice-over-frame relay service in 40 countries, ... The company says customers can save 20% to 40% or more by sending voice traffic over its frame relay network. "This is the nearest you’re going to get to free voice," says Laurence Huntley, executive VP of marketing for Equant Network Service. … Equant isn’t alone in its pursuit to send voice traffic over data networks. Most of the major carriers are testing services that would send voice over data networks. … .”

- October 2002:
 - Verizon offering managed IP telephony via IPT Watch for US$3-4/month
 - WorldCom offering SIP based VoIP for DSL customers for US$50-60/month for unlimited local, domestic long distance, and data support {price does not include equipment at US$200-300 per phone and DSL/Frame relay/ATM connection} The Service Level Agreement (SLA) specifies >99.9% network availability, <55ms round trip latency, and >99.5% packet delivery.

- December 2004:
 - Verizon offering VoiceWing - with unlimited calling within the US for US$34.95/month
 - “As we see the industry fundamentals continue to shift, the future will be about the convergence of computing and telecommunications. And where these two worlds meet is where MCI will be.” -- Michael D. Capellas, MCI CEO

- August 2009: Verizon, TeliaSonera (529 SEK/month for 8 simultaneous calls), … offering SIP trunks

2. Formerly available from: http://global.mci.com/about/publicpolicy/voip/
MCI Connection

Previously

- 3 or more separate networks (often each had its own staff!)
- Duration/geography-based pricing
- Expensive moves, adds, and changes (typically $1 + \text{move/person/year}$)
- Standalone applications - generally expensive
- Closed PBX architecture

After convergence

- via gateway to the PSTN, service expands beyond the LAN to the WAN
- centralized intelligence is offered; customers utilize a Web browser to control and manage their network
- MCI incurs the costs of buying major equipment, thus limiting customer’s risk and capital investment
- One source for all services
- Easy mobility
- Choice of vendors for Customer Premises Equipment (CPE)

1. Formerly WorldCom, now part of Verizon
Introduced (3) VoIP Toll Free service: “a toll-free calling service across the United States, rounding out its local and long distance voice over Internet protocol offerings.”

Level 3 sells services to carriers, who then offer VoIP and data services to their customers.

Uses softswitch networking technology to convert voice signals from the PSTN to IP packets and conversely converts packets to voice signals when a call is routed to the public switched network. (>14 x 10^9 minutes of calls per month of managed modem service & dial-up service and 30 x 10^9 minutes of calls per month for Enterprise IP trunking).
February 5th, 2004 TeliaSonera announce their *residential* broadband telephony service using server and client products from Hotsip AB (www.hotsip.com) {Now part of Oracle, Inc.}. In addition to telephony, the service includes: video calls, presence, and instant messaging.[7]

- The startup cost (2004) was 250 kr and the monthly cost 80 kr\(^1\).
- Calls to the fixed PSTN network are the same price as if you called from a fixed telephone in their traditional network.
- Customers get a telephone number from the “area/city” code 075 (i.e., +46 75-15xxxxxxx)
- They do **not** support calls to “betalsamtal” (0900-numbers)

Today: broadband telephony from **any** internet access network with ≥128kbps, with a +46 y xxxxxxxx number; no longer a limitation to having the phone number in a specific area/city code, but the default value is based upon where you “live”.

1. Monthly cost in August 2009 was from 59 SEK/month.
Emulating the PSTN

Many people feel that VoIP will really only “take off” when it can really emulate all the functions which users are used to in the PSTN:

- Integration with the web via: Click-to-connect
- “Dialing” an e-mail address or URL {digits vs. strings}
- Intelligent network (IN) services:
 - Call forward, busy
 - Call forward, no ans.
 - Call forward, uncond.
 - Call hold
 - Call park
 - Call pick-up
 - Call waiting
 - Consultation hold
 - Do not disturb
 - Find-me
 - Incoming call screen/Outgoing call screen
 - Secondary number in/Secondary number out
 - Three-way conference
 - Unattended transfer
• additional PBX features (which in Sweden means providing functions such as “I’m on vacation and will not return until 31 August 2010”)
• Computer-Telephony Integration (CTI), including Desktop call management, integration with various databases, etc.
• PSTN availability and reliability (thus the increasing use of Power over Ethernet for ethernet attached IP phones - so the wall outlet does not have to provide power for the phone to work)
• Roaming - both **personal** and **device** mobility
• **Phone number** portability
• E911 service {How do you handle **geographic** location of the station?}
Calling and Called Features

- **Calling** feature - activated when placing a call
 - e.g., Call Blocking and Call Return
- **Called** feature - activated when this entity would be the target of a call
 - Call Screening and Call Forward
Beyond the PSTN: Presence & Instant Messaging

- **Presence**, i.e., Who is available?
- **Location**, i.e., Where are they?: office, home, traveling, …
- **Call state**: Are they busy (in a call) or not?
- **Willingness**: Are they available or not?
- **Preferred medium**: text message, e-mail, voice, video, …
- **Preferences** (*caller* and *callee* preferences)

See Sinnreich and Johnston’s Chapter 11 (Presence and Instant Communications).
Presence-Enabled Services

- Complex call screening
 - Location-based: home vs. work
 - Caller-based: personal friend or business colleague
 - Time-based: during my “working hours” or during my “personal time”
- Join an existing call ⇒ Instant Conferencing, group chat sessions, …
- Creating a conference when a specific group of people are all available and willing to be called
- New services that have yet to be invented!
- SIP Messaging and Presence Leveraging Extensions (SIMPLE) Working Group was formed in March 2001

http://www.ietf.org/html.charters/simple-charter.html
Three major alternatives for VoIP

<table>
<thead>
<tr>
<th>Concept</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use signalling concepts from the traditional telephony industry</td>
<td>H.323</td>
</tr>
<tr>
<td>Use control concepts from the traditional telephony industry</td>
<td>Softswitches</td>
</tr>
<tr>
<td>Use an internet-centric protocol</td>
<td>Session Initiation Protocol (SIP)</td>
</tr>
</tbody>
</table>

SIP \Rightarrow a change from telephony’s “calls” between handsets controlled by the network to “sessions” which can be between **processes** on **any** platform **anywhere** in the Internet and with both **control** and **media content** in **digital** form and hence can be easily manipulated.

- thus a separate voice network is **not** necessary
- open and distributed nature enables lots of innovation
 - since **both** control and media can be manipulated and
 - “events” are no longer restricted to start and end of calls
Negatives

Although VoIP equipment costs less than PBXs:

- the technology is new and thus upgrades are frequent (this takes time and effort)
- PBXs generally last ~10 years and public exchanges ~30yrs; while VoIP equipment is mostly computer equipment with a ~3 year ammortization
Deregulation ⇒ New Regulations

“I am preparing legislation to preserve the free regulatory framework that has allowed VoIP applications to reach mainstream consumers,” Sununu, Republican from New Hampshire, said in a statement. “VoIP providers should be free from state regulation, free from the complexity of FCC regulations, free to develop new solutions to address social needs, and free to amaze consumers.”

E-BUSINESS: New Hampshire Senator Readies, "Hands-Off VoIP" Bill,
Internetweek.com, January 12, 2004
http://www.internetweek.com/e-business/showArticle.jhtml?articleID=17300570
Regulations in Sweden

Programmable “phone”

Programming environments: Symbian, Java, Linux, Andoid, Microsoft Windows Mobile, …

Avoids lock-in driven by operators and telecom equipment vendors

Greatly increases numbers of developers

⇒ more (new) services

⇒ more security problems

• See Google’s Android - an Open Handset Alliance Project

 (http://www.openhandsetalliance.com/)
 • http://code.google.com/android/
Interoperability testing:

- SIP development community’s interoperability testing event is called Session Initiation Protocol Interoperability Test (SIPit) [1]. Note: The SIPit event is closed to the public and press, and no information is released about which products fail to comply with the standard.
 - Why have it closed? So that the testing can be done without risk of public embarrassment.
- Interoperability is one of the most important aspects of wide deployment using multiple vendors products[6].
- Proper handing of server failover is considered by some to be the most critical interoperability issue at present[6].

1. The 12th SIPit event in Stockholm, Sweden occurred February 24-28, 2003. SIPIT 17 was in Stockholm, Sweden, September 2005, SIPit 26 was in Kista in 17-21 May 2010!
Not with out problems

It is not necessary a smooth transition to VoIP. Numerous organizations have faced problems [14] and there remain vast areas where further work is needed.

Potential for Spam over Internet Telephony (SPIT), Denial of Service, …
Seven Myths About Voice over IP[18]

“1. VoIP is free

2. The only difference between VoIP and regular telephony is the price

3. Quality of service isn’t an issue nonadways, because there’s plenty of bandwidth in the network

4. VoIP can’t replace regular telephony, because it still can’t guarantee quality of service

5. VoIP is just another data application

6. VoIP isn’t secure

7. A Phone is a Phone is a Phone”

Steven Cherry, “Seven Myths About Voice over IP: VoIP is turning telephony into just another Internet application - and a cheap one at that”, IEEE Spectrum, V.42 #3, March 2005, pp. 52-57
S adoption curve + shut-down

- Early adoptors
- Wide-spread adoption
- Termination of service

Time

number of users
References and Further Reading

- SIP Forum http://www.sipforum.org
- VoIP-Info.org

 10 November, 2004, pg. 9

 Procurement of a Swedish Computerized Electronic Telephone Switching
 Technology”, Innovation Systems and European Integration (ISE), Report of
 research project funded by the Targeted Socio-Economic Research (TSER)
 program of the European Commission (DG XII) under the Fourth
 Framework Program, European Commission (Contract no.
 SOE1-CT95-1004, DG XII SOLS), coordinated by Professor Charles
 Edquist of the Systems of Innovation Research Program (SIRP) at Linköping
 University (Sweden). Sub-Project 3.2.2: Government Technology

http://www.internetweek.cmp.com/showArticle.jhtml?sssdmh=dm4.158123&articleId=173602687

[18] Steven Cherry, “Seven Myths About Voice over IP: VoIP is turning telephony into just another Internet application - and a cheap one at that”, IEEE Spectrum, Volume 42, Number 3, March 2005, pp. 52-57
http://ir.vonage.com/factsheet.cfm

Acknowledgements

I would like to thank the following people and organizations for their permission to use pictures, icons, …

- Ulf Strömgren <ustromgr@cisco.com> for sending the Cisco 7960 picture on 2002.10.30
- Henry Sinnreich and Alan Johnston, both of WorldCom (at the time), for the wonderful SIP tutorial which Henry sent on 2002.10.30
Module 2: VoIP details

Lecture notes of G. Q. Maguire Jr.
Traditional Telecom vs. Datacom

<table>
<thead>
<tr>
<th>Circuit-switched</th>
<th>Packet-switched</th>
</tr>
</thead>
<tbody>
<tr>
<td>standardized interfaces</td>
<td>standardized protocols and packet formats</td>
</tr>
<tr>
<td>lots of internal state (i.e., each switch & other network nodes)</td>
<td>very limited internal state</td>
</tr>
<tr>
<td>long setup times - since the route (with QoS) has to be set up from end-to-end before there is any further traffic</td>
<td>End-to-End Argument ⇒ integrity of communications is the responsibility of the end node, not the network [20][21]</td>
</tr>
<tr>
<td>services: built into the network ⇒ hard to add new services</td>
<td>Services can be added by anyone</td>
</tr>
<tr>
<td>• operators decide what services users can have</td>
<td>• since they can be provided by any node attached to the network</td>
</tr>
<tr>
<td>• all elements of the net have to support the service before it can be introduced</td>
<td>• users control their choice of services</td>
</tr>
<tr>
<td>• Application programming interfaces (APIs) are often vendor specific or even proprietary</td>
<td></td>
</tr>
<tr>
<td>centralized control</td>
<td>no central control ⇒ no one can easily turn it off</td>
</tr>
<tr>
<td>“carrier class” equipment and specifications</td>
<td>a mix of “carrier class”, business, & consumer equip.</td>
</tr>
<tr>
<td>• target: very high availability 99.999% (5 min./year of unavailability)</td>
<td>• backbone target: high availability >99.99% (50 min./year unavailability)</td>
</tr>
<tr>
<td>• all equipment, links, etc. must operate with very high availability</td>
<td>• local networks: availability >99% (several days/year of unavailability)</td>
</tr>
<tr>
<td>• In aggregate - there is extremely high availability because most of the network elements are independent</td>
<td></td>
</tr>
<tr>
<td>long tradition of slow changes</td>
<td>short tradition of very fast change</td>
</tr>
<tr>
<td>• PBXs > ~10 years; public exchanges ~30yrs</td>
<td>• Moore’s Law doublings at 18 or 9 months!</td>
</tr>
<tr>
<td>clear operator role (well enshrined in public law)</td>
<td>unclear what the role of operators is (or even who is an operator)</td>
</tr>
</tbody>
</table>
VoIP details: Protocols and Packets

Carry the speech frame inside an RTP packet

Typical packetization time of 10-20ms per audio frame.

This should be compared to the durations relevant to speech phenomena:

- “10 μs: smallest difference detectable by auditory system (localization),
- 3 ms: shortest phoneme (plosive burst),
- 10 ms: glottal pulse period,
- 100 ms: average phoneme duration,
- 4 s: exhale period during speech.” (from Mark D. Skowronski’s slide titled ‘What is a “short” window of time?’[39])
We will not examine H.323 in much detail, but will examine RTP and RTCP.

<table>
<thead>
<tr>
<th>audio/video applications</th>
<th>signaling and control</th>
<th>data applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>video code</td>
<td>RTCP</td>
<td>H.323 framework of a group protocols for IP telephony (from ITU)</td>
</tr>
<tr>
<td>audio codec</td>
<td>H.225 registration</td>
<td>H.225 Signaling</td>
</tr>
<tr>
<td>RTP</td>
<td>H.225 Control</td>
<td>H.245 Control</td>
</tr>
<tr>
<td>UDP</td>
<td>TCP</td>
<td>T.120</td>
</tr>
</tbody>
</table>

- **H.323**: framework of a group protocols for IP telephony (from ITU)
- **H.225**: Signaling used to establish a call
- **H.245**: Control and feedback during the call
- **T.120**: Exchange of data associated with a call
- **RTP**: Real-time data transfer
- **RTCP**: Real-time Control Protocol
RTP, RTCP, and RTSP

- RTP, RTCP, and RTSP
 - audio/video applications
 - signaling and control
 - streaming applications
 - video, audio, … CODECs
 - RTP
 - SDP
 - CODECs
 - RTCP
 - SIP
 - RTSP
 - UDP
 - TCP
 - UDP
 - IP
Real-Time Delivery

In a real-time application ⇒ data must be delivered with the same time relationship as it was created (but with some delay)

Two aspects of real-time delivery (for protocols):

<table>
<thead>
<tr>
<th>Order</th>
<th>data should be played in the same order as it was created</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>the receiver must know when to play the packets, in order to reproduce the same signal as was input</td>
</tr>
</tbody>
</table>

We keep these separate by using a sequence number for order and a time stamp for timing.

Consider an application which transmits audio by sending datagrams every 20ms, but does silence detection and avoids sending packets of only silence. Thus the receiver may see that the time stamp advances by more than the usual 20ms, but the sequence number will be the expected next sequence number. Therefore we can tell the difference between missing packets and silence.
Packet delay

A stream of sampled audio packets are transmitted from the source \((s_n)\), received at the destination \((r_n)\), and played \((p_n)\), thus each packet experiences a delay before playout \((d_n)\)

If a packet arrives too late \((r_3\) arrives after we should have started to play at \(p_3)\), then there is a problem (for some or all of the third packet’s audio).
Dealing with Delay jitter

Unless packets are lost, if we wait long enough they will come, but then the total delay may exceed the threshold required for interactive speech! (~180ms)
Delay and delay variance (jitter)

The end-to-end delay (from mouth to ear - for audio), includes:

- encoding, packetization, (transmission, propagation, switching/routing, receiving,)\(^+\) dejittering, decoding, playing

To hide the jitter we generally use playout buffer only in the final receiver.

Note: This playout buffer adds additional delay in order to hide the delay variations (this is called: delayed playback), playback delay > delay variance
There are very nice studies of the effects of delay on perceived voice quality, see R. G. Cole and J. H. Rosenbluth, “Voice over IP Performance Monitoring”[23].

\[
I_d = 0.024d + 0.11(d - 177.3)H(d - 177.3)
\]

\[
d = \text{one-way delay in ms}
\]

\[
H(x) = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{when } x \geq 0
\end{cases}
\]

The delay impairment \((I_d)\) has roughly two linear behaviors, thus for delays less than 177ms conversation is very natural, while above this it become more strained (eventually breaking down ⇒ simplex)

Playout delay

- Playout delay should track the network delay as it varies during a session [29][30]
- This delay is computed for each talk spurt based on observed average delay and deviation from this average delay -- this computation is similar to estimates of RTT and deviation in TCP
- Beginning of a talk spurt is identified by examining the timestamps and/or sequence numbers (if silence detection is being done at the source)
- The intervals between talk spurts\(^1\) give you a chance to catch-up
 - without this, if the sender’s clock were slightly faster than the receiver’s clock the queue would build without limit! This is important as the 8kHz sampling in PC’s CODECs is rarely exactly 8kHz (similar problems happen at other sampling rates\(^2\)).

1. Average silence duration (~596 ms) combine with the average talk-spurt duration (227ms) ⇒ a long-term speech activity factor of 27.6% [327].
2. A common approach is to sample at a high frequency, such as 48 K samples/second, then down sample (or up sample) digitally in software, thus you can take advantage of the fact that you have multiple subsamples for in the incoming speech (or outgoing speech) to do clever things to time expand or compress the audio. Additionally by using a single high frequency for all of the audio that you are sending to (or receiving from) your audio interface you can mix audio from different sources (for example, plaing high quality music in the background while you listen to a G.711 call). For examples of this see [24]
When to play

The actual playout time is not a function of the arrival time, only of the end-to-end delay which can be calculated as shown below:

\[
\text{playout time} = \text{sample generation time} + \text{local clock synchronization correction} + \text{sender packaging delay} + \text{network delay} + \text{jitter-buffer delay}
\]

end-to-end latency

Figure adapted from slide 11 on page 6 of Kevin Jeffay, “Lecture 9: Networking Performance of Multimedia Delivery on the Internet Today”, Lecture notes for COMP 249: Advanced Distributed Systems Multimedia, Dept. of CS, Univ. of North Carolina at Chapel Hill, November 9, 1999. [31]
Retransmission, Loss, and Recovery

For interactive real-time media we generally don’t have time to request the source to retransmit a packet and to receive the new copy ⇒ live without it or recover it using Forward Error Correction (FEC), i.e., send sufficient redundant data to enable recovery.

However, for non-interactive media we can use retransmission at the cost of a longer delay before starting playout

If you do have to generate output, but don’t have any samples to play:

- audio
 - Comfort noise: play white noise or play noise like in the last samples {as humans get uncomfortable with complete silence, they think the connection is broken!} [25]
 - if you are using highly encoded audio even a BER of 10^{-5} will produce very noticeable errors

- video
 - show the same (complete) video frame again
 - you can drop every 100th frame (for a BER of 10^{-2}), but the user will not notice! [26]

There may also be compression applied to RTP see [45].
Patterns of Loss

With simple FEC you could lose every other packet and still not be missing content, but if pairs of packets are lost then you lose content.

To understand temporal patterns of speech, various models have been developed, see for example [42].
Loss concealment

There are various techniques for loss concealment (i.e., hiding losses), such as those used in the Robust Audio Tool (RAT):

- Vicky J. Hardman, Martina Angela Sasse, Anna Watson, and Mark Handley, “Reliable Audio for use over the Internet”, in Proceedings or INET95, Honolulu, Hawaii, Sept. 1995. [27]
 \[http://info.isoc.org/HMP/PAPER/070/html/paper.html\]

- UCL’s Robust Audio Tool (RAT) page:
 \[http://www-mice.cs.ucl.ac.uk/multimedia/software/rat/\]

See also [345] and [346].

For additional work see the AVATS project (\[http://www.cs.ucl.ac.uk/research/avats/\])
VoIP need not be “toll quality”

Public Switched Telephony System (PSTN) uses a fixed sampling rate, typically 8kHz and coding to 8 bits, this results in 64 kbps voice coding.

However, VoIP is not limited to using this coding and could have higher or lower data rates depending on the CODEC(s) used, the available bandwidth between the end points, and the user’s preference(s).

One of the interesting possibilities which VoIP offers is quality which is:

- better that “toll grade” telephony or
- worse than “toll grade” telephony (but perhaps still acceptable)

This is unlike the fixed quality of traditional phone systems.

To assess the quality of a call, see standards such as ITU-T’s Methods for Subjective Determination of Transmission Quality, Recommendation P.80 [41].
RTP: Real-Time Transport Protocol

- First defined by RFC 1889, now defined by RFC 3550 [33]
- Designed to carry a variety of real-time data: audio and video.
- Provides two key facilities:
 - Sequence number for order of delivery (initial value chosen randomly)
 - Timestamp (of first sample) - used for control of playback

Provides no mechanisms to ensure timely delivery.

- VER - version number (currently 2)
- P - whether zero padding follows the payload
- X - whether extension or not
- M - marker for beginning of each frame (or talk spurt if doing silence detection)
- PTYPE - Type of payload - first defined as Profiles in RFC 1890 now defined in RFC 3551

We will address the other fields later.
Payload types

Payload types (PT) for standard audio and video encodings (Adapted from Tables 4 and 5 of RFC3551 [34])

<table>
<thead>
<tr>
<th>PT encoding name</th>
<th>audio (A)</th>
<th>clock rate (Hz)</th>
<th>channels (audio)</th>
<th>PT encoding name</th>
<th>video (V)</th>
<th>clock rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 PCMU</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>24 unassigned V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 reserved</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>25 CelB V</td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td>2 reserved</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>26 JPEG V</td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td>3 GSM</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>27 unassigned V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 G723</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>28 unassigned V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 DVI4</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>29 unassigned V</td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td>6 DVI4</td>
<td>A</td>
<td>16,000</td>
<td>1</td>
<td>30 unassigned V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 LPC</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>31 H.261 V</td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td>8 PCMA</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>32 MPV V</td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td>9 G722</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>33 MP2T AV</td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td>10 L16</td>
<td>A</td>
<td>44,100</td>
<td>2</td>
<td>34..71 unassigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 L16</td>
<td>A</td>
<td>44,100</td>
<td>1</td>
<td>72..76 reserved</td>
<td>N/A</td>
<td>N/A (N/A = Not Applicable)</td>
</tr>
<tr>
<td>12 QCELP</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>77..95 unassigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 CN</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td>96..127 dynamic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 MPA</td>
<td>A</td>
<td>90,000 see RFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 G728</td>
<td>A</td>
<td>8,000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 DVI4</td>
<td>A</td>
<td>11,025</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 DVI4</td>
<td>A</td>
<td>22,050</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 G729</td>
<td>A</td>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 reserved</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20..23 unassigned</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dynamic assignment of mapping between a payload type and an encoding is defined by SDP or H.323/H.245 mechanisms; these start with 96 - but can use lower numbers, if more than 32 encodings are needed - see RFC3551 [34]. RFC3551 says no new static assignments are to be made.
Audio Encodings

Properties of Audio Encodings (adapted from Table 1 of RFC1990 and updated by RFC3551 [34])

<table>
<thead>
<tr>
<th>encoding</th>
<th>description</th>
<th>sample/frame</th>
<th>bits/sample</th>
<th>ms/frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVI4</td>
<td>Interactive Multimedia Assoc.’s DVI ADPCM Wave Type</td>
<td>sample</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>G722</td>
<td>ITU’s G.722: 7 kHz audio-coding within 64 kbit/s</td>
<td>sample</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>G723</td>
<td>ITU’s G.723: Dual-rate speech coder for multimedia communications transmitting at 5.3 and 6.3 kbit/s</td>
<td>frame</td>
<td>N/A</td>
<td>30.0</td>
</tr>
<tr>
<td>G726</td>
<td>ITU’s G.726</td>
<td>frame</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>G728</td>
<td>ITU’s G.728: 16 kbit/s using low-delay CELP</td>
<td>frame</td>
<td>N/A</td>
<td>2.5</td>
</tr>
<tr>
<td>G729</td>
<td>ITU’s G.729: 8 kbit/s using conjugate structure-algebraic code excited linear prediction (CS-ACELP)</td>
<td>frame</td>
<td>N/A</td>
<td>10.0</td>
</tr>
<tr>
<td>GSM</td>
<td>GSM 06.10: RPE/LTP (residual pulse excitation/long term prediction) coding at a rate of 13 kb/s</td>
<td>frame</td>
<td>N/A</td>
<td>20.0</td>
</tr>
<tr>
<td>L8</td>
<td>8 bit linear</td>
<td>sample</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>L16</td>
<td>16 bit linear</td>
<td>sample</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>LPC</td>
<td>Linear Predictive Coding</td>
<td>frame</td>
<td>N/A</td>
<td>20.0</td>
</tr>
<tr>
<td>MPA</td>
<td>MPEG-I or MPEG-II audio encapsulated as elementary streams, from ISO standards ISO/IEC 11172-3 & 13818-3</td>
<td>frame</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>PCMA</td>
<td>G.711 A-law</td>
<td>sample</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PCMU</td>
<td>G.711 mu-law</td>
<td>sample</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>QCLEP</td>
<td>variable-rate version of DVI4</td>
<td>frame</td>
<td>variable</td>
<td>20.0</td>
</tr>
</tbody>
</table>

See also internet Low Bitrate Codec (iLBC) [43]. There is also a lot of work in wideband CODECs, such as Extended Adaptive Multi-Rate Wideband (AMR-WB+) Audio Codec [46], [47], [48]
Other important types of data

Dual Tone Multifrequency (DTMF) digits and telephony tones & signals

To convey signaling information in the audio channel channel dual tone multifrequency signaling is often used.

FAX

Another use of telephony connections is for FAX.

See RFC 4733[36] and RFC 4734[37].

Why is FAX still important?
timestamps

The initial timestamp is to be chosen *randomly* (just as the initial sequence number is selected randomly):

- to avoid replays
- to increase security (this assumes that the intruder does not have access to all the packets flowing to the destination)

The timestamp *granularity* (i.e., the units) are determined by the payload type {often based on the sampling rate}
Stream translation and mixing

| mixing | combining several RTP streams to produce a single stream |
| translation | converting from one encoding to another (also know as **transcoding**) |

Each source has a unique 32 bit **Synchronization Source Identifier**.

When several sources are mixed the new stream gets its own unique **Synchronization Source Identifier** and the IDs of the contributing sources are included as **Contributing Source IDs**, the number of which is indicated in the 4-bit **CC** field of the header.
RTP Control Protocol (RTCP)

[upward] enables endpoints to provide meta-information to the source - this enables the sources to be adaptive to the endpoints. For example, by using an adaptive coding algorithm the source can accommodate the actually data rate of packets arriving at the endpoint.

[downward] enables sources to send the endpoints information about a session

```
0 1 2 3 8 16
VER P RC PTYP Length
```

- VER - version number (currently 2)
- P - whether **padding** follows the payload (last octet indicates how much was added)
- RC - **Report Count** - specifies the number of reports in this packet\(^1\)
- PTYP - **Type of payload**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender Report</td>
<td>SR</td>
<td>Time information for each synchronization source and a count of data octets sent</td>
</tr>
<tr>
<td>Receiver Report</td>
<td>RR</td>
<td>Report of packet loss and jitter, information for timing and round-trip estimation</td>
</tr>
<tr>
<td>Source Description</td>
<td>SDES</td>
<td>Description of who owns the source</td>
</tr>
<tr>
<td>Goodbye</td>
<td>BYE</td>
<td>Receiver leaving the session</td>
</tr>
<tr>
<td>Application</td>
<td>APP</td>
<td>Application-specific report</td>
</tr>
</tbody>
</table>

\(^1\) RTCP uses compound packets with multiple RTCP messages in a single packet.
Compound Reports

If and only if (IFF) the compound packet is to be encrypted: it is prefixed by a random 32-bit quantity selected for each compound packet transmitted.

The first RTCP packet in the compound packet must always be a report packet (either Receiver Report or Sender Report). Followed by up to 30 more report packets (as Report Count is only 5 bits).

This is followed by an Source Description (SDES) packet containing a CNAME item (other information such as NAME, EMAIL, PHONE, LOC {geographic location}, TOOL, NOTE, and PRIV {private extension to SDES} are optional).

BYE should be the last packet sent with a given SSRC/CSRC.
Proposed RTCP Reporting Extensions

See RFC 3611 RTP Control Protocol Extended Reports (RTCP XR)[44]

VoIP Metrics Report Block - provides metrics for monitoring VoIP calls.

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>16</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT=64</td>
<td>reserved</td>
<td>length</td>
<td>7</td>
</tr>
<tr>
<td>loss rate</td>
<td>discard rate</td>
<td>burst duration</td>
<td></td>
</tr>
<tr>
<td>burst density</td>
<td>gap duration</td>
<td>gap density</td>
<td></td>
</tr>
<tr>
<td>round trip delay</td>
<td></td>
<td>end system delay</td>
<td></td>
</tr>
<tr>
<td>signal power</td>
<td>doubletalk</td>
<td>noise level</td>
<td>Gmin</td>
</tr>
<tr>
<td>R factor</td>
<td>ext. R factor</td>
<td>MOS-LQ</td>
<td>MOS-CQ</td>
</tr>
<tr>
<td>RX Config</td>
<td>JB Nominal</td>
<td>JB Maximum</td>
<td>JB Abs Max</td>
</tr>
<tr>
<td>Block Type (BT)</td>
<td>The constant $64 = 0x40$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>8 bits - MUST be set to zero unless otherwise defined.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>Length of this report block in 32-bit words minus one, including the header; constant 6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss Rate</td>
<td>Fraction of RTP data packets from the source lost since the beginning of reception, as a fixed point number with the binary point at the left edge of the field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discard Rate</td>
<td>Fraction of RTP data packets from the source that have been discarded since the beginning of reception, due to late or early arrival, under-run or overflow at the receiving jitter buffer, in binary fixed point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Duration</td>
<td>Mean duration of the burst intervals, in milliseconds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Density</td>
<td>Fraction of RTP data packets within burst intervals since the beginning of reception that were either lost or discarded, in binary fixed point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gap Duration</td>
<td>Mean duration, expressed in milliseconds, of the gap intervals that have occurred.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gap Density</td>
<td>Fraction of RTP data packets within inter-burst gaps since the beginning of reception that were either lost or discarded, in binary fixed point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Round Trip Delay</td>
<td>Most recently calculated round trip time between RTP interfaces, in milliseconds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End System Delay</td>
<td>Most recently estimated end system delay, in milliseconds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Level</td>
<td>Voice signal relative level is defined as the ratio of the signal level to overflow signal level, expressed in decibels as a signed integer in two’s complement form.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doubletalk Level</td>
<td>Defined as the proportion of voice frame intervals during which speech energy was present in both sending and receiving directions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise Level</td>
<td>Defined as the ratio of the silent period background noise level to overflow signal power, expressed in decibels as a signed integer in two’s complement form.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R factor</td>
<td>A voice quality metric describing the segment of the call that is carried over this RTP session, expressed as an integer in the range 0 to 100, with a value of 94 corresponding to "toll quality" and values of 50 or less regarded as unusable; consistent with ITU-T G.107 and ETSI TS 101 329-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ext. R factor</td>
<td>A voice quality metric describing the segment of the call that is carried over an external network segment, for example a cellular network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOS-LQ</td>
<td>Estimated mean opinion score for listening quality (MOS-LQ) is a voice quality metric on a scale from 1 to 5, in which 5 represents excellent and 1 represents unacceptable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOS-CQ</td>
<td>Estimated mean opinion score for conversational quality (MOS-CQ) defined as including the effects of delay and other effects that would affect conversational quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gmin</td>
<td>Gap threshold, the value used for this report block to determine if a gap exists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX Config</td>
<td>PLC - packet loss concealment: Standard (11)/enhanced(10)/disabled (01)/ unspecified(00); JBA - Jitter Buffer Adaptive: Adaptive (11) / non-adaptive (10) / reserved (01) / unknown (00). Jitter Buffer is adaptive then its size is being dynamically adjusted to deal with varying levels of jitter; JB Rate - Jitter Buffer Rate (0-15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter Buffer</td>
<td>Nominal size in frames (8 bit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter Buffer Maximum</td>
<td>Size in frames (8 bit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter Buffer Absolute Maximum</td>
<td>Size in frames</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RTP translators/mixers

Translator changes transport (e.g., IPv4 to IPv6) or changes media coding (i.e., transcoding)
Mixer combines multiple streams to form a combined stream

Connect two or more transport-level “clouds”, each cloud is defined by a common network and transport protocol (e.g., IP/UDP), multicast address or pair of unicast addresses, and transport level destination port.

To avoid creating a loop the following rules must be observed:

• “Each of the clouds connected by translators and mixers participating in one RTP session either must be distinct from all the others in at least one of these parameters (protocol, address, port), or must be isolated at the network level from the others.

• A derivative of the first rule is that there must not be multiple translators or mixers connected in parallel unless by some arrangement they partition the set of sources to be forwarded.”

From §7.1 General Description of RFC 1889
Synchronizing Multiple Streams

One of the interesting things which RTP supports is synchronization of multiple streams (e.g., audio with a video stream)

<table>
<thead>
<tr>
<th>0 1 2 3 8 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER</td>
</tr>
<tr>
<td>Sender’s Synchronization Source ID</td>
</tr>
<tr>
<td>NTP Time Stamp (most significant 32 bits)</td>
</tr>
<tr>
<td>NTP Time Stamp (least significant 32 bits)</td>
</tr>
<tr>
<td>RTP Timestamp</td>
</tr>
<tr>
<td>Sender’s Packet Count</td>
</tr>
<tr>
<td>Sender’s Octet Count</td>
</tr>
<tr>
<td>First Synchronization Source</td>
</tr>
<tr>
<td>Fraction Lost</td>
</tr>
<tr>
<td>Total Packets Lost</td>
</tr>
<tr>
<td>Extended Highest Sequence Received</td>
</tr>
<tr>
<td>Inter-arrival Jitter</td>
</tr>
<tr>
<td>Last Sender Report</td>
</tr>
<tr>
<td>Delay Since Last Sender Report</td>
</tr>
<tr>
<td>…</td>
</tr>
</tbody>
</table>

- Unfortunately since the time stamps of each stream started at a random number we need some other method to synchronize them!
- Thus use Network Time Protocol (NTP) based time stamps ⇒ an absolute timestamp
- Since we now include the stream timestamps we can correlate these to absolute time (and hence from one stream to another)
RTP Transport and Many-to-many Transmission

RTP uses a connectionless transport (usually UDP):

- Retransmission is undesirable (generally it would be too late)
- Since RTP handles flow control and sequencing we don’t need this from the transport protocol
- RTP is packet oriented
- Enables us to easily use multicast (when there are many endpoints that want the same source stream)
 - multicast identified a group
 - these multicast groups can be dynamic
Sessions, Streams, Protocol Port, and Demultiplexing

<table>
<thead>
<tr>
<th>Session</th>
<th>All traffic that is sent to a given IP address, port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
<td>a sequence of RTP packets that are from a single synchronization source</td>
</tr>
</tbody>
</table>

Demultiplexing:

<table>
<thead>
<tr>
<th>Demultiplexing Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>session demultiplexing</td>
<td>occurs at the transport layer based on the port number</td>
</tr>
<tr>
<td>stream demultiplexing</td>
<td>occurs once the packet is passed to the RTP software, based on the synchronization source identifier - then the sequence number and timestamp are used to order the packet at a suitable time for playback</td>
</tr>
</tbody>
</table>
Further details of RTP and RTCP

Note that an important aspect of RTCP is the rate of sending reports.

- “It is RECOMMENDED that the fraction of the session bandwidth added for RTCP be fixed at 5%.” [33]
- “It is also RECOMMENDED that 1/4 of the RTCP bandwidth be dedicated to participants that are sending data so that in sessions with a large number of receivers but a small number of senders, newly joining participants will more quickly receive the CNAME for the sending sites.” [33]
- Senders can be divided into two groups “… the RECOMMENDED default values for these two parameters would be 1.25% [active senders] and 3.75% [in-active senders] …”. [34]
 - ⇒ in-active sender ≅ receivers should generate at a rate of ~3.75% of the session traffic
 - of course: receivers on receive only links can not generate any reports
Real Time Streaming Protocol (RTSP)

- remote media playback control (think in terms of controlling a remote VCR/DVD/CD player)
- similar to HTTP/1.1, but
 - introduces new methods
 - RTSP servers maintain state
 - data carried out of band (i.e., in RTP packets)
- can use UDP or TCP
- Uses Web security methods (see [50])

Some of the server implementations are: Darwin Streaming server, Helix DNA server, VideoLAN, Microsoft’s Windows Media Server, Gstreamer, ...
<title>Twister</title>
<pre>
<session>
 <group language=en lipsync>
 <switch>
 <track type=audio e="PCMU/8000/1" src="rtsp://audio.example.com/twister/audio.en/lofi">
 <track type=audio e="DVI4/16000/2" pt="90 DVI4/8000/1" src="rtsp://audio.example.com/twister/audio.en/hifi">
 </switch>
 <track type="video/jpeg" src="rtspu://video.example.com/twister/video">
 </group>
</session>

From figure 6: “Sample RTSP session description” of Henning Schulzrinne,
“A comprehensive multimedia control architecture for the Internet”

References and Further Reading

Also important are the measures of delay, delay jitter, throughput, packet loss, etc. IP Performance Metrics (ippm) is attempting to specify how to measure and exchange information about measurements of these quantities.

RTP and RTCP

http://www.cnel.ufl.edu/~markskow/papers/windows.ppt

[40] CCITT, Methods for Subjective Determination of Transmission Quality, CCITT, Recommendation P.80, 1998, A later version of the standard is ITU-T Recommendation P.80, 1993, Section 7: Subjective Opinion Tests, paragraph 3.1.2.3 Silence (gap) characteristics,
http://starlet.deltatel.ru/ccitt/1988/ascii/5_1_06.txt

RTSP

Session Initiation Protocol (SIP)

SIP was initially developed by the IETF Multiparty Multimedia Session Control (MMUSIC) working group, from Sept. 1999 in the IETF SIP working group\(^1\).

SIP is a **text-based** protocol, similar to HTTP and SMTP, for initiating interactive communication sessions between users. Sessions include: voice, video, chat, interactive games, and virtual reality.

SIP working group’s charter: “… to maintain the basic model and architecture defined by SIP. In particular:

1. Services and features are provided **end-to-end** whenever possible\(^2\).
2. Extensions and new features must be generally applicable, and not applicable only to a specific set of session types.
3. Simplicity is key.
4. Reuse of existing IP protocols and architectures, and integration with other IP applications, is crucial.

1. Now the **Session Initiation Protocol Core (sipcore)** working group.
2. The use of end-to-end control is the exact opposite of the centralized control in traditional telecommunication networks.
SIP WG’s deliverables

- SIP specification
- **callcontrol**: call control specifications, which enables multiparty services, e.g., transfer and bridged sessions
- **callerpref**: caller preferences extensions, enables intelligent call routing services
- **mib**: a MIB for SIP nodes
- **precon**: extensions needed to assure satisfaction of external preconditions, e.g., QoS establishment
- **state**: extensions needed to manage state within signaling, aka SIP "cookies"
- **priv**: extensions for security and privacy
- **security**: security and privacy mechanisms and requirements
- **provrel**: extensions needed for reliability of provisional messages
- **servfeat**: extensions needed for negotiation of server features
- **sesstimer**: Session Timer extension
- **events**: Events extensions (Subscribe/Notify)
- **natfriend**: Extensions for making SIP a NAT-friendly protocol
Related IETF Working groups

- avt (Audio/Video Transport)
- bliss (Basic Level of Interoperability for SIP Services)
- codec (Internet Wideband Audio CODEC)
- dispatch (Dispatch)
- drinks (Data for Reachability of INter/tra-Network SIP)
- ecrit (Emergency Context Resolution with Internet Technologies)
- enum (Telephone Number Mapping)
- geopriv (Geographic Location/Privacy)
- p2psip (Peer-to-peer SIP)
- salud (SIP ALeerting for User Devices)
- simple (SIP for Instant Messaging and Presence Leveraging Extensions)
- sipclf (SIP Common Log Format)
- sipcore (SIP Core)
- sipprec (SIP recording)
• soc (SIP Overload Control)
• speechsc (Speech Services Control)
• speermint (Session PEERing for Multimedia INTerconnect)
• splices (loosely-coupled slp devices) [new - for disaggregated media]
• xcon (Centralized conferencing)
• xmpp (Extensible Messaging and Presence Protocol)

Historic
• PSTN and Internet Internetworking (PINT) WG
 • origin of SUBSCRIBE/NOTIFY
• IP telephony (IPTEL) WG
 • Call Processing Language (CPL), Telephony Routing over IP (TRIP)
• SPIRITS (Service in PSTN requesting Internet Services) - SIP as ‘transport’ mechanism for services that originate in the PSTN
Related working groups

- Distributed Call Signaling (DCS) Group of the PacketCable Consortium (http://www.packetcable.com/) for distributed telephony services
- 3rd Generation Partnership Project (3GPP), 3rd Generation Partnership Project 2 (3GPP2), -- 3rd generation wireless network efforts
Session Initiation Protocol (SIP)

- Defined in RFC 3261 [56], updated by RFC 3853[72] & RFC 4320[71]
- provides application layer signaling
 - Used to establish, modify, and terminate multimedia sessions
- can utilize UDP, TCP, TLS, SCTP, … for underlying transport
- HTTP-like
 - uses textual rather than binary (ala H.323) messages (⇒ humans can read them)
 - uses Uniform Resource Indicators (URIs) to designate calling and called parties
- target applications: voice, video, gaming, instant messaging, presence, call control¹, …

SIP is an alternative to H.323. SIP only covers the signaling parts of H.323.
SIP does not use RTP itself, but sessions can use RTP.
 - SIP provides ability to discover remote users and establish interactive sessions
 - Does not ensure QoS or deliver large quantities of data

SIP uses SDP (Session Description Protocol) to provide information about a call, such as, the media encoding, protocol port number, multicast addresses, etc.

¹ Largely taken from Advanced Intelligent Network (AIN).
Is SIP simple?

- first 25 related RFCs (for SIP and SDP) - total of 823 pages (SIP alone: 269 pages)
- RFC3261 was longest RFC ever (based on byte count; 663,043 bytes)
- There are claims that one can still build a simple user agent in a (long) evening, but there is **substantial** work required with respect to security (due to TLS, S/MIME, AAA, Denial of Service issues, ...)

SIP timeline - showing a simple version of Alice invites Bob to a SIP session:

```
Alice    Invite    Bob
          OK,200
          ACK
media session
          Bye
```
SIP, RTP, and RTSP

<table>
<thead>
<tr>
<th>audio/video applications</th>
<th>signaling and control</th>
<th>streaming applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>video, audio, … CODECs</td>
<td>RTP</td>
<td>CODECs</td>
</tr>
<tr>
<td>RTP</td>
<td>SDP</td>
<td>RTSP</td>
</tr>
<tr>
<td>UDP</td>
<td>TCP</td>
<td>IP</td>
</tr>
</tbody>
</table>

CODECs RTCP

SDP

SIP

RTCP

RTP

UDP

TCP

IP
SIP actors

Figure 4: SIP Actors (presence entity names in blue)
SIP Methods and Status Codes

<table>
<thead>
<tr>
<th>Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVITE</td>
<td>Invites a user to join a call.</td>
</tr>
<tr>
<td>ACK</td>
<td>Confirms that a client has received a final response to an INVITE.</td>
</tr>
<tr>
<td>BYE</td>
<td>Terminates the call between two of the users on a call.</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>Requests information on the capabilities of a server.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Ends a pending request, but does not end the call.</td>
</tr>
<tr>
<td>REGISTER</td>
<td>Provides the map for address resolution, this lets a server know the location of a user.</td>
</tr>
</tbody>
</table>

At least 8 additional methods have been defined see SIP Method Extensions in other RFCs on page 184.

SIP Status codes - patterned on and similar to HTTP’s status codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xx</td>
<td>Informational or Provisional - request received, continuing to process the request</td>
</tr>
<tr>
<td>2xx</td>
<td>Final - the action was successfully received, understood, and accepted</td>
</tr>
<tr>
<td>3xx</td>
<td>Redirection - further action needs to be taken in order to complete the request</td>
</tr>
<tr>
<td>4xx</td>
<td>Client Error - the request contains bad syntax or cannot be fulfilled at this server</td>
</tr>
<tr>
<td>5xx</td>
<td>Server Error - server failed to fulfill an apparently valid request (Try another server!)</td>
</tr>
<tr>
<td>6xx</td>
<td>Global Failure - the request cannot be fulfilled at any server (Give up!)</td>
</tr>
</tbody>
</table>
SIP Uniform Resource Indicators (URIs)

Two URI schemes - similar to the form of an e-mail addresses: user@domain

- **SIP URI** - introduced in RFC 2543
 - example: sip:maguire@kth.se
- **Secure SIP URI** - introduced in RFC 3261
 - example: sips:maguire@kth.se
 - Requires TLS over TCP as transport for security

Three types of SIP URIs:

- **Address of Record (AOR) (identifies a user)**
 - example: sip:maguire@kth.se
 - Need DNS SRV records to locate SIP Servers for kth.se domain
- **Fully Qualified Domain Name (FQDN) (identifies a specific device)**
 - examples: sip:maguire@130.237.212.2 or sip:maguire@chipsphone.it.kth.se
 - sip:+46-8-790-6000@kth.se; user=phone: the main KTH phone number in E.164 format via a gateway; note that the visual separators in a phone number (dashes, dots, etc.) are ignored by the protocol
- **Globally Routable UA URIs (GRUU) (identifies an instance of a user at a given UA, for the duration of the registration of the UA to which it is bound)** [69]
Issues to be considered

- Address Resolution
- Session Setup
- Media Negotiation
- Session Modification
- Session Termination
- Session Cancellation
- Mid-call Signaling
- Call Control
- QoS Call setup
Address Resolution

The first step in routing the SIP request is to compute the mapping between the URI and a specific user at a specific host/address.

This is a very general process and the source of much of SIP’s power.

- providing support for mobility and portability

- Can utilize:
 - DNS SRV lookup
 - ENUM
 - Location Server lookup

We will look at this in detail (see DNS and ENUM on page 251), but for now will assume a simple DNS lookup based on the URI.
Simple version of Alice invites Bob to a SIP session:

```
Alice
   Invite
  OK,200
   ACK
  session
   Bye
Bob
```

We begin by examining the details of session setup. For lots of examples of basic call flows see [66].
SIP Invite

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhs
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

SIP is a text-based protocol and uses ISO 10646 character set in UTF-8 encoding (RFC 2279). The message body uses MIME and can use S/MIME for security.

The generic form of a message is:

\[
generic-message = start-line
message-header*
CRLF
[message-body]
\]

1. Example adapted from draft-ietf-sip-rfc2543bis-06.ps
Bob’s response to Alice’s INVITE

SIP/2.0 200 OK
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com:5060;branch=z9hG4bK77ef4c2312983.1
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK Nashds8
To: Bob <sip:bob@biloxi.com>; tag=a6c85cf
From: Alice <sip:alice@atlanta.com>; tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:bob@192.0.2.8>
Content-Type: application/sdp
Content-Length: 131

{Bob’s SDP not shown}

1. Example adapted from draft-ietf-sip-rfc2543bis-06.ps
ACK

ACK sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 ACK
Content-Length: 0

A successful set-up sequence was: INVITE/200/ACK

A set-up failure would be a sequence such as: INVITE/4xx¹/ACK

NB: INVITE is the only method in SIP that involves a 3-way handshake with ACK

The further setup of the call can proceed directly between Alice and Bob, based on the the information (especially that in SDP) which they have exchanged.

Now we will examine the details of these initial SIP messages!

¹ or 5xx or 6xx
SIP Invite (method/URI/version)

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

Start Line is the first line of a SIP message which contains:

- **method or Request type:** INVITE
- **Request-URI which indicates who the request is for:** sip:bob@biloxi.com
- **SIP version number:** SIP/2.0
SIP Via

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP proxy.stockholm.se:5060;branch=82.1
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

- **Via** headers show the path the request has taken in the SIP network
 - A Via header is inserted by the User Agent which initiated the request (this will be last in the list of Via headers)
 - Via headers are inserted above this by proxies in the path (i.e., this details the path taken by the request)

- **Via** headers are used to route responses back the same way the request came
 - this allows stateful proxies to see both the requests and responses
 - each such proxy adds the protocol, hostname/IP address, and port number

- The “branch” parameter is used to detect loops
Dialog (Call leg) Information

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

• Dialog\(^1\) (formerly “call leg”) information is in headers:
 • **To** tag, **From** tag, and **Call-ID** -- all requests and responses in this call will use this same dialog information.
 • “**To**” specifies the logical recipient of the message, “**From**” the logical sender -- the string “Bob” is called a “display name”

• **Call-ID** is unique identifier
 • The Call-ID is an arbitrary number, but it uniquely identifies this call (i.e., **session**), hence all future references to this session refer to this Call-ID
 • usually composed of a pseudo-random string @ hostname or IP Address

1. A Dialog formally begins upon receipt of a response containing a tag. It is called an “Early dialog” when the response was a 18x provisional response.
SIP CSeq

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

- **Command Sequence (CSeq) Number**
 - Initialized at start of call (1 in this example)
 - Incremented for each subsequent request
 - Used to distinguish a retransmission from a new request
- Followed by the **request type** (i.e., SIP method)
SIP Contact

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

- **Contact** header contains a SIP URL for direct communication between User Agents
 - If Proxies do not Record-Route\(^1\), they can be bypassed
- **Contact** header is also present in the **200 OK** response

\(^1\) Note that the Record-Route and Route headers approach of RFC 2543 was found not to work.
SIP Content Type and Length

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

- **Content-Type** indicates the type of message body attachment (others could be text/plain, application/cpl+xml, etc.)
 - Here “application/sdp” indicates that it is SDP
- **Content-Length** indicates length of the message body in octets (bytes)
 - 0 indicates that there is no message body.
SIP Max-Forwards

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com:5060;branch=z9hG4bK776asdhds
Max-Forwards: 30
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

- Max-Forwards is decremented by each proxy that forwards the request.
- When count goes to zero, request is discarded and 483 Too Many Hops response is sent.
- Used for stateless loop detection.
Other header fields

- **Content-Encoding**:
- **Allow**:
- **Expires**:
- **In-Reply-To**:
- **Priority**: indicated priority of displaying a message to a user
 - Normal
 - Urgent
 - Non-Urgent
 - Emergency
- **Require**: contains a list of options which the server is expected to support in order to process a request
- **Retry after**: number of seconds after which a requestor should try again
- **Supported**: enumerates all the extensions supported the sender
 (NB: this differs from a “Require” which requires that a destination supports the given extension)
Several types of SIP Servers

- **User agent server** runs on a SIP terminal (could be a SIP phone, a PDA, laptop, ...) - it consists of two parts:
 - User Agent Client (UAC): initiates requests
 - User Agent Server (UAS): responds to requests

- **SIP proxy** - interprets (if necessary, rewrites specific parts of a SIP request message) before forwarding it to a server closer to the destination:
 - SIP *stateful* proxy server - remembers its queries and answer; can also forward several queries in parallel (can be **Transaction Stateful** or **Call Stateful**).
 - SIP *stateless* proxy server
 - Proxies ignore SDP and do **not** handle any media (content)
 - **Outgoing proxy**: used by a user agent to route an outgoing request
 - **Incoming proxy**: proxy server which supports a domain (receives incoming requests)

- **SIP redirect server** - directes the client to contact an alternate URI

- **Registrar server** - receives SIP REGISTER requests updates LS

- **Location server** (LS) - knows the current binding and queried by Proxies to do their routing
 - SIP can also use DNS SRV (Service) Records used to locate (inbound) proxy.
 - note in RFC 2543: a location server is a generic term for a **database**
Figure 5: SIP Trapezoid

SIP Call Setup

Figure 6: SIP Call Setup - when B has not registered

Figure 7: SIP Call Setup Attempt - when B has not registered

1. INVITE
2. 100 Trying
3. DNS query
4. DNS reply with IP address of Inbound Proxy Server
5. INVITE
6. 100 Trying
7. Query for B
8. Response B not registered
9. 480 Temporarily Unavailable
10. ACK
SIP Call Setup Attempt

Figure 8: SIP Call Setup Attempt - when B has not registered (continued)

SIP Presence

Figure 9: SIP Presence: A asks to be told when B registers

SIP B not Present

Figure 10: NOTIFY A that B has <Not Signed In>

SIP Registration Example

Figure 11: B registers

User B registers in order to establish their current device and location

- Only their location server need know
 - The location server need not disclose this location to "just anyone", but can apply various policies to decide who can learn of it, i.e., their location server can decide who can ask for B’s location and when they can ask (perhaps even limiting it to where they can ask from).
 - This has significant privacy implications.

- This scales well - as B only has to update their location server, rather than having to inform all possible callers.

To learn about proxies between the user agent and the Registrar - see [59].
REGISTERing

REGISTER request includes one or more Contact headers:

- `Contact: <sip:UserA@4.3.2.1>;class=personal`
- `Contact: <sip:UserA-msg-depot@voicemail.provider.com>;feature=voicemail`
- `Contact: <sip:+13145551212@gateway.com;user=phone>;class=business`
- `Contact: <sip:+13145553333@cellphone.com;user=phone>;mobility=mobile`
- `Contact: <tel:+13145551212>`
- `Contact: <mailto:UserA@hotmailer.com>`

Details at: Sinnreich & Johnston, pp. 78-79 and User Preferences on page 345.
SIP Call Setup Attempt

1. INVITE
2. 100 Trying
3. DNS query
4. DNS reply with IP address of Inbound Proxy Server
5. INVITE
6. 100 Trying
7. Query for B
8. Response: sip:B@1.2.3.4
9. INVITE
10. 180 Ringing
11. 180 Ringing
12. 180 Ringing
13. 200 OK
14. 200 OK
15. 200 OK
16. ACK

User Agent A

Media (RTP)

User Agent B

User Agent B

Location Server

Outbound Proxy Server

DNS Server

Inbound Proxy Server

Figure 12: SIP Call Setup Attempt - when B has registered

SIP Session Termination using BYE

BYE causes the media session to be torn down.
Note: BYE like INVITE is an end-to-end method.
CANCEL causes the session to be cancel. Note: If a reply is 481 Transaction Unknown, then the user agent may need to send a BYE since the CANCEL was received after the final reponse was sent (there was a race condition).
CANCEL and OPTIONS

CANCEL

- In addition to canceling a pending session
- **CANCEL** can also be sent by a proxy or user agent
 - for example, when a parallel fork has been done, once you have a successful match, then you can cancel the others

OPTIONS

- Used to query a server or user agent for its capabilities
- sometimes used for very simple presence information
Unsuccessful final responses are hop-by-hop

Unsuccessful final responses (3xx, 4xx, 5xx, 6xx) are always acknowledged on a hop-by-hop basis.

Only 200 OK is end-to-end.
Authentication

Builds upon authentication schemes developed for HTTP (see RFC 2716), for example challenge/response, digest, ...

Two forms:

- **user agent-to-user agent**
 - 401 Unauthorized ⇒ Authentication Required

- **user agent-to-server**
 - 407 Proxy Authentication Required ⇒ Authentication Required (response sent by a proxy/server)

Note: Any SIP request can be challenged for authentication.

Note: There is no integrity protection, for additional information see SIP Security, NATs, and Firewalls on page 355.
SIP Method Extensions in other RFCs

See “Guidelines for Authors of Extensions to the Session Initiation Protocol (SIP)”[61]

• **INFO - Call signaling information during a call**

• **PRACK - Reliable ACK**
 • RFC 3262: Reliability of Provisional Responses in Session Initiation Protocol (SIP), June 2002

• **SUBSCRIBE/NOTIFY**

• **REFER**
 • RFC 3515: The Session Initiation Protocol (SIP) Refer Method, April 2003 [62]
 • RFC 3892: The Session Initiation Protocol (SIP) Referred-By Mechanism, Sept. 2004 [63]

• **MESSAGE**
 • RFC 3428: Session Initiation Protocol Extension for Instant Messaging, December 2002 [64]

• **UPDATE - Early media and preconditions**
 • RFC 3311: The Session Initiation Protocol (SIP) UPDATE Method. October 2002 [65]
SIP Extensions and Features

• Method Extensions
 • Unknown methods rejected by User Agent using 405 or 501 response
 • Listed in Allow header field
 • Proxies treat unknown methods as a non-INVITE

• Header Field Extensions
 • Unknown header fields are ignored by user agents and proxies
 • Some have feature tags registered, these can be declared in a Supported or Require header field

• Message Body Extensions
 • Unknown message body types are rejected with a 406 response
 • Supported types can be declared with an Accept header field
 • Content-Disposition indicates what to do with it

• Extension must define failback to base SIP specification.

⇒ No Profiling is needed
 • unlike for example, Bluetooth!
SIP Presence - Signed In

Figure 13: NOTIFY A that B has <Signed In>

If user B’s agent does not wish to provide user A’s agent with a notification it sends a 603 Decline response.
SIP Instant Messaging Example

1. MESSAGE
 <Can you talk now?>

2. 100 Trying

4. DNS reply with IP address of Inbound Proxy Server
5. MESSAGE
 <Can you talk now?>

6. Query for B
7. Response: sip:B@1.2.3.4

8. MESSAGE
 <Can you talk now?>

9. 200 OK
10. 200 OK
11. 200 OK

Figure 14: A sends a message to B

SIP Instant Messaging Example (continued)¹

Figure 15: B sends a message to A

Message example

A simple Instant Message (IM) as SIP:

```
MESSAGE im:UserB@there.com SIP/2.0
Via: SIP/2.0/UDP 4.3.2.1
To: User B <im:UserB@there.com>
From: User A <im:UserA@here.com>
Call-ID: a5-32-43-12@4.3.2.1
CSeq: 1 MESSAGE
Content-type: text/plain
Content-Length: 16

Hi, How are you?
```

The response will be a 200 OK from B.

Note: the example uses IM URIs instead of SIP URIs.

A MESSAGE request can be sent at anytime (even without a session).

For further information about the work of the IETF working group on Instant Messaging and Presence Protocol (impp) see

Midcall signaling

Midcall signaling used when the session parameters don’t change, to exchange information between two user agents via the body of an \texttt{INFO} message. If the session parameters did change then you would use a \texttt{re-INVITE}.

Note in the above figure the ISUP messages: IAM (Initial address message), INM (Answer message), and USR (user-to-user message).
Call Control

SIP is peer-to-peer -- thus a proxy cannot issue a \texttt{BYE}, only end devices (UAs) can.

To methods for third party call control:

\begin{itemize}
 \item A proxy passes an invite on, but \textbf{stays in the signaling path}
 \item Use \texttt{REFER} to initial third party control (the third party is no longer in the signaling path).
\end{itemize}

Useful for:

\begin{itemize}
 \item click-to-call
 \item Automatic Call Distribution (ACD)
 \item web call center
 \item …
\end{itemize}
Example of using **REFER**

Third party call control, by User A to set up a session between Users B and C.

Note: the use by A of an **INVITE** with a **Refer-to** header and the user by B of an **INVITE** with a **Referred-By** header.
QoS and Call Setup

The path which SIP takes may be different that the media path, thus new extensions were added to enable more handshaking:

- **Early Media** - by allowing SDP to be included in the 183 Session Progress response (allows establishment of QoS requirements before call is answered) - may also enable one-way RTP {hence the name “early media”}, formally: “media during early dialog”

- **Reliable Provisional Responses** extension allows detection of a lost 183 Session Progress response based on using Provisional Response Acknowledgement (PRACK)

- **UAs** can use preCOnditions MET (COMET) method to indicate that the QoS requirements can be met and that the user can be alerted by ringing the phone.

SDP in the INVITE contains an attribute-value pair: "a=qos:mandatory".

For further details see: RFC3312 [57] and RFC3262 [58]; more about SDP in the next lecture module.
SIP Message retransmission

<table>
<thead>
<tr>
<th>Timer</th>
<th>default</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>500ms</td>
<td>Set when SIP request is first sent</td>
</tr>
<tr>
<td>T2</td>
<td>4 sec.</td>
<td>Longer timeout when a provisional response has been received</td>
</tr>
</tbody>
</table>

If a request is lost, then timeout T1 will generate a retransmission of the request.

If a request is received and a provisional response is received, then sender switches to timeout T2 (to wait for the final response).

INVITE is different:

- receiving a provisional response stops all re-transmissions of the INVITE;
- however, the sender of the provisional response starts a T1 timer when it sends its final response and if it does not get an ACK in time it retransmits the final response.

If you want/need acknowledgement of provisional responses use PRACK. {For some problems with timeouts for non-INVITE transactions see [70][71].}
RFC 3261 - Routing Changes

• Introduced “loose routing” vs. RFC 3543’s “strict routing”
 • Examples:
 – Pre-loaded (initial INVITE) Route header can be used instead of the default outbound proxy (DOP)
 – Pre-loaded Route header can be used to invoke “home proxy” services (when you are roaming)
 – Additional proxies can be added as needed (for example, adding routing during a call)
• All elements must insert branch parameter as a transaction ID in Via header fields
• Contact header required in all requests that establish a dialog
• From and To tags are now mandatory
• Recommend users of Fully Qualified Domain Name (FQDN) instead of IP addresses
• Via loop detection no longer required of proxies
 • Use of Max-Forwards is now mandatory
• Via hiding is deprecated (i.e., should no longer be used)
 • because it turned out not to be secure or useful
RFC 3261 - New Services

- Customized ringing
 - A trusted proxy can insert an Alert-Info header field into an INVITE

- Screen Pops
 - A trusted proxy can insert an Call-Info header field into an INVITE
 - URI can be HTTP and can contain call control “soft keys”

- Callback
 - Reply-to and In-Reply-To header - to assist in returning calls

- Announcement handling
 - UAS or proxy need not make a decision about playing an early media announcement
 - Error response contains new Error-Info header field which contains the URI of the announcement
 - UAC makes a decision based on the user’s interface
Compression of SIP

As textual protocols, some might think that SIP and SDP are too verbose, hence RFC 3486 [68] describes how SIP and SDP can be compressed. RFC 3485 [67] describes a static dictionary which can be used with Signaling Compression (SigComp) to achieve even higher efficiency.
ITU has defined a set of service features (think of them as primitives which can be use to construct more complex services). These are divided into two sets:

- Capability Set 1: Service Features
- Capability Set 2

J. Lennox, H. Schulzrinne, and T. F. La Porta, “Implementing Intelligent Network Service with the Session Initiation Procol” [74] addresses Capability Set 1:

<table>
<thead>
<tr>
<th>Capability Set 1</th>
<th>Capability Set 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviated Dialing (ABD)</td>
<td>Call queueing (QUE)</td>
</tr>
<tr>
<td>Attendant (ATT)</td>
<td>Call transfer (TRA)</td>
</tr>
<tr>
<td>Authentication (AUTC)</td>
<td>Call waiting (CW)</td>
</tr>
<tr>
<td>Authorization code (AUTZ)</td>
<td>Closed usergroup (CUG)</td>
</tr>
<tr>
<td>Automatic callback (ACB)</td>
<td>Consultation calling (COC)</td>
</tr>
<tr>
<td>Call distribution (CD)</td>
<td>Customer profile management (CPM)</td>
</tr>
<tr>
<td>Call forwarding (CF)</td>
<td>Customer recorded announcement (CRA)</td>
</tr>
<tr>
<td>Call forwarding on busy/don’t answer (CFC)</td>
<td>Customized ringing (CRG)</td>
</tr>
<tr>
<td>Call gapping (GAP)</td>
<td>Destinating user prompter (DUP)</td>
</tr>
<tr>
<td>Call hold with announcement (CHA)</td>
<td>Follow-me diversion (FMD)</td>
</tr>
<tr>
<td>Call limiter (LIM)</td>
<td>Mass calling (MAS)</td>
</tr>
<tr>
<td>Call logging (LOG)</td>
<td>Meet-me conference (MMC)</td>
</tr>
<tr>
<td>Multi-way calling (MWC)</td>
<td>Premium charging (PRMC)</td>
</tr>
</tbody>
</table>

Off-net calling (ONC)
One number (ONE)
Origin dependent routing (ODR)
Originating call screening (OCS)
Originating user prompter (OUP)
Personal numbering (PN)
Premium charging (PRMC)
Private numbering plan (PNP)
Reverse charging (REVC)
Split charging (SPLC)
Terminating call screening (TCS)
Time dependent routing (TDR)
Capability Set 1: Services

Abbreviated dialling (ABD)
Account card calling (ACC)
Automatic alternative billing (AAB)
Call distribution (CD)
Call forwarding (CF)
Call rerouting distribution (CRD)
Completion of calls to busy subscriber (CCBS)
Conference calling (CON)
Credit card calling (CCC)
Destination call routing (DCR)
Follow-me diversion (FMD)
Freephone (FPH)
Malicious call identification (MCI)
Mass calling (MAS)
Originating call screening (OCS)
Premium rate (PRM)
Security screening (SEC)
Selective call forwarding on busy/don’t answer (SCF)
Selective call forwarding
Call forwarding on busy
Call forwarding on don’t answer (no reply)
Split charging (SPL)
Televoting (VOT)
Terminating call screening (TCS)
Universal access number (UAN)
Universal personal telecommunications (UPT)
User-defined routing (UDR)
Virtual private network (VPN)
Capability Set 2

Wireless services
Inter-network services
Multimedia
Call pick-up
Calling name delivery
Features

List of features adopted from http://www.miercom.com/survey - augmented with my own notes with respect to SIP supporting this feature:

<table>
<thead>
<tr>
<th>SIP</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>911/E-911 support</td>
<td>Emergency services</td>
</tr>
<tr>
<td></td>
<td>Audible message waiting</td>
<td>An audible indicator when there is a new message</td>
</tr>
<tr>
<td></td>
<td>Automated attendant</td>
<td>Answers and routes calls automatically based on caller responses; e.g., via Interactive Voice Response (IVR) or DTMF prompts</td>
</tr>
<tr>
<td>✔</td>
<td>Automatic alternate routing</td>
<td>Routes calls automatically based on user-defined routing parameters, priorities, and failover/availability decisions.</td>
</tr>
<tr>
<td>✔</td>
<td>Automatic call back</td>
<td>Calls an extention back automatically when a busy signal or no answer is encountered. Also known as Camp on.</td>
</tr>
<tr>
<td></td>
<td>Bridged call appearance</td>
<td>Allows the same phone number to appear and be answered on multiple phone sets.</td>
</tr>
<tr>
<td>✔</td>
<td>Call blocking</td>
<td>Selectively blocks calls from user-defined origins</td>
</tr>
<tr>
<td>SIP</td>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>✤</td>
<td>Call conference</td>
<td>An audio path for multiple parties on a single call, established via user keystrokes and no outside intervention.</td>
</tr>
<tr>
<td>✤</td>
<td>Call drop</td>
<td>Terminates a call without hanging up the receiver.</td>
</tr>
<tr>
<td>✔</td>
<td>Call forward all</td>
<td>Redirects all calls to another station or location.</td>
</tr>
<tr>
<td>✔</td>
<td>Call forward on busy</td>
<td>Redirects all calls to another station or location when the user’s is busy.</td>
</tr>
<tr>
<td>✔</td>
<td>Call forward on no answer</td>
<td>Redirects all calls to another station or location after a specified number of rings.</td>
</tr>
<tr>
<td>✔</td>
<td>Call hold</td>
<td>Places an incoming call on hold or retrieves a call placed on hold.</td>
</tr>
<tr>
<td>✔</td>
<td>Call pick-up</td>
<td>Allows a user to place a call on hold, then resume it from another phone in the system.</td>
</tr>
<tr>
<td>✤</td>
<td>Call return</td>
<td>Calls back the last incoming number.</td>
</tr>
<tr>
<td>✤</td>
<td>Call transfer</td>
<td>Redirects an answered call to another user.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Rick Dean, Billy Biggs, and R. Mahy, “The Session Initiation Protocol (SIP) ’Replaces’ Header”, Internet Draft, 16 May 2002 -- for ‘Attended Transfer’ and ‘Retrieve from Call Park’</td>
</tr>
<tr>
<td>✔</td>
<td>Call waiting</td>
<td>An audible indicator heard when there is another call pending.</td>
</tr>
<tr>
<td>✔</td>
<td>Caller ID</td>
<td>Displays the name and/or number of the calling party.</td>
</tr>
<tr>
<td>SIP Feature</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Call Detail Recording (CDR)</td>
<td>Records call data on a specific extension or group of extensions.</td>
<td></td>
</tr>
<tr>
<td>Class of service</td>
<td>Restricts access to features based upon users' privilege level(s).</td>
<td></td>
</tr>
<tr>
<td>Direct inward system access</td>
<td>Dial-in system station appearance.</td>
<td></td>
</tr>
<tr>
<td>✔ Direct transfer to voice mail</td>
<td>Automatically redirects all calls to users' voicemail at the push of a button.</td>
<td></td>
</tr>
<tr>
<td>Directory lookup</td>
<td>Allows users to look up an extension from the corporate LDAP directory.</td>
<td></td>
</tr>
<tr>
<td>✔ Distinctive ringing</td>
<td>Uses a different ringtone for different call characteristics, for example, internal vs external calls.</td>
<td></td>
</tr>
<tr>
<td>✔ Do not disturb</td>
<td>Makes the phone appear to be out of service.</td>
<td></td>
</tr>
<tr>
<td>✔ Follow me</td>
<td>Rings multiple, disparate phones simultaneously when one extension is dialed.</td>
<td></td>
</tr>
<tr>
<td>✔ Free seating/Hoteling</td>
<td>Allows a user to move from one location to another, accessing all calls, features, button mappings, etc.</td>
<td></td>
</tr>
<tr>
<td>Hot line</td>
<td>Private line automatic ring-down connection between two phones.</td>
<td></td>
</tr>
<tr>
<td>Hunt groups</td>
<td>Diverts calls to busy extensions to any extension in a pre-defined group.</td>
<td></td>
</tr>
<tr>
<td>SIP Status</td>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>✫</td>
<td>Intercom - phone-to-phone</td>
<td>An internal intercom that initiates calls within a predefined group or department.</td>
</tr>
<tr>
<td>✫</td>
<td>Intercom - phone-to-multi-phone</td>
<td>An internal intercom that initiates voice paging through the speakers of multiple phone systems.</td>
</tr>
<tr>
<td>✫</td>
<td>Intrude</td>
<td>Allows specific users to intrude on calls already in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See R. Mahy and D. Petrie, “The Session Initiation Protocol (SIP) ’Join’ Header” [73] - a new header for use with SIP multi-party applications and call control; to logically join an existing SIP dialog, for: ‘Barge-In’, ‘Message Screening’, ‘and Call CenterMonitoring’</td>
</tr>
<tr>
<td>✫</td>
<td>Last number redial</td>
<td>Redials the last outgoing call.</td>
</tr>
<tr>
<td>✔️</td>
<td>Least-cost routing</td>
<td>Routes outbound calls to the least expensive alternative, based on user-defined prioritization.</td>
</tr>
<tr>
<td></td>
<td>Leave word calling</td>
<td>Allows internal users to leave short, pre-programmed messages for other internal users.</td>
</tr>
<tr>
<td></td>
<td>Malicious call trace</td>
<td>Allows users to initiate a call trace.</td>
</tr>
<tr>
<td></td>
<td>Message waiting indicator</td>
<td>Visibly indicates when new voicemail arrives, often via a blinking light.</td>
</tr>
<tr>
<td>✫</td>
<td>Missed call indicator</td>
<td>Lists missed calls.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Multiple call appearance</td>
<td>Allows a single phone to have multiple, repeated instances of a single phone extension.</td>
<td></td>
</tr>
<tr>
<td>Multiple ring styles</td>
<td>Changes the ringtone based on user preference.</td>
<td></td>
</tr>
<tr>
<td>Music on hold</td>
<td>Plays music for the caller when placed on hold.</td>
<td></td>
</tr>
<tr>
<td>Mute</td>
<td>Disables the microphone. (This is really just a feature of the client.)</td>
<td></td>
</tr>
<tr>
<td>Night service</td>
<td>Changes call coverage based on the time of day, for example, plays a common recording for all calls at night.</td>
<td></td>
</tr>
<tr>
<td>One-button send all calls</td>
<td>Automatically redirects all calls to someone else who provides coverage with a single button.</td>
<td></td>
</tr>
<tr>
<td>One-button speed dial</td>
<td>Dials a predefined number with a single button.</td>
<td></td>
</tr>
<tr>
<td>Personal call routing</td>
<td>Defines routing parameters</td>
<td></td>
</tr>
<tr>
<td>Priority ringing</td>
<td>Uses a different ringtone for specified numbers.</td>
<td></td>
</tr>
<tr>
<td>Recorded announcements</td>
<td>Provides predefined announcements to certain calls, for example, “Your call cannot be completed as dialed”.</td>
<td></td>
</tr>
<tr>
<td>System speed dialing</td>
<td>Dials frequently-called numbers using an abbreviated access code.</td>
<td></td>
</tr>
<tr>
<td>User directory</td>
<td>Allows any system endpoint to browser a database of names, extensions, etc.</td>
<td></td>
</tr>
<tr>
<td>SIP</td>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Volume control</td>
<td>Changes the volume individually for the speaker, handset, and ringer.</td>
</tr>
<tr>
<td>✤</td>
<td>Whisper page</td>
<td>Allows someone else (such as an assistant) to bridge into a call, allowing only the local party to hear.</td>
</tr>
</tbody>
</table>

Supported by SIP

- Supports by SIP
- Supported by SIP + additional methods

Coupling in and invoking services in the PSTN uses a sequence of the form *SS#* or *SS*parameter*, where "SS" and "parameter" are numeric. This is described in ETSI ETS 300 378 [79], with the "SS" codes enumerated in ETSI TR102 083 [78].
SIP development, evolution, ...

In traditional IETF fashion is based on **running code**

- So in your projects you should make sure that what you propose is really feasible by implementing it!
 - should have at least 2 **interoperable implementations** for each feature
- See the SIP mailing list (**listen until** you have sufficient knowledge to contribute)
- See the SIP Working Group for what is being worked on by others
- See “Guidelines for Authors of Extensions to the Session Initiation Protocol (SIP)” [61]
Gateways

- **Gateway Location Protocol (GLP)** - a protocol used between Location Server (LSs) {similar to BGP}
- **Signaling Gateway** - to convert from the signaling used in one network to that of the other
- **Media Gateway** - to convert the media format from that used in one network to that of the other
Significance

- In July 2002, 3GPP adopted SIP for their signalling protocol (Release5)
- 3GPP adopts SIMPLE as instant messaging/presence mechanism (Release6)

While there are some differences between the 3GPP and IETF points of view

<table>
<thead>
<tr>
<th>3GPP</th>
<th>IETF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network does not trust the user</td>
<td>User only partially trusts the network</td>
</tr>
<tr>
<td>layer 1 and layer 2 specific</td>
<td>generic</td>
</tr>
<tr>
<td>walled garden</td>
<td>open access</td>
</tr>
</tbody>
</table>

Not surprisingly the 3GPP system (called “IMS”) for using SIP is rather complex with a number of new components: Proxy Call Session Control Function (P-CSFC), Interrogating Call Session Control Function (I-CSFC), Serving Call Session Control Function (S-CSFC), Home Subscriber Server (HSS), Application Server (AS), Subscription Locator Function (SLF), Breakout Gateway Control Function (BGCF), Media Gateway Control Function (MGCF), and Media Gateway (MGW)
Peer-to-peer SIP

- http://www.p2psip.org/
- http://tools.ietf.org/wg/p2psip/

Using peer-to-peer techniques to create an overlay network of SIP entities, rather than a fixed infrastructure of SIP registrars, proxies, etc.

Work in progress, with several implementations.
References and Further Reading

SIP

ITU Services CS-1 and CS-2

http://www.etsi.org/deliver/etsi_tr/102000_102099/102083/01.01.01_60/tr_102083v010101p.pdf

Module 4: Session Announcement Protocol (SAP)

Lecture notes of G. Q. Maguire Jr.
Session Announcement Protocol (SAP)

Defined in RFC 2974 [80]

Primarily for **multicast** session announcement. It provides the session setup information to *prospective* participants.

Each SAP announcer periodically multicasts an announcement:

- **to a well known multicast address on port 9875**
 - IPv4 global scope sessions use multicast addresses in the range 224.2.128.0 - 224.2.255.255 - their SAP announcements are sent to 224.2.127.254
 - IPv4 administrative scope sessions using administratively scoped IP multicast are defined in [x], the multicast address to be used for announcements is the highest multicast address in the relevant administrative scope zone, e.g., if the scope range is 239.16.32.0 - 239.16.33.255, then SAP announcements use 239.16.33.255
 - IPv6 sessions are announced on the address FF0X:0:0:0:0:0:2:7FFE where X is the 4-bit scope value, e.g., an announcement for a link-local session assigned the address FF02:0:0:0:0:1234:5678, is advertised on SAP address FF02:0:0:0:0:0:2:7FFE
- **has same scope as the session it is announcing (the use of TTL scoping for multicast is discouraged)**
- **IP time-to-live of 255**

See also [81]
References and Further Reading

SAP

http://www.ietf.org/rfc/rfc2974.txt

Module 5: Session Description Protocol (SDP)

Lecture notes of G. Q. Maguire Jr.
Session Description Protocol (SDP)

- audio/video applications
- video, audio, …
- CODECs
- RTP
- RTCP
- IP
- signaling and control
- SDP
- SIP
- IP
- streaming applications
- CODECs
- RTSP
- TCP
- UDP

RTP SIP RTCP SDP CODECs

Practical Voice Over IP (VoIP): SIP and related protocols

2010.08.26
Session Description Protocol (SDP)

Defined by RFC 2327 [82], later RFC 4566 [83]

- describes media session
- a text-based protocol
- carried in MIME as a message body in SIP messages
- uses RTP/AVP Profiles for common media types [94]

Note: It is more a session description **format** than a **protocol**.

- RFC 3264: An Offer/Answer Model with the Session Description Protocol (SDP) [88]
- RFC 3266: Support for IPv6 in Session Description Protocol [89]
- RFC 3388: Grouping of Media Lines in the Session Description Protocol [90]
- RFC 3407: Session Description Protocol Simple Capability Declaration [92]
• RFC 3485: The Session Initiation Protocol and Session Description Protocol Static Dictionary for Signaling Compression (SigComp) [110]
• RFC 3556: Session Description Protocol Bandwidth Modifiers for RTP Control Protocol (RTCP) Bandwidth [100]
• RFC 3605: Real Time Control Protocol (RTCP) attribute in Session Description Protocol [95]
• RFC 3890: A Transport Independent Bandwidth Modifier for the Session Description Protocol [107]
• RFC 4092: Usage of the Session Description Protocol: Alternative Network Address Types (ANAT) Semantics in the Session Initiation Protocol (SIP) [103]
• RFC 4145: TCP-Based Media Transport in the Session Description Protocol [108]
• RFC 4317: Session Description Protocol Offer/Answer Examples [101]
• RFC 4567: Key Management Extensions for Session Description Protocol and Real Time Streaming Protocol (RTSP) [109]
- RFC 4568: Session Description Protocol Security Descriptions for Media Streams [104]
- RFC 4570: Session Description Protocol Source Filters [99]
- RFC 4572: Connection-Oriented Media Transport over the Transport Layer Security (TLS) Protocol in the Session Description Protocol [111]
- RFC 4574: The Session Description Protocol Label Attribute [102]
- RFC 4579: Session Initiation Protocol Call Control - Conferencing for User Agents [112]
- RFC 4583: Session Description Protocol Format for Binary Floor Control Protocol (BFCP) Streams [113]
- RFC 4796: The Session Description Protocol Content Attribute [105]
SDP Message Details

v=0
o=Tesla 289084526 28904526 IN IP4 lab.high-voltage.org
s=-
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

• Version number (ignored by SIP)
• Origin (not used by SIP)
• Subject (ignored by SIP)
• Connection Data
 • connection: network (IN == Internet), Address type (IPv4), and Address
• Time (ignored by SIP): start stop
• Media (type, port, RTP/AVP Profile)
• Attribute (profile, CODEC, sampling rate)
Session description

v= protocol version
o= owner/creator and session identifier
s= session name
[i= session information]
[u= URI of description]
[e= email address]
[p= phone number]
[c= connection information- not required if included in all media]
[b= bandwidth information]
<Time description>+ { <xx>+ ⇒ one or more times}
[z= time zone adjustments]
[k= encryption key]
[a= zero or more session attribute lines]* { <xx>* ⇒ zero or more times}
<Media descriptions>*

Time description

t= time the session is active
[r= zero or more repeat times]*

Media description

m= media name and transport address
[i= media title]
[c= connection information-optional if included at session-level]
[b= bandwidth information]
[k= encryption key]
[a= zero or more media attribute lines]*
SDP Offer/Response Example

v=0
o=
c=IN IP4 130.237.212.6
t=
m=video 4004 RTP/AVP 14 26
a=rtpmap:14 MPA/90000
a=rtpmap:26 JBEG/90000
m=audio 4006 RTP/AVP 0 4
a=rtpmap:0 PCMU/8000
a=rtpmap:4 GSM/8000

Version of SDP (0)
Origin - not use by SIP
Connection INternet, IPv4, address=130.237.212.6
Time - not use by SIP
Media Video, port=4004, type=RTP/AVP profile, profiles: 14 and 26
Attribute for profile 14, codec=MPA, sampling rate=90000
Attribute for profile 26, codec=JBEG, sampling rate=90000
Media Audio, port=4006, type=RTP/AVP profile, profiles: 0 and 4
Attribute for profile 0, codec=PCMU (PCM μlaw), sampling rate=8000
Attribute for profile 4, codec=GSM, sampling rate=8000

If the RTCP port is not the next port number, then an rtcp-attribute can be specified in the form [95] (this might be useful in conjunction with a NAT):

"a=rtcp:" port [nettype addrtype connection-address] <CRLF>
SDP Response Example

v=0
o=
c=IN IP4 130.237.21.87
t=
m=video 0 RTP/AVP 14
m=audio 6002 RTP/AVP 4
a=rtpmap:4 GSM/8000

Version of SDP (0)
Origin - not use by SIP
Connection INternet, IPv4, address=130.237.21.87
Time - not use by SIP
Media **Video**, port=0, type=RTP/AVP profile, profiles: 14
Receiver *declines* the video, indicated by *port = 0*
Media **Audio**, port=6002, type=RTP/AVP profile, profiles: 4
Receiver *declines* the PCM coded audio and selects the GSM coded audio
Attribute for profile 4, codec=GSM, sampling rate=8000
Session Modification

Alice invite’s Bob to a session with the parameters in sdp1

Bob’s modified this in his response sdp2.

They communicate

Bob proposes a change in the session (sdp2’), Alice does not accept this change

Bob tries with a new proposal (sdp2’’)

Alice accepts with the session description sdp1’

They communication with the new spec.
Session modification (continued)

- The re-INVITE could have been done by either party - it uses the same To, From, and Call-ID as the original INVITE.
- Note that the re-INVITEs do not cause a 180 Ringing or other provisional messages, since communication between Alice and Bob is already underway.
- Note that the first media session continues despite the SIP signalling, until a new agreement has been reached - at which time the new media session replaces the former session.
- The re-INVITE can propose changes of any of the media characteristics, including adding or dropping a particular media stream.
 - this adding or dropping may be because the user has moved from one wireless cell to another, from one network to another, from one interface to another, from one device to another, …
Start and Stop Times

Enable the user to join a broadcast sessions during the broadcast.
Grouping of Media Lines in the Session Description Protocol (SDP)[90]

Defines two SDP attributes:

- "group" and
- "mid" - media stream identification

Allows grouping several media ("m") lines together. This is to support:

- Lip Synchronization (LS) and
- Flow Identification (FID) - a single flow (with several media streams) that are encoded in different formats (and may be received on different ports and host interfaces)
 - Changing between codecs (for example based on current error rate of a wireless channel)

Note FID does not cover the following (but SDP can -- see [90]):

- Parallel encoding using different codecs
- Layered coding
Lip Synchronization

Example adapted from section 6.1 of [90].

A session description of a conference that is being multicast. First and the second media streams MUST be synchronized.

```
v=0
o=Laura 289083124 289083124 IN IP4 one.example.com
t=0 0
c=IN IP4 224.2.17.12/127
a=group:LS 1 2
m=audio 30000 RTP/AVP 0
   i=voice of the speaker who speaks in English
a=mid:1
m=video 30002 RTP/AVP 31
   i=video component
a=mid:2
m=audio 30004 RTP/AVP 0
   i=This media stream contains the Spanish translation
a=mid:3
```
Next generation of SDP (SDPng)

- Designed to address SDP’s ‘flaws’:
 - Limited expressiveness
 - For individual media and combinations of media
 - Often only very basic media descriptions available -- desire for more complex media
 - No real negotiation functionality - as SDP today is a “take it or leave it” proposal
 - Limited extensibility (not nearly as easy to extend as SIP)
 - No semantics for media sessions! Sessions are only implicit.

- SDPng should avoid "second system syndrome"
 - Hence it **should** be simple, easy to parse, extensible, and have limited scope
 - Session Description and Capability Negotiation
SDPng structure

Uses XML syntax - example adapted from Appendix C in [98]:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<sdpng xmlns="http://www.iana.org/sdpng"
    xmlns:audio="http://www.iana.org/sdpng/audio"
    xmlns:video="http://www.iana.org/sdpng/video"
    xmlns:rtp="http://www.iana.org/sdpng/rtp"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.iana.org/sdpng sdpng-base.xsd
                        http://www.iana.org/sdpng/audio sdpng-audio-pkg.xsd
                        http://www.iana.org/sdpng/video sdpng-video-pkg.xsd
                        http://www.iana.org/sdpng/rtp sdpng-rtp-pkg.xsd" >
    <cap><audio:codec name="avp:dvi4"
        <audio:encoding>DVI4</audio:encoding>
        <audio:channels>1</audio:channels>
        <audio:sampling>8000 11025 16000 22050</audio:sampling></audio:codec>
    <audio:codec name="avp:l16"
        <audio:encoding>L16</audio:encoding>
        <audio:channels>1 2</audio:channels>
        <audio:sampling>44100</audio:sampling></audio:codec>
    <video:codec name="avp:celb"
        <video:encoding>CelB</video:encoding>
        <video:framerate>4 6 8 12 16 20 24 30</video:framerate></video:codec>
    <rtp:udp name="rtpudpip6">
        <rtp:network>IP6</rtp:network></rtp:udp></cap>
</sdpng>
```

For details see appendices A.1 “SDPng Base DTD” and A.2 “SDPng XML-Schema Specification” in [98].
If, at this date and time, you want to not use XML, then you need an extremely strong case. XML is well understood, there are many support tools, and many more are in development. The W3C is producing a schema description language which is considered adequate for many business applications, many of which are way more complex than SDP.

The talks about ASN.1 are just that -- talks. The only possible advantage of ASN.1 is the size of the messages, but even that is debatable. On the other hand, the cost is very well known: you need specialized parsers and libraries, you cannot easily use text tools for debugging or monitoring purposes, and the syntax is hard to understand and a pain to extend. Most of the proponents of ASN.1 actually propose some variation of it, which is even worse, since it would require even more specific tools.

The main inconvenient of XML is that it can be bulky. I am not convinced that this is an actual problem: SDP is used for describing multimedia sessions, that normally last a few minutes and carry at a minimum several tens of kilobytes of media; the media stream dwarfs the signaling stream by orders of magnitude. If it is an actual problem, then we can indeed use compression. In fact, we can safely assume that other applications will be hurt before us, and that we will get generic XML compression tools sooner or later. All in all, that should not be a big problem.

Let’s not be silly. Just pick XML.

-- Christian Huitema

http://bmrc.berkeley.edu/mhonarc/openmash-developers/msg00315.html
SDP today

SDP is still evolving in IETF drafts from the IETF, MMUSIC Working Group:

- R. Gilman and R. Even and F. Andreasen, SDP media capabilities Negotiation [84]
- F. Andreasen, SDP media capabilities Negotiation [85]
- F. Andreasen, G. Camarillo, D. Oran, and D. Wing, “Connectivity Preconditions for Session Description Protocol Media Streams” [87]
- : Yang and G. Mayer, “Session Description Protocol (SDP) Extension for a SIP Connection” [115] - to be able to include SIP URIs as addresses for media streams
QoS and SDP

“The offer/answer model [RFC3264] for SDP [RFC4566] does not provide any mechanism for endpoints to negotiate the QoS mechanism to be used for a particular media stream. Even when QoS preconditions [RFC3312] are used, the choice of the QoS mechanism is left unspecified and is up to the endpoints.

Endpoints that support more than one QoS mechanism need a way to negotiate which one to use for a particular media stream. Examples of QoS mechanisms are RSVP (Resource Reservation Protocol) [RFC2205] and NSIS (Next Steps in Signaling) [QoS-NSLP].”

RFC 5432: Quality of Service (QoS) Mechanism Selection in the Session Description Protocol (SDP)[106] published in March 2009

Introduces qos-mech-send and qos-mech-receive attributes for SDP.
Writing code to deal with SDP

Jesper A Nielsen has written a very informative web page “Introduction to SDP for Java, C# and VB Developers” [116]
References and Further Reading

SDP

IK2554 Practical Voice Over IP (VoIP): SIP and related protocols
Fall 2010, Period 1
Module 6: DNS and ENUM

Lecture notes of G. Q. Maguire Jr.
Telephony URL and Phone-Context

SIP URIs include Telephony URLs [138].

A Telephony URL looks like:

```
tel: +358-555-1234567  a telephone terminal
fax: +358-555-1234567  a fax machine
```

Digit separators of "-" or "." are ignored.

A Phone-Context sets the conditions under which the number can be used, e.g.

```
tel: 1-800-555-1234;phone-context:+1 972
```

- a phone number that can only valid within North America (+1) and within the 972 exchange
- the absence of the "+" in the telephone number indicates that this is a local number, rather than a global number -- but the interpretation of these local numbers is problematic (i.e., there is no assured geographic area nor can one depend on 7 digit numbers being local to a Class 5 exchange {the traditional case in North America}) → a proposal to deprecate the use of unqualified local digit strings see [131].
ITU-T E.164

The ITU E.164[117] standard defines the international numbering plan for telephony and related documents list the delegation (allocation of numbers) from this number space[118].

Note that in most countries only telecommunications operators are allocated blocks of numbers, while countries or regions are allocated their country/area prefix by the ITU.

Recommended maximum number of digits is 15. The format is typically:

- Country Code (CC) - 1 to 3 digits
- Identification Code (x) - 1 to 4 digits
- Subscriber Number - 15 - (CC+x) digits
SIP URL

SIP URL used in SIP messages to indicate: originator (From), current destination (Request-URI), final destination (To), and redirection address (Contact)

Examples:

<table>
<thead>
<tr>
<th>SIP URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sip:firstname.lastname@company.com</td>
<td>simple example</td>
</tr>
<tr>
<td>sip:+1-212-555-1212@gateway.com;user=phone</td>
<td>a call from the Internet to the PSTN E.164 phone number (user=phone is not necessary, but just a hint to parsers that it is a numeric phone number)</td>
</tr>
<tr>
<td>sips:+1-212-555-1212@gateway.com;user=phone</td>
<td>a call from the Internet to the PSTN E.164 phone number - the SIP messages should be passed via TLS</td>
</tr>
<tr>
<td>sip:+1-212-555-1212@proxy.gateway.com;user=phone</td>
<td>proxy server determines gateway and forwards the request</td>
</tr>
<tr>
<td>sip:firstname.lastname@registrar.com;method=register</td>
<td>to register a user at a SIP registrar</td>
</tr>
</tbody>
</table>
IETF’s E.164 Number Mapping standard uses Domain Name Server (DNS) to map standard International Telecommunication Union (ITU-T) international public telecommunications numbering plan (E.164) telephone numbers to a list of Universal Resource Locators (URL). SIP uses these URL’s to initiate sessions.

For example, ENUM DNS[125] converts a telephone number in E.164 format, e.g. +46812345, and returns e.g., a Universal Resource Identifier (URI) SIP:olle.svenson@telia.se

Thus a SIP client makes a connection to the SIP gateway telia.se passing the local part olle.svenson.

ENUM can return a wide variety of URI types.

RFC 3761: The E.164 to URI DDDS Application (ENUM)[126] updates the ENUM specification to be compatible with the Dynamic Delegation Discovery System (DDDS) Application specification in RFC 3401 [120].
For details of Dial Sequences and Global Switched Telephone Network (GSTN) see [129]. {Dial Sequences include pauses and other signalling in addition to the phone number}

Note that ENUM maintains the nation-state “ownership” of E.164 numbers.

Why bother? {see [133]}

• In order for PSTN/IDSN user to call VoIP users, there must be a way of translating an E.164 number to some way of reach the VoIP user.
 • Since the PSTN user only has a telephone dialing pad - this limits what they can enter (for example ‘+’ entered as ‘*’).
 • However, due to ITU-T Rec. E.105 [136] -- this means that VoIP become a part of the global public telephony service -- hence this translation has to follow at least some of the ITU rules
 • Which gateway should be used?

• For VoIP users to call a PSTN/ISDN user, caller needs to do an ENUM lookup and utilize a VoIP to PSTN/ISDN gateway
 • Which gateway?
 • Can the called user opt-in or opt-out of having calls from the Internet?

• VoIP caller to VoIP callee when the caller dials an E.164 number
 • Does it get routed to the PSTN and back? {I.e., going through two VoIP gateways!}
• Use of Geographic numbers for fixed VoIP terminals
 • easily enables 911 like services for their terminals too
• (Global | National) [non-geographic] personal numbers
 • A personal or global or national number - which can be your single number
• …

One problem is that IP communications is **not** IP Telephony, it is VoIP + Chat + Instant Messaging + Video + … .
DNS

Scales well (due to caching)

ENUM typically uses a 3 layer hierarchy

- **Tier 0: ENUM Root Level**
 - Top level domain for telephone numbers is: `e164.arpa`
 - DNS look up to find the country for a specific E.164-Country Code (CC)
 - Manager: IAB; Registry: RIPE NCC; Registrar: ITU TSB .e164.arpa

- **Tier 1: ENUM CC Level - DNS look up to find the ENUM subscribers**
 - Manager: ITU Member State; Registry: choice of Manager; ENUM Registrar: national choice
 - swedish example: 6.4.e164.arpa - registry: NIC-SE (as of 13 Dec. 2002)

- **Tier 2: ENUM E.164 Number Level**
 - DNS stores a list over different internet based addresses (URIs) in NAPTR records
 - Thus a look up \Rightarrow a list over different internet based addresses associated with each E.164-number
 - Manager: E.164-subscriber; DNS Service Provider: choice of Manager

For details see RFC 3761 ([126] replaced RFC 2916[125]) and RFCs 3401, 3402, 3403, 3404 ([120] to [123] replaced RFC 2915[119]).
NAPTR - Naming Authority Pointer [119]

> set querytype=NAPTR
> e164.arpa
Authoritative answers can be found from: e164.arpa
origin = ns.ripe.net
mail addr = e164-contacts.ripe.net
serial = 2002100901
refresh = 14400 (4H)
retry = 3600 (1H)
expire = 2419200 (4W)
minimum ttl = 14400 (4H)
To find the DNS names for a specific E.164 number

Procedure is:

- Write the E.164 number in its full form, including the countrycode IDDD. Example: +46-8-9761234
- Remove all non-digit characters with the exception of the leading ’+’. Example: +4689761234
- Remove all characters with the exception of the digits. Example: 4689761234
- Put dots (".") between each digit. Example: 4.6.8.9.7.6.1.2.3.4
- Reverse the order of the digits. Example: 4.3.2.1.6.7.9.8.6.4
- Append the string ".e164.arpa" to the end. Example: 4.3.2.1.6.7.9.8.6.4.e164.arpa
- Ask the DNS it returns:
 - mailto: foo@kth.se
 - sip: foo@kth.se
 - ...
ENUM Services

- www.netnumber.com
- Neustar (www.neustar.biz)

The ITU-T “List of ITU-T Recommendation E.164 Assigned Country Codes” as of 1 February 2004 can be found at: http://www.itu.int/itudoc/itu-t/ob-lists/icc/e164_763.html

The RIPE list of e-mail concerning the European assignment of ENUMs can be found at http://www.ripe.net/enum/request-archives/

For a summary of the status of ENUM deployment in December 2003 - see [127] and the Post- och telestyrelsen (PTS) final report of 2004 [128]. Leading to the formation of the ENUM Forum (http://www.enumforum.se) - this dissolved in 2008.

For the current status of ENUM according to RIPE’s ENUM working group see: http://enumdata.org/.

For a summary of the IANA assignments for ENUM services see [147] .. [149].
ENUM Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 2000</td>
<td>IETF ENUM WG produced RFC2916</td>
</tr>
<tr>
<td>2001</td>
<td>Various Workshops (ITU-T, Europe, US, …) to spread the idea</td>
</tr>
<tr>
<td></td>
<td>Swedish PTS releases first ENUM report in April 2001</td>
</tr>
<tr>
<td>2002</td>
<td>ITU-T Interim Procedures (IAB, RIPE-NCC)</td>
</tr>
<tr>
<td></td>
<td>ETSI SPAN11 TS “ENUM Administration in Europe”</td>
</tr>
<tr>
<td>2003</td>
<td>ETSI SPAN11 TS “Minimum Requirements for Interoperability of European ENUM Trials”</td>
</tr>
<tr>
<td></td>
<td>IETF RFC2916bis</td>
</tr>
<tr>
<td></td>
<td>National and international ENUM Trials using:</td>
</tr>
<tr>
<td></td>
<td>♦ different scenarios and numbering resources</td>
</tr>
<tr>
<td></td>
<td>♦ different ENUM-enabled products</td>
</tr>
<tr>
<td></td>
<td>♦ Swedish PTS releases their ENUM report on 31 July 2003; trial to continue until May 2004, final report due 30 June 2004 (see [139] and [140])</td>
</tr>
<tr>
<td>2004</td>
<td>ENUM considered ready for production ⇒ commercial deployments</td>
</tr>
</tbody>
</table>

The IAB instructions regarding ENUM to the RIPE NCC (to whom they had delegated e164.arpa) can be found at: http://www.ripe.net/enum/instructions.html

Sweden ENUM status is described at [132].
Interesting open questions (as described in [132]):

- **Should the state have a permanent operational role** (as opposed to simply an administrative role)
 - Important that the subscriber with a given E.164 number also control the associated ENUM domain name {Who is responsible for maintaining this synchronization and validating changes?}
- **Who finances the Tier 1 registry?**
- **Need for regulations? Self-regulation?** …
- **Privacy:** need E.164 subscriber’s permission to list them in the DNS
- **Are there business opportunities?**
- **Will ENUM be successful?**
- …
Sweden’s ENUM Mapping

Approved by ITU TSB on Fri, 29 Nov 2002 12:03:02 +0100

Domain Object

domain: 6.4.e164.arpa
descr: Swedish ENUM Mapping
admin-c: PTSE46-RIPE
tech-c: SE194-RIPE
zone-c: SE194-RIPE
nserves: a.ns.6.4.e164.arpa
nserves: b.ns.6.4.e164.arpa
nserves: c.ns.6.4.e164.arpa
nserves: d.ns.6.4.e164.arpa

... Administrative Contact

role: ENUM Tier 1 Manager
address: National Post and Telecom Agency
address: Box 5398
address: SE-102 49 Stockholm
address: Sweden
phone: +46 8 678 55 69
fax-no: +46 8 678 55 05
e-mail: pts-enum-admin@localhost
trouble: enum-test-admin@localhost
nic-hdl: PTSE46-RIPE

...
The EU directive on number portability means that there will **not** be a separate number space for IP telephony (as users are free to take their number with them from their existing telephony operator to a new operator - who could operate a different type of network: mobile, IP telephony, analog TDM over copper, etc.).[142]

Note that Joakim Strålmark’s “Förstudie - Nummerportabilitet för framtida nät, och i samverkan med befintliga nät med aspekter på samtrafik, ENUM och den centrala referensdatabasen” [142] provides an excellent description (in Swedish) of how ENUM works.
Declining interest in “geographic” numbers

An interesting side effect of mobile telephony and IP telephony is that the concept of an “area code” (“riktnummer”) seems to be disappearing[154] - as associating a number with where you “lived” at the time you were assigned the number does not seem to have much meaning. What does this imply in the scope of EU personal mobility? For example, will country codes be replaced by a new region or global code?

Interestingly use of the European Telephony Numbering Space (ETNS) (+388 numbers) ended at the end of 2009, and the number allocation is to be reclaimed by the ITU at the end of 2010!
VISIONng Association

Mission of VISIONng (http://www.visionng.org/): “to provide a framework for the deployment of worldwide inter-domain and multi-vendor IP Communications”

ITU-T has assigned part of the country code for Universal Personal Telecommunication (UPT) to VISIONng for deployment of a UPT Service:

+878 10

As of May 2002 VISIONng received ITU-TSB permission and an ENUM Delegation from RIPE NCC; BearingPoint Inc. acting as Tier 1 Manager, Telekom Austria acting as Tier 2 DNS.

These E.164 numbers can be used for both: IP-IP and PSTN-IP.

See also [137].

You can register for a number is the +878 10 range via https://www.enum2go.com/

As of 2009.08.20 the cost was £25.85 (including a 1 year registration).
Carrier and user use of ENUM and DNS

RFC 5526 proposed an “Infrastructure ENUM” parallel to the `e164.arpa` namespace to allow “carriers to provision DNS records for telephone numbers independently of those provisioned by end users (number assignees)”[151].

The need for such an infrastructure ENUM are described in RFC 5067[153].

RFC 5527[152] describes how the infrastructure ENUM could be combined in the `e164.arpa` namespace.
Where are the mappings between the locally meaningful addresses and the address in the connected network performed? Who provides this mapping? Which mapping should be used? …
SIP goes beyond ENUM

by offering additional features:

- User preferences
- Personal/Service/… mobility\(^1\)
- Easy and secure updating of information by the end-user

A given User Agent need not directly implement call routing, LDAP lookup, …, but can instead utilize a default SIP outgoing proxy (which in turn does the work).

Call Processing Language (CPL) can be used to support rapid changes in user preferences (see Call Processing Language (CPL) on page 326)

\(^1\) See SIP Mobility on page 280.
References and Further Reading

E.164

DNS

 http://www.rfc-editor.org/rfc/rfc3401.txt

 http://www.rfc-editor.org/rfc/rfc3402.txt

 http://www.rfc-editor.org/rfc/rfc3403.txt

 http://www.rfc-editor.org/rfc/rfc3404.txt

http://www.rfc-editor.org/rfc/rfc3405.txt

ENUM

http://www.ietf.org/rfc/rfc3824.txt

http://www.ietf.org/rfc/rfc3764.txt

http://www.pts.se/Dokument/dokument.asp?ItemId=3232

http://www.itu.int/osg/spu/presentations/2004/enum-country-experiences-ftra-uganda-rs.pdf&e=10053

http://www.ficora.fi/englanti/tele/enumnd.htm

http://www.rfc-editor.org/rfc/rfc4002.txt

http://www.rfc-editor.org/rfc/rfc4415.txt

http://www.rfc-editor.org/rfc/rfc4759.txt

http://www.rfc-editor.org/rfc/rfc5526.txt

http://www.rfc-editor.org/rfc/rfc5527.txt

Module 7: SIP Mobility

Lecture notes of G. Q. Maguire Jr.
SIP Mobility

- **Terminal mobility**¹ \(\Rightarrow\) the terminal moves between **subnets**
 - Note: Mobile IP supports this at the network layer, while SIP supports this at the application layer (without requiring Mobile IP be underneath)

- **Personal Mobility** \(\Rightarrow\) the **person** moves between **terminals**

- **Service mobility** \(\Rightarrow\) the **person** has access to the **same services** despite their movement between terminals and/or networks
 - note: the service may be reduced in quality or capabilities subject to the current network’s capabilities -- but it is the same service
 - this implies that personalization of services must be distributed to the various terminals that the user wishes to use - see the dissertation of Roch Glitho [158]

- **Session mobility** \(\Rightarrow\) the **same session** is maintained despite the user changing from one device to another

¹ Also known as network-level mobility.
Local Number Portability

In the PSTN this means a complex set of lookups for the number, since the number is no longer tied to an exchange.

In SIP the portability occurs because of the lookup of name@domain, which can be mapped to where ever the user wants this mapped to! (i.e., fully qualified domain names are unique, but are not tied to an underlying network address -- it is the name to address mapping which establishes this mapping and it is always dynamic).

For some considerations of tel URIs and number portability see [156] and [157]. For some additional information regarding number portability and the availability of sufficient numbers for all of the entities (people, terminals, “things”, etc.) see [159] .. [164].
References and Further Reading

SIP Mobility

Service Mobility

Number portability

http://www.pts.se/upload/Ovrigt/Tele/NF_Bilaga_4_Dirigeringsprefix_NP_framtiden_NP_071025.pdf

[164] Thomas Florenteng, Nummerserie for M2M, Bilaga, PTS, 16 June 2004
Module 8: SIP (Telia) Example

Lecture notes of G. Q. Maguire Jr.
Example of IP Telephony (Telia’s Broadband Telephony)

Figure 16: User at home with broadband connectivity and a IP telephone subscription
References and Further Reading

SIP Example

[165] Tilgin AB, web page, last accessed 2010.08.05, http://www.tilgin.com/

Module 9: SIP Service Creation

Lecture notes of G. Q. Maguire Jr.
SIP Service Creation

It is the increased opportunities for the exchange of signaling information via SIP which enables many new features and services.
Services implemented by x

Where x is:

- proxy server,
- called user agent,
- calling user agent, or
- Back-to-Back User Agent (B2BUA)

See examples of call-forward, no-answer service in chapter 6 of Sinnreich and Johnston[2].
Services implemented by Extensions

i.e., new methods and headers

See the activities of the IETF SIP, SIPPING, and SIMPLE working groups

Proxy servers - simply treat unknown methods as an OPTION request, unless there is a Proxy-Require header.

User agents return:

405 Method Not Allowed if the method is recognized, but not supported
500 Bad Request if it does not recognize the method
420 Bad Extension if the UAS does not support the requested feature

- All SIP extensions which use the Require or Supported header\(^1\) must be documented as an RFC - to prevent interoperability problems
- All standardized SIP extensions must document how the extension interacts with elements that don’t understand this extension

\(^1\) See Other header fields on page 167
SIP Service Logic

- Call Processing Language (CPL)
- SIP Common Gateway Interface (CGI)
- SIP Java Servlets
Call Processing Language (CPL)

RFC 2824: Call Processing Language (CPL) [167] and [168]

An XML-based scripting language for describing and controlling call services.

CPL is a very simple language without variables, loops, or the ability to run external programs! {Hence non-trusted end users can upload services to their SIP server} However, it has primitives for making decisions and acting based on call properties (e.g., time of day, caller, called party, …).

There is a Document Type Definition (DTD) “cpl.dtd” and strict parsing\(^1\) is done based on this DTD.

See also Chapter 13 of Practical VoIP: Using VOCAL[1], this includes an example of developing a feature in CPL

See also the dynamic loading of CPL in [171].

\(^1\) Thus any discrepancies between the script and the scheme are errors.
SIP Common Gateway Interface (CGI)

RFC 3050: Common Gateway Interface for SIP [169]

Similar to HTML CGI, a SIP CGI script resides on the server and passes message parameters via environment variables to a separate process. This process sends instructions back to the server through its standard output file descriptor.

Scripts can be written in Perl, Tcl, C, C++, Java, …

Of course these scripts (being based on general purpose programming languages) do not have the limitations of CPL and hence only trusted users can be allowed to provide such scripts.

CGI scripts have access to both the request headers and the body and can therefore do general computations based on all this information.
SIP Java Servlets

Extends functionality of SIP client by passing messages to the SIP servelets.

Servlets are similar to the CGI concept, but instead of using a separate process, the messages are passed to a class that runs within a Java Virtual Machine (JVM) inside the server.

Servlets are portable between servers and operating systems, due to the portability of the Java code.

http://www.cs.columbia.edu/sip/drafts/draft-peterbauer-sip-servlet-ext-00.txt

SIP Servlets were defined in A. Kristensen and A. Byttner, “The SIP Servlet API”, IETF Draft, September 1999,

http://www.cs.columbia.edu/sip/drafts/draft-kristensen-sip-servlet-00.txt

- Unfortunately this draft expired and was not carried forward, but is referenced (and large parts included) in subsequent work. See also [170].
- Today SIP Java Servlets are specified in JSR 116 and JSR 289[172].
JAIN APIs

Providing a level of abstraction for service creation across circuit switched and packet networks, i.e., bridging IP and IN protocols. Goal is provisioning of telecom services by:

- **Service Portability:** - Write Once, Run Anywhere. (via Java portability)
- **Network Convergence:** (Integrated Networks) - Any Network
- **Service Provider Access - By Anyone!**
 - to allow services direct access to network resources and devices

SIP APIs - especially those within the JAIN™ initiative

- **JAIN SIP (JSR-000032)** - a low level API that maps directly to RFC 2543 - http://jcp.org/en/jsr/detail?id=32

- **JAIN SIP Lite (JSR-000125)** - a high-level API, to allow application developers to create applications that have SIP as their underlying protocol **without** needing extensive knowledge of SIP - http://jcp.org/en/jsr/detail?id=125
• SDP API (JSR-000141) - to enable users to manipulate SDP messages http://jcpl.org/en/jsr/detail?id=141

• SIMPLE related APIs
 • JAIN SIMPLE Presence (JSR-000164) - to manipulate presence information between a SIMPLE client (watcher) and a presence server (presence agent) http://jcpl.org/en/jsr/detail?id=164

• JAIN Service Provider APIs (SPA) - Java implementation of Parlay APIs

• Regarding Location
• JAIN User Location and Status (ULS) (JSR-000194) - to interrogate the location and status of a user’s mobile device
 http://jcp.org/en/jsr/detail?id=194

• JAIN OAM API Specification v2.0 (JSR-000132) -

• JAIN ENUM API Specification (JSR-000161) - API to query and provision E.164 telephone numbers and their service-specific Uniform Resource Identifiers (URI)
 http://jcp.org/en/jsr/detail?id=161

• JAIN 3G MAP Specification (JSR-000137) - to enable mobile applications in the 3G domain to talk to each other

The full list of JAIN related specification can be found at:
http://www-x.antd.nist.gov/proj/iptel/

- NIST-SIP 1.2
- JAIN-SIP Proxy
- JAIN-SIP Instant Messaging Client
- JsPhone - a JAIN-SIP Video Phone
- NIST-SIP traces viewer
- JAIN-SIP gateway
- JAIN-SIP Third Party Call Controller
Parlay

Parlay Group formed (1998) to specify and promote open APIs that “intimately link IT applications with the capabilities of the communications world”.

Goal: to allow applications to access the functionality of the telecommunication network in a secure way.

Parlay APIs:

- Service interfaces - provide access to network capabilities and information
- Framework interfaces provide the underlying supporting necessary for the service interfaces to be secure and manageable.

The APIs are defined in Universal Modeling Language (UML).

For further info see: [http://www.parlay.org/] and [176].
SIP Request-URIs for Service Control

B. Campbell and R. Sparks, “Control of Service Context using SIP Request-URI”, IETF RFC 3087, April 2001 [177] - proposes a mechanism to communicate context information\(^1\) to an application (via the use of a distinctive Request-URI).

Using different URIs to provide both state information and the information about what lead to this state transition (for example, you were forwarded to the voicemail system because the user did not answer vs. being forwarded to the voicemail system because the user is busy with another call).

\(^1\) Call state information, such as the calling party, called party, reason for forward, etc.
Since it is (often) useful to know why a Session Initiation Protocol (SIP) request was issued, the Reason header was introduced. It encapsulates a final status code in a provisional response.

This functionality was needed to resolve the "Heterogeneous Error Response Forking Problem" (HERFP).

For details see [178].
Voice eXtensible Markup Language (VoiceXML³™)

VoiceXML designed for creating audio dialogs (i.e., audio **in** and **out**) that feature: synthesized speech, digitized audio, recognition of spoken and DTMF key input, recording of spoken input, telephony, and mixed-initiative conversations.

Goal: To bring the advantages of web-based development and content delivery to interactive voice response applications.

For details see: http://www.w3.org/TR/voicexml [179]

VoiceXML is designed to go beyond Interactive Voice Response (IVR) systems.
CallControl XML (CCXML)

W3C’s Voice Browser Working Group’s CCXML [180] provides a standardized means of call control encoded in XML. Thus using CCXML you can set up, modify, and tear down calls.

RJ Auburn, Chief Technology Officer, Voxeo Corporation and Editor and Chair, W3C CCXML working group has written a good introduction to CCXML [181].

Unlike VoiceXML, CCXML does not do any media process, but only does call control.

You can easily write CCXML that can answer a call from a given caller ID, but reject others. When the call is answered, it can be connected to an instance of a VoiceXML server. The VoiceXML server can collect information from the caller and then the call could be redirected to a human user agent - who could of course have all of the information relevant to this call brought up on their display based on processing of the collected information (this later is often called “Computer Telephony Integration (CTI)”).
CCXML implementations

- Voxeo’s Prophecy IVR platform [182]
- Oktopous™ ccXML Platform Integration Kit [183]
- Oktopous™, ccXML Open Source PIK [184]
- CCXML4J - a CCXML interpreter in Java [185]
Projects: GlassFish and SailFin

SailFin - IMS Application Server supporting JSR 289 SIP servlets technology

For details see: SailFin[186] website, https://sailfin.dev.java.net/

For an application built using this technology see [187].

There is an example of a Click to Dial service in Glassfish at:

http://wiki.glassfish.java.net/Wiki.jsp?page=SipClickToDialExample2
References and Further Reading

SIP Service Creation

[172] Java Specification Requests (JSR 289): SIP Servlet v1.1
http://www.jcp.org/en/jsr/detail?id=289

JAIN

[173] **JAIN website:** http://java.sun.com/products/jain

[175] JAIN SIP 1.0 API specification

Parley

SIP Request URI

Reason Header

VoiceXML

http://www.w3.org/TR/2000/NOTE-voicexml-20000505

CCXML

[180] R.J. Auburn (Editor in Chief), Paolo Baggia and Mark Scott (Editors), Voice Browser Call Control: CCXML Version 1.0, W3C Candidate Recommendation 1, April 2010 http://www.w3.org/TR/2010/CR-ccxml-20100401/

[182] Voxeo, IVR > Prophecy IVR Platform Software, webpage, Voxeo
[183] Phonologies, Oktopous™, ccXML Platform Integration Kit, webpage, Phonologies (India) Private Limited, last accessed 20 August 2010
http://www.phonologies.com/oktopous.php

[184] Phonologies, Oktopous™, ccXML Open Source PIK v1.1, webpage, Phonologies (India) Private, Limited, last accessed 20 August 2010
http://www.phonologies.com/okto_os.php

[185] werner_di, CCXML4J, webpage, SourceForge, last accessed 20 August 2010
http://sourceforge.net/projects/ccxml4j/

SailFin

[186] GlassFish >> SailFin, website, last accessed 20 August 2009
https://sailfin.dev.java.net/

Module 10: User Preferences

Lecture notes of G. Q. Maguire Jr.
User Preferences

• **Caller** preference
 • allows caller to specify how a call should be handled
 • to specify media types: audio, video, whiteboard, …
 • to specify languages (of the callee -- consider for example a help desk call where you want to get help in your choice of language)
 • do you want to reach the callee at home or only at work?, via a landline or on their mobile phone? …
 • examples: should the call be **forked** or recurse, do you want to use a proxy or redirect, do you want to **CANCEL** 200 messages or not,

• **Called party** (i.e., Callee) preference
 • accepting or rejecting calls: based on time of day, day of week, location of called party, from unlisted numbers, …

Caller/callee different

• Callee is **passive**, caller is **active**
 – Thus callee’s preferences must be defined ahead of time (for example by CPL)
 – However, caller’s preferences can be in request
• Services (usually) run on callee server
• A given caller might contact any of a large number of number of servers (each of which will have to decide how to process this caller’s request)

Conclusion: Include **caller** preferences in request
Contact parameters

Values are either pre-set or indicated when a user REGISTER’s:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>example(s)</th>
<th>Explanation of example(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>personal</td>
<td>class=personal</td>
<td>Call should go the "home" not the office.</td>
</tr>
<tr>
<td></td>
<td>business</td>
<td></td>
<td></td>
</tr>
<tr>
<td>duplex</td>
<td>full</td>
<td>duplex=full</td>
<td>should be a full duplex call</td>
</tr>
<tr>
<td></td>
<td>half</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>send-only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>receive-only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>feature</td>
<td>voicemail</td>
<td>feature=voicemail</td>
<td>Caller wants to be connected to voicemail server.</td>
</tr>
<tr>
<td></td>
<td>attendant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>language</td>
<td>language tag</td>
<td>language="en,de,se,!fi"</td>
<td>Connect caller to someone who speaks English, German, Swedish, not Finnish</td>
</tr>
<tr>
<td>media</td>
<td>MIME types</td>
<td>media="text/html"</td>
<td>use HTML as the media type</td>
</tr>
<tr>
<td>mobility</td>
<td>fixed</td>
<td>mobility=fixed</td>
<td>connect to the callee’s fixed rather than mobile terminal</td>
</tr>
<tr>
<td></td>
<td>mobile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>priority</td>
<td>urgent</td>
<td>priority=urgent</td>
<td>call is urgent (as seen by the caller).</td>
</tr>
<tr>
<td></td>
<td>emergency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-urgent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>service</td>
<td>fax</td>
<td>IP</td>
<td>ISDN</td>
</tr>
</tbody>
</table>
Contact header example

Contact: maguire <sip:maguire@it.kth.se> ;language="en,de,se,!es"
;media="audio,video,application/chat"
;duplex="full"
;priority="urgent"
Accept/Reject-Contact header(s)

SIP request contains Accept-Contact and Reject-Contact headers

Reject-Contact indicates URI’s not acceptable

Accept-Contact indicates ordered list of acceptable URI’s

Indication by means of rules

- set intersection and non-intersection of parameters
- string match of URIs

Example:

Accept-Contact: sip:sales@acme.com ;q=0,
 ;media="!video" ;q=0.1,
 ;mobility="fixed" ;q=0.6,
 ;mobility="!fixed" ;q=0.4

In the second example, the caller does not want to talk to sales@acme.com, but has a preference for video and somewhat prefers the user’s fixed to non-fixed (i.e., mobile) terminal.
Callee (i.e., called party) Parameter processing

- Proxy obtains list of URI’s and the parameters for each, for callee
- Those that match a rule in Reject-Contact are discarded
- Matching set of URI’s determined
- q parameters merged
- Result split into sets of q-equivalency classes
- Parallel search of highest preference q-equivalence class
Request-Disposition

Defines services desired from proxy servers

<table>
<thead>
<tr>
<th>Feature values</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy</td>
<td>whether to proxy or redirect</td>
</tr>
<tr>
<td>redirect</td>
<td></td>
</tr>
<tr>
<td>cancel</td>
<td>whether to return just the first 200-class response, or all 2xx responses</td>
</tr>
<tr>
<td>no-cancel</td>
<td></td>
</tr>
<tr>
<td>fork</td>
<td>whether to fork or not (i.e., proxy to only a single address)</td>
</tr>
<tr>
<td>no-fork</td>
<td></td>
</tr>
<tr>
<td>recurse</td>
<td>whether a proxy server upon receiving a 3xx-class response should recurse (i.e., send requests to the addresses listed in the response) or not (i.e., simply forward the list of addresses upstream towards the caller)</td>
</tr>
<tr>
<td>no-recurse</td>
<td></td>
</tr>
<tr>
<td>parallel</td>
<td>For a forking proxy server, should it send the request to all known addresses at once (parallel), or go through them sequentially, i.e., contacting the next address only after receiving a non-2xx or non-6xx final response.</td>
</tr>
<tr>
<td>sequential</td>
<td></td>
</tr>
<tr>
<td>queue</td>
<td>If called party is temporarily unreachable, caller can indicate that it wants to enqueue rather than be rejected immediately.</td>
</tr>
<tr>
<td>no-queue</td>
<td>Pending call be terminated by a SIP CANCEL or BYE request.</td>
</tr>
</tbody>
</table>

Based on a list of keywords

- **example:** Request-Disposition: fork, parallel
SIP Service Examples

Some examples of SIP Services are listed below (from [189])

<table>
<thead>
<tr>
<th>Feature</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Hold</td>
<td>Single Line Extension</td>
</tr>
<tr>
<td>Consultation Hold</td>
<td>Find-Me</td>
</tr>
<tr>
<td>Music On Hold</td>
<td>Call Management (Incoming Call Screening)</td>
</tr>
<tr>
<td>Unattended Transfer</td>
<td>Call Management (Outgoing Call Screening)</td>
</tr>
<tr>
<td>Attended Transfer</td>
<td>Call Park</td>
</tr>
<tr>
<td>Call Forwarding Unconditional</td>
<td>Call Pickup</td>
</tr>
<tr>
<td>Call Forwarding - Busy</td>
<td>Automatic Redial</td>
</tr>
<tr>
<td>Call Forwarding - No Answer</td>
<td></td>
</tr>
<tr>
<td>3-way Conference - Third Party is Added</td>
<td></td>
</tr>
<tr>
<td>3-way Conference - Third Party Joins</td>
<td></td>
</tr>
</tbody>
</table>

You should compare these to the list we saw earlier: **Features** on page 203
Privacy-Conscious Personalization

Bell Labs’ has developed software designed to give cell phone users greater control over the disclosure of their location [191].

Preferences could depend on:

- who is requesting the location data,
- what time of day it is,
- or the callers’ activities,
- …

Requests for location are then filtered through these preferences, and are permitted or blocked accordingly.

Operators might provide users with a selection of “preference palettes” to start with, the user could then customize their preferences over time.
References and Further Reading

User Preferences

IK2554 Practical Voice Over IP (VoIP): SIP and related protocols
Fall 2010, Period 1
Module 11: SIP Security, NATs, and Firewalls

Lecture notes of G. Q. Maguire Jr.
SIP Security

SIP Security - RFC 3261 [193], obsoleted by RFCs 3261, 3262, 3263, 3264, 3265

If you want to secure both the SIP and RTP traffic, then you should probably be using an IPSec VPN.

SIP’s rich signalling means that the traffic reveals:
- caller and called parties IP addresses
- contact lists
- traffic patterns

For further details concerning how complex it is to protect such personal information see the dissertation by Alberto Escudero-Pascual, “Privacy in the next generation Internet, Data Protection in the context of European Union Data Protection Policy” [230].

For an example of a call anonymizer service -- using a back-to-back user agent (B2BUA), see figure 8.6 on page 121 of Sinnreich and Johnston.
SIP Digest Authentication

Built upon HTTP’s challenge/response mechanism

Challenges:

- 401 Authentication Required or
- 407 Proxy Authorization Required

Header fields:

- Digest: the schema name
- username="A": The user name as specified in the credentials
- realm="sip:proxy.com": realm - copied from the challenge
 realm indicates the domain for the authentication
- nonce="e288df84f1cecc4341ade6e5a359": nonce - copied from the challenge
 a unique string - typically generated from a timestamp (and possibly a seed), then encrypted with the user’s private key
- opaque="63632f41": opaque string which should be returned unchanged to be matched against the challenge (allows for a stateless system)
- uri="sip:UserB@there.com": URI from the Request-URI
- response="1d19580cd833064324a787ecc": message digest computed using user’s credentials and the nonce
RFC 3261 describes the use of Secure MIME (S/MIME) message bodies:

- SIP header fields can be encrypted in an S/MIME message body
- see RFC 5751[196] (which has replaced RFC 2633 and RFC 3851)

Provides:

- **Message integrity**
 - Allows detection of any modification of message contents
- **Message privacy**
 - Private headers protected by S/MIME
- **Identity**
 - Certificates can be verified to validate identity
SDP & RTP security

As noted earlier SDP enables you to say that you will encrypt the media stream which is sent via RTP - such as DES in CBC Mode (DES-CBC)\(^1\) or AES in f8-mode [203].

This is done via adding to the SDP for each media description:

\[\text{k=encryption key} \]

\(^1\) All encryption capable RTP clients must support this as their default algorithm. In addition, to prevent known plain text attacks, RTCP headers have a 32 bit random prefix.
User identity

J. Peterson and C. Jennings in RFC 4474 [197] define mechanisms and practices to assure the identity of the end user that originates a SIP request (does not cover identity for responses).

Their identity mechanism derives from the following principle:

If you can prove you are eligible to register in a domain under a particular address-of-record (AoR), then you are also proving that you are capable of receiving requests for that AoR.

∴ when you place that AoR in the From header field of a SIP request other than a registration (e.g., INVITE), you are providing a ’return address’ where you can legitimately be reached.

adapted from [197]

Introduces:
(a) authentication service (at either a user agent or a proxy server) and
(b) two new SIP headers, Identity & Identity-Info headers
Identity header example

from [197]

INVITE sip:bob@biloxi.example.org SIP/2.0
Via: SIP/2.0/TLS pc33.atlanta.example.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.example.org>
From: Alice <sip:alice@atlanta.example.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Max-Forwards: 70
Date: Thu, 21 Feb 2002 13:02:03 GMT
Contact: <sip:alice@pc33.atlanta.example.com>

Identity:
"ZYNBbHC00VMZr2kZt6VmCvPonWJMGvQTBDqghoWeLxJfzB2alpxAr3VgrB0SsSAaifsRdiOpQZYOy2wrVghuhcsMbHWUSFxI6p6q5TOQXHMz6uEo3svJsSH49thyGnFVcnyaZ++yRlBYYQLqWzJ+KVhPKbfU/pryhVn9Yc6U="

Identity-Info: <https://atlanta.example.com/atlanta.cer>;alg=rsa-shal
Content-Type: application/sdp
Content-Length: 147

v=0
o=UserA 2890844526 2890844526 IN IP4 pc33.atlanta.example.com
s=Session SDP
c=IN IP4 pc33.atlanta.example.com
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000
Saying **BYE** also needs to be authenticated!

```
BYE sip:alice@pc33.atlanta.example.com SIP/2.0
Via: SIP/2.0/TLS 192.0.2.4;branch=z9hG4bKnashds10
Max-Forwards: 70
From: Bob <sip:bob@biloxi.example.org>;tag=a6c85cf
To: Alice <sip:alice@atlanta.example.com>;tag=1928301774
Date: Thu, 21 Feb 2002 14:19:51 GMT
Call-ID: a84b4c76e66710
CSeq: 231 BYE

**Identity:**
"sv5CTo05KqpSmtHt3dcEiO/1CWTSZtnG3iV+1nmurLXV/HmyNS7Ltrg9dlxkWzo
eU7d7OV8HweTTDobV3itTmgPwCFjaEmMyEI3d7SyN21yNDo2ER/Ovgtw0Lu5csIp
ppQg1uXndzHbG7mR6Rl9EnUhHufVRbp51Mn3w0gfUs=

**Identity-Info:** <https://biloxi.example.org/biloxi.cer>;**alg=rsa-shal**

Content-Length: 0
```

alg=rsa-shal is a new part of the RFC that was not in the earlier internet draft.
miniSIP supports pluggable CODECs:

- each RTP packet says which codec was used
- SDP can specify multiple codecs each with different properties (including better than toll quality)
- tests used PCM ⇒ sending 50 packets of 160 byte RTP payload length (packet size is 176 bytes) per second (i.e. 64 Kbps), i.e., 20 ms between packets

Configuration used in the test described next:

- time to transmit/receive a packet ~55-60 μs
- Laptop ASUS 1300B with Pentium III processor, 700 MHz
- 112 MB RAM (no swapping)
- Operating System: SuSE Linux 7.1 Personal Edition
- Security Services: confidentiality and message authentication (with Replay Protection)
- Cryptographic Algorithms: AES in Counter Mode for the confidentiality and HMAC SHA1 for the message authentication
- Lengths: master key: 16 bytes; salting key: 14 bytes; authentication key: 16 bytes; encryption key: 16 bytes; block: 128 bytes

Secure Real Time Protocol (SRTP)

Described in RFC 3711 [207], provides confidentiality, message authentication, and replay protection for RTP and RTCP traffic.

<table>
<thead>
<tr>
<th>Sender behavior</th>
<th>Receiver behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine cryptographic context to use</td>
<td>Read the SRTP packet from the socket.</td>
</tr>
<tr>
<td>Derive session keys from master key (via MIKEY)</td>
<td>Determine the cryptographic context to be used</td>
</tr>
<tr>
<td></td>
<td>Derive the session keys from master key (via MIKEY)</td>
</tr>
<tr>
<td>Encrypt the RTP payload</td>
<td>If message authentication and replay protection are provided, check for possible replay and verify the authentication tag</td>
</tr>
<tr>
<td>If message authentication required, compute authentication tag and append</td>
<td>Decrypt the Encrypted Portion of the packet</td>
</tr>
<tr>
<td>Send the SRTP packet to the socket</td>
<td>If present, remove authentication tag</td>
</tr>
<tr>
<td></td>
<td>Pass the RTP packet up the stack</td>
</tr>
</tbody>
</table>

- AES CM (Rijndael) or Null Cipher for encryption (using libcrypto)
- HMAC or, Null authenticator for message authentication
- SRTP packet is 176 bytes (RTP + 4 for the authentication tag if message authentication is to be provided)
- Packet creation: RTP 3-5 μs; RTP+SRTP 76-80 μs (throughput 20Mbps)
 - ~1% of the time there are packets which take as long as 240 μs
Multimedia Internet KEYing (MIKEY) [210] as the key management protocol

Extends earlier thesis - Runs on a laptop or iPAQ under Linux

Secure Call Setup [201]

<table>
<thead>
<tr>
<th>Total delay (in ms)</th>
<th>Calling Delay</th>
<th>Answering Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>No security</td>
<td>19.5</td>
<td>9.5</td>
</tr>
<tr>
<td>MIKEY, shared key</td>
<td>20.9</td>
<td>10.5</td>
</tr>
<tr>
<td>MIKEY, Diffie-Hellman</td>
<td>52.5 (UDP)</td>
<td>47.6 (UDP)</td>
</tr>
<tr>
<td></td>
<td>58.9 TCP)</td>
<td>48.9 (TCP)</td>
</tr>
</tbody>
</table>

- Name-servers (BIND 8.2 on Linux 2.4, 500 MHz Pentium 3 laptops)
- Root name-server ns.lab manages the delegation of minisip.com and ssvl.kth.se to their respective name server
- Two routers (1.1 GHz Celeron desktops) perform static routing, and each router also runs a SIP server, SIP Express Router (SER v0.8.11))
- Alice and Bob use minisip, running on 1.4 GHz Pentium 4 laptops, running Linux 2.4

In 2005, Joachim Orrblad in his thesis, “Alternatives to MIKEY/SRTP to secure VoIP” [200], examines the use of MIKEY together with IPSec.
SRTP TESLA [211] was designed to provide efficient data origin authentication for multicast and broadcast session.

This is needed since we do not want to create all possible pairwise authentications for the participants in a conference.
For details of the reasoning behind SRTP and MIKEY, see Elisabetta Carrara’s licentiate thesis: Security for IP Multimedia Applications over Heterogeneous Networks [212].
NATs and Firewalls

Because Network Address Translation (NAT) devices change addresses and sometimes port numbers and because addresses and port numbers are inside both SIP and SDP there can be a problem!

Fredrik Thernelius, “SIP, NAT, and Firewalls”, looked at this in detail in his M.Sc. thesis [213]. See also the other documents at http://www.cs.columbia.edu/sip/drafts_firewall.html

Note: CNAME’s in RTCP may need to be updated by the Network Address Translation (NAT) to hide private network addresses.

To protocols being developed to help deal with NATs:

- Simple Traversal of User Datagram Protocol Through Network Address Translators (STUN)
- Globally Routable User Agent Universal (GRUU) Resource Indicator[220]
- a URI which can be used by anyone on the Internet to route a call to a specific UA instance
See also pages 237-239 of *Practical VoIP: Using VOCAL* [1]; particularly the example of using a Cisco ATA (Analog Telephone Adaptor) behind a Linksys firewall (which configures the firewall to pass incoming traffic on port 5060, 4000, and 4001 to the Cisco ATA) - which also refers to http://www.dyndns.org/
Types of NAT

Source NAT: All callers look like they come from the same IP address.

Destination NAT: Which internal address should traffic to a given port be forwarded to?

Four types of NATs [221] and

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Cone</td>
<td>maps a specific internal IP address and port number to a given external IP address and port number. This is the only type of NAT that allows an external host to contact an internal host (i.e., behind the NAT) without having previously received packets from this internal host.</td>
</tr>
<tr>
<td>Restricted Cone</td>
<td>external hosts must have the IP address of an internal host prior to communicating with this internal host.</td>
</tr>
<tr>
<td>Port Restricted</td>
<td>external hosts must have the IP address and port number of an internal host prior to communicating with this internal host.</td>
</tr>
<tr>
<td>Symmetric</td>
<td>assigns unique internal IP address and port numbers based on the specific internal destination.</td>
</tr>
</tbody>
</table>
Cone vs. Symmetric NAT

Figure 17: (a) Cone NAT vs. (b) Symmetric NAT - figure inspired by figures 1 and 2 of [225]
NAT traversal methods

- Symmetric media streams
- STUN protocol
 - also: Extended STUN for Symmetric NAT
- rport SIP extension
 - See RFC 3581[222] - defines a new parameter for the Via header field, called "rport", this “allows a client to request that the server send the response back to the source IP address and port from which the request originated.”
- OPTIONS request registration refresh
 - Causes the UA to send traffic out - thus refreshing the NAT bindings
- Outgoing INVITE transaction refresh
- Traversal using Relay NAT (TURN)
 - insert a server in the media and signalling path (to deal with Symmetric NATs)
- Application Layer Gateway (ALG)
 - Here the NAT knows about SIP and “does the right thing”
- Universal Plug and Play (UPnP)
 - Use UPnP to control the NAT to open a specific “pinhole” in the firewall
- Manual Configuration
 - manually configure a set of addresses and ports for SIP to use
• **Tunnel**
 • Tunnel the traffic - inside IPsec, HTTP (i.e., act like HTTP), …

A NAT support “**hairpinning**” if it can route packets coming **from** the private network addressed to a public IP address **back** into the private network. For example, a mobile user might actually be connected to the private network - thus packets to this user do not actually need to be sent out and then sent back into the private network!
STUN (Simple Traversal of UDP through NATs (Network Address Translation))

STUN, defined in RFC 3489 [218] (replaced by RFC 5389 [219]), assists devices behind a NAT firewall or router with their packet routing.

- enables a device to find out its public IP address and the type of NAT service its sitting behind
 - By querying a STUN server with a known public address, the STUN client learns the public IP and port address that were allocated by this client’s) NAT.

- operates on TCP and UDP port 3478

- uses DNS SRV records to find STUN servers attached to a domain. The service name is _stun._udp or _stun._tcp

- Unfortunately, it is not (yet) widely supported by VOIP devices

Note: The STUN RFC states: This protocol is not a cure-all for the problems associated with NAT.

STUN steps

1. Client queries a STUN server for a shared secret username and password
2. Server responds with a unique username/password combination for this client
3. Client sends a binding request using this username/password to the server via UDP
4. Server copies the source IP and port number into a binding response, and sends this response back to the client
5. Client compares the IP address and port number received from the server with its local IP address and port number. If they **do not** match, then the client is behind some type of NAT.

- A full flowchart to find each of the potential situations is shown as Figure 14 “Flow Chart: Determining NAT type” in [221].
UDP and TCP Firewall Traversal problems

1. INVITE/UDP

2. 180 Ringing/UDP
3. 200 OK/UDP
 RTP packets/UDP

4. INVITE/TCP

5. 180 Ringing/TCP
6. 200 OK/TCP
7. ACK/TCP
RTP packets/UDP

Using UDP all of B’s responses and packets are filtered out by the firewall and there is no session!

Using TCP for SIP enables the session to be setup, but B’s RTP packets are still filtered out by the firewall!
UDP and TCP NAT Traversal problems

1. **INVITE**
 - via: 10.1.2.3
 - Contact: A@10.1.2.3
 - SDP 10.1.2.3

2. **180 Ringing**
 - via: 10.1.2.3; received=1.2.3.4
 - Contact: B@130.101.102.103

3. **200 OK**
 - via: 10.1.2.3; received=1.2.3.4
 - Contact: B@130.101.102.103
 - SDP 130.101.102.103

4. **ACK**
 - RTP packets to 130.101.102.103

SIP can negotiate the NAT, but A’s SDP contains a private address.

B’s RTP packets are directed to a private address and hence can not be routed; similarly B’s requests also fail.
Other NAT traversal protocols

Traversing Using Relay Nat (TURN)

TURN is specified in RFC 5766 [227].

ICE

Another protocol for NAT traversal is “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocol” as specified in RFC 5245 [228].

HIP

Yet another NAT traversal protocol is “Basic Host Identity Protocol (HIP) Extensions for Traversal of Network Address Translators” as specified in RFC 5770 [229].
SIP Application Level Gateway (ALG) for Firewall Traversal

Use a proxy within the (possibly private) network:

```
User Agent A   SIP ALG Proxy   Firewall/NAT   User Agent B

1. INVITE
   3. 100 Trying
      5. 180 Ringing
      7. 200 OK sdp ALG
      8. ACK

RTP Media Session

10. BYE

2. INVITE sdp ALG

4. 180 Ringing

6. 200 OK sdp B

9. ACK

11. BYE

12. 200 OK

13. 200 OK
```

Firewall permits SIP and RTP traffic to/from the Application Level Gateway (ALG) proxy. For some recent work in this area see [216].
The generic problem of enabling complex applications through the middleboxes is being addressed by the Middlebox communications (MIDCOM) Working Group, they do so via MIDCOM agents which perform ALG functions, logically external to a middlebox [215].
Application aware Middlebox

Newport Networks’ Automatic Channel Mapping™ (ACM) [224]:

- SignallingProxy™ acts as a high-performance B2BUA (Back to Back User Agent)
- MediaProxy™ provides a transit point for RTP and RTCP media streams between User Agents
Security flaws in Abstract Syntax Notation One (ASN.1)

Note that the vulnerability was discovered in June 2002!

The United Kingdom National Infrastructure Security Co-Ordination Centre revealed in Jan. 2004, “that it had discovered security flaws that affect the products of dozens of vendors. The flaws were found in software that support a variety of applications and technologies, including voice over IP, videoconferencing, text messaging, Session Initiation Protocol, devices and hardware, and critical networking equipment such as routers and firewalls.” …

“CIOs need to be aware that voice over IP creates exposure to vulnerabilities, says David Fraley, a principal analyst at Gartner Dataquest. "While there are very real and neat opportunities with VoIP, as convergence increases, the risks to attacks to these systems are going to increase," he says.

Risks range from denial-of-service attacks to allowing access to malicious code. according to the

See http://www.cert.org/advisories/CA-2004-01.html#vendors
Communications and Privacy

- Encryption as the norm - even onetime pads are feasible
 - Since all speech and other media content will be in digital form, it will be trivial to provide encryption and authentication of all communication (if the participants want to)
 - traditional public telephony **less secure** than using: VPNs, SRTP, MIKEY, …
 - For WLANs: IEEE 802.11i security features along with 128-bit Advanced Encryption Standard (AES) encryption, …

- Identity hiding - Authentication when you mutually want to
- Mobile presence has to be done carefully
- Anonymous network access
- Location hiding & Privacy
 - Alberto Escudero-Pascual, http://www.it.kth.se/~aep
- Location mis-direction ⇒ End of Sovereignty
- Traffic pattern hiding
- Traffic hiding

See [231] to [235].
Swedish Electronic Communications Act

Swedish Electronic Communications Act (SFS 2003:389) [236] (see also http://www.pts.se/Sidor/sida.asp?SectionID=1340) provides the regulatory framework for electronic communications networks and services. It is based on EU directives and became effective on July 25th, 2003. It defines what/who an operator is and what their obligations are. (note: it replaces the earlier swedish definition of “teleoperator”).

It is relevant to **publically available** telephone services in 3 major areas:

- emergency calls (Chapter 5, section 7)[236]
- number portability (Chapter 5, section 9)[236], and
- legal intercept (Chapter 6, section 19)[236]

See also the controversy surrounding the “FRA-lagen” - as per proposition 2006/07:63 – *En anpassad försvarsunderrättelseverksamhet*
Recording of Call Contents

The lawful “use of electronic recording equipment” - when can you make a recording of a call’s contents (i.e., wiretapping and eavesdropping)?

The US Federal government (18 U.S.C. Sec 2511,) and many states have “one-party consent” statutes, i.e., if you are a party to the conversation you can record it. However, note that not all states permit this (some have an “all-party” rule)! Note that these rules often apply to in-person recordings, radio/telecommunication, … , all “electronic communications”.

There are additional rules concerning Broadcasters - who must inform the person that the recording may be subsequently broadcast before the recording begins.

A summary of the rules for the US can be found at: http://www.rcfp.org/taping/index.html

In addition, there are also laws concerning “employee privacy” which may also be relevant.

For the IETF policy on wiretapping see RFC 2804 [250].
There is a proposal that Communications Assistance for Law Enforcement Act (CALEA) (47 U.S.C. § 1001 et seq. [237]) should be applied to VoIP services (and other data services) to "conduct lawful electronic surveillance":

Types of surveillance [240]:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"pen register"</td>
<td>records call-identifying information for calls originated by a subject</td>
</tr>
<tr>
<td>"trap and trace"</td>
<td>records call-identifying information for calls received by a subject, and</td>
</tr>
<tr>
<td>"interception"</td>
<td>records the conversations of the subject, as well as call identifying information</td>
</tr>
</tbody>
</table>

There is a great variety of proposals for LI [249].
Reasonably Available Information

Operators are only required to provide information to law enforcement if it is reasonably available. For example, “call-identifying information is reasonably available to a carrier if it is present at an intercept access point and can be made available without the carrier being unduly burdened with network modifications”.

The EU statute is similar in identifying when information is technically feasible and economically feasible available.

Thus **Call Forwarding Information** might **not** always be reasonably available in a SIP environment - since the call forwarding could happen outside the control of a given operator.

Similarly **Dialed-Digit Extraction** might **not** be available in a SIP environment since the actual IP address of the source and destination might be inside encrypted SDP.
EU privacy and Lawful Intercept (LI)

EU Directive 95/46/EC - Data Protection Directive,
EU Directive 97/66/EC - Telecommunications Data Protection, and

A good summary of the EU situation can be found at [239].

ETSI is defining a standard LI architecture see [242] and [243]. For a list of the LI standards as collected by the Global LI Industry Forum, Inc. [245] see [246].
Intercept architecture

- The existence of Intercepts should be transparent to both the subject and other LEAs!
- The dotted links (probably SNMPv3) must be secured to prevent Unauthorized Creation and Detection of intercepts - while solid red links must be secured to protect intercept related information (IRI) [241]
- Intercept [Access] Point (IAP): router, PSTN gateway, SIP proxy, RADIUS server, …

Figure 18: Interfaces in RED should be standard to allow interoperability; Hi\textsubscript{n} = Handover Interface\textsubscript{n}
A survey of lawful intercept (for both analog telephony and VoIP) can be found in Romanidis Evripidis’s thesis: Lawful Interception and Countermeasures: In the era of Internet Telephony [251]. He points out a problem for key escrow in that the law enforcement agency can fabricate evidence - once they have the key!

A key esrow system for minisip with countermeasures for fabrication of evidence (based on the idea proposed in the above thesis) as been implemented in:

Data Retention Directive

Article 5: Categories of data to be retained

1. Member States shall ensure that the following categories of data are retained under this Directive:

(a) data necessary to trace and identify the source of a communication:

(1) concerning fixed network telephony and mobile telephony:

(2) concerning Internet access, Internet e-mail and Internet telephony:

(i) the user ID(s) allocated;

(ii) the user ID and telephone number allocated to any communication entering the public telephone network;

(iii) the name and address of the subscriber or registered user to whom an Internet Protocol (IP) address, user ID or telephone number was allocated at the time of the communication;
(b) data necessary to identify the destination of a communication:

(2) concerning Internet e-mail and Internet telephony:

(i) the user ID or telephone number of the intended recipient(s) of an Internet telephony call;

(ii) the name(s) and address(es) of the subscriber(s) or registered user(s) and user ID of the intended recipient of the communication;

(c) data necessary to identify the date, time and duration of a communication:

(2) concerning Internet access, Internet e-mail and Internet telephony:

(i) the date and time of the log-in and log-off of the Internet access service, based on a certain time zone, together with the IP address, whether dynamic or static, allocated by the Internet access service provider to a
communication, and the user ID of the subscriber or registered user;
(ii) the date and time of the log-in and log-off of the Internet e-mail service or Internet telephony service, based on a certain time zone;

(d) data necessary to identify the type of communication:

..

(2) concerning Internet e-mail and Internet telephony: the Internet service used;

(e) data necessary to identify users' communication equipment or what purports to be their equipment:

..

(3) concerning Internet access, Internet e-mail and Internet telephony:

(i) the calling telephone number for dial-up access;

(ii) the digital subscriber line (DSL) or other end point of the originator of the communication;
(f) data necessary to identify the location of mobile communication equipment:

(1) the location label (Cell ID) at the start of the communication;

(2) data identifying the geographic location of cells by reference to their location labels (Cell ID) during the period for which communications data are retained.

2. No data revealing the content of the communication may be retained pursuant to this Directive.

Sweden was “late” implementing a national law in regard to this directive (hence the EU Commission took Sweden to the European Court of Justice). Note that: Austria, Greece, Ireland, The Netherlands, and Poland are also “late” to implement national laws regarding this directive.
SIP Recording

SIP recording is often necessary for regulatory or compliance reasons (for example, emergency call centers, banks & trading floors, …) and calls might be recorded for “quality control”, supervision, business analysis, …

⇒ SIP-based Media Recording

The requirements are described in a recent Internet draft: “Requirements for SIP-based Media Recording (SIPREC)” [259] - this defines several use cases:

- Total call recording - all of every call is to be recorded
- Selective recording - only specific calls are recorded
- Dynamic recording (also known as Mid-session or Mid-call recording)
- Persistent recording - all calls recorded as a single recording session
- Real-time recording controls to enable some portions of the call
- IVR/Voice portal recording - recording media during interaction with an interactive voice response (IVR) application
• Enterprise mobility recording - recording sessions when a user is not within the enterprise, but is acting on behalf of the enterprise
• Geographically vs. centralized recording schemes
• Recording “complex” calls - for example maintaining a contiguous recording despite the caller being transferred to another party
• High-availability and high reliability recording - being able to either reject a communication call setup or transfer the recording responsibility to another recording server, handle failover/transfer of recorder responsibility in the middle of a recording session, etc.
• Recording multi-media and multi-channel sessions
• Real-time media processing - to support real-time analysis of the voice (for example, automatically generating an alert based upon the speech content, stopping a session on a keyword, …)
SIP Recording Architecture

An architecture has been proposed, see the Internet draft: “An Architecture for Media Recording using the Session Initiation” [260]

In addition to defining some entities (recording session server, recording session client, and recording aware user agent), the architecture defines a communication session, a recording session, replicated media, and explicitly addresses the issue of media recording metadata.

This metadata is important in order to identify the participants in a session, the call state, and other parameters of the session.
SIP extensions for SIP recording

A set of SIP extensions have been defined to allow SIP entities to distinguish between a **Recording Session** and a **Communication Session** and so that a SIP UA can know if a session is being recorded - see Internet draft: “SIP Call Control - Recording Extensions” [261] - for the definitions of the new feature tags: src (session recording clients indicates this session is for the purposes of a recording session), srs (used by the session recording server), and recorded (to indicate that some or all of the media session is being recorded)
Voice over IP Security Alliance

The Voice over IP Security Alliance (http://www.voipsa.org/) was formed February 7, 2005

They have a moderated mailing list: VOIPSEC
There is rising concern that misconfigured voice gateways, … will lead to increased IP telephony SPAM.

One solution is using speaker recognition and then checking to see if this speaker is on:
• a white list (automatic accept),
• a black list (automatic reject), or
• unknown (message could be recorded and the user listens to it later and then adds the user to their white or black lists).

See for example [247].

Issues of SIP and SPAM and solutions in addition to the above are discussed in [248].
VoIP Security: Attacks and Countermeasures

There are numerous types of attacks, for some details see [255],[256],[257].

Note that Denial of Service (DoS) is a major attack form against VoIP (as well as other IP based services) - this could be done by flooding a node or nodes with SIP messages, sending malformed packets (“fuzzing”), .

Some other types of attacks:

- **BYE attack**: Attacker sends a SIP BYE to terminate a session
- **CANCEL attack**: Attacker sends a SIP CANCEL to a proxy between the caller and callee, cancelling the session setup in progress
- **Registration manipulation and call hijacking**
- **Media hijacking**
- **Directory enumeration** (for example, to find targets)
- **An attacker might also access a VoIP gateway to steal/abuse services.**

For further details of some of these (along with tools which implement them), see [258].
References and Further Reading

SIP Security

http://www.ietf.org/rfc/rfc3261.txt

http://www.ietf.org/rfc/rfc2633.txt

http://www.rfc-editor.org/rfc/rfc3851.txt

http://www.rfc-editor.org/rfc/rfc5751.txt

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/030626-Israel_Abad_Caballero-final-report.pdf

RTP encryption

http://www.ietf.org/rfc/rfc1423.txt

http://www.ietf.org/proceedings/00dec/slides/AVT-3/tsld001.htm

<draft-bloom-rtp-encrypt-00.txt>

http://www.iptel.org/info/players/ietf/security/draft-bloom-rtp-encrypt-00.txt

NATs and Firewalls

[214] List of sources about SIP and Firewalls

http://www.ietf.org/rfc/rfc3303.txt

http://www.ietf.org/rfc/rfc3304.txt

http://www.ietf.org/rfc/rfc3581.txt

http://www.rfc-editor.org/rfc/rfc5770.txt
Privacy

http://www.rfc-editor.org/rfc/rfc4244.txt
[234] J. Elwell, “Updates to Asserted Identity in the Session Initiation Protocol (SIP)”, Internet Request for Comments, RFC Editor, RFC 5876 (Informational), ISSN 2070-1721, April 2010,

http://www.rfc-editor.org/rfc/rfc5876.txt

http://www.rfc-editor.org/rfc/rfc5767.txt

[236] Swedish Electronic Communications Act (SFS 2003:389), March 2003

http://www.techlawjournal.com/agencies/calea/47usc1001.htm

http://www.blackhat.com/presentations/bh-europe-03/bh-europe-03-baloo.pdf

http://www.ietf.org/rfc/rfc3924.txt

[246] http://www.gliif.org/standards.htm

http://www.rfc-editor.org/rfc/rfc5039.txt

http://www.rfc-editor.org/rfc/rfc2804.txt

[251] Romanidis Evripidis, Lawful Interception and Countermeasures: In the era of Internet Telephony, Masters thesis, Royal Institute of Technology (KTH), School of Information and Communications Technology, Stockholm, Sweden, COS/CCS 2008-20, September 2008

VoIP Security

SIP recording

http://tools.ietf.org/html/draft-ietf-siprec-architecture-00

module 12: sip telephony
SIP Telephony

SIP Telephony (SIP-T) -- for details see RFC 3204 [270] (Updated by RFCs 3459 [271] and 5621 [272]).

Gateway between the SIP world and the PSTN world looks like a SIP user agents to other SIP entities and like a terminating telephone switch to the PSTN.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Provides ISUP transparency (by carrying ISUP message as multipart MIME messages in the SIP messages between SIP-T gateways)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disadvantages</td>
<td>Does not interwork with SIP Perpetuates ISUP!</td>
</tr>
</tbody>
</table>

For example of call flows between SIP and PSTN see [273].

Stream Control Transmission Protocol (SCTP) can be used to carry telephony signalling [277].
Telephony Routing over IP (TRIP)

- TRIP [274] is a gateway to Location Server (LS) protocol
- Designed for an interdomain gateway
- Allows the gateway to advertise what PSTN number range it is a gateway for

For within a domain there is a version for between a gateway and a proxy: TRIP-lite

A Location Server is responsible for a Internet Telephony Administrative Domain (ITAD).

See also: Telephony Routing over IP (TRIP) on page 460

and Telephony Gateway REgistration Protocol (TGREP) [276].
Call Control Services

Generally include advanced telephony services such as:

- Call Transfer, both Attended and Unattended
- Call Park/Un-Park
- Multistage Dialling
- Operator Services
- Conference Call Management
- Call Mobility
- Call Pickup

See the slides starting on Intelligent Network service using SIP on page 200.
Call Center Redesign using SIP

- Replace the call center switch via VoIP
- Interactive Voice Response (IVR) - using a media server (for pre-recorded clips) and SIP signalling
- Automatic Call Distribution (ACD) - replace with scripts using Call Processing Language (CPL)
- Agent Workstation - a PC with a SIP client
- The agent has access via Web and various databases to information, which can be indexed by the agent using information from the SIP request.
Additional SIP Telephony services

- SIP for the Hearing Impaired
- Emergency Services
- Precedence signalling (military, government, emergency services, …)
 - RFC 3487 [262] gives the requirements for resource priority mechanisms for SIP
- Message Waiting, Voice Mail, and Unified Messaging
 - See for example Interactive Intelligence’s Communité® (“ka-mune-i-tay”)
- Call Waiting
- SIP *continuing* presence service
 - The I-Am-Alive (IAA) database [269] is a distributed database system that users can query after-the-event to determine the status of a person - it does not require the session properties of SIP
 - Is there a SIP corollary - for *continuing* presence?
Telephony Signaling when used in Internet-based telephony services in addition to the general requirements specified in RFC 3689 [265] needs to support a number of additional requirements RFC 3690 [266]:

- **Telephony signaling applications** (used with Internet-based telephony) **must** be able to carry labels.
- **The labels** **must** be extensible
 - to support various types and numbers of labels.
- **These labels** **should** have a mapping to the various emergency related labels/markings used in other telephony based networks, e.g., PSTN
 - To ensure that a call placed over a hybrid infrastructure (i.e., PSTN+Internet) can carry the labels end-to-end with appropriate translation at PSTN/Internet boundaries.
 - Only authorized users or operators **should** be able to create non-ordinary Labels (i.e., labels that may alter the default best effort service).
 - Labels **should** be associated with mechanisms to providing strong end-to-end integrity
 - Operators **should** have the capability of authenticating the label
• Application layer IP telephony capabilities must not preclude the ability to do application layer accounting.
• Application layer mechanisms in gateways and stateful proxies that are specifically in place to recognize ETS type labels must be able to support “best available” service (i.e., better than “best effort”).

See also RFC 4375 [267] and RFC 4542 [268].
Emergency Services (E911)

We need to support 3 things according to Henning Schulzrinne[263]:

- There must exist an emergency address (similar to 911, 112, help, …)
- find Public Safety Answering Point (PSAP)
 - outbound proxy -- only if there is a well bounded geographic area servered by this proxy
 - use DNS where the user or device enters a relevant name: e.g., pittsburgh.pa.911.arpa
 - SLP - but scope not likely to coincide with ESR
 - call volume:
 - Sweden: SOSAlarm.se has 20 call centers distributed around Sweden with ~18 million calls/year with ~20% of them calls to 112 the rest are automatic alarms;
 - US: National Emergency Number Association (NENA) reports >500,000 calls/day or 190 million a year (more than 80% are not emergencies ⇒ 311 non-emergency number)
- obtain caller’s identity and geographical address
 - this is done to minimize prank calls
 - caller provides in request
 - Geographic position: N 59° 24.220' E017° 57.029' +/- 77m and/or
 - Geographic Location: "5th floor, Isafjordsgatan 22, Kista, Stockholm, Sweden"
 - or PSAP queries caller
 - or PSAP queries third party based on caller identity

note: Enhanced 911 (E911) - mandated by FCC for cellular phones in US
Public Safety Answering Point (PSAP)

For example MapInfo has an E911 database called “PSAP Pro” which contains the following PSAP information for the U.S.:

- 10-digit emergency numbers
- Administrative phone number
- Contact person
- Jurisdictional boundaries
- Address information
- Fax number
- Latitude and longitude

~4,400 records: both primary PSAPs and sheriff’s departments and offices in areas not served by a PSAP.

So finding the nearest one can be done based on geography, but is it the most relevant or useful one? In Sweden SOS Alarm works with the digital maps from CoordCom.

Location Interopability Forum became part of Open Mobile Alliance (OMA) and no longer exists separately: http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html
Vonage 911 service

- User must pre-designate the physical location of their Vonage line and update Vonage when the user moves
- 911 dialing is not automatically a feature of having a line
 - users must pre-activate 911 dialing
 - user may **decline** 911 dialing
- A 911 dialed call will be connected to a general access line at the Public Safety Answering Point (PSAP)
 - thus they will **not** know you phone number or location
- **Service may not be available due to**
 - a local power failure (your IP phone needs power)
 - you local ISP not being able to offer service
 - one of the transit networks not being able to offer service
 - the voice gateway to the PSTN not being in service
 - …
Vonage equips PSAPs with VoIP

Vonage Equips Over 100 New Counties and 400 Calling Centers With E911 in Just One Month, Vonage Press Release, March 7, 2006

- "Nearly 65 Percent of Vonage Customers Now Have E911"
- "In February alone, Vonage equipped an additional 400 calling centers in over 100 new counties with E911 -- bringing the total number of calling centers across the nation with E911 service to over 3400, which is more than half of the nation’s calling centers. While it took Vonage less than a year to turn on E911 in more than one-half of the nation’s PSAP’s, it took the wireless industry 10 years to accomplish the same feat."
- "In the event Vonage is unable to connect to the 911 system or for customers who are using mobile devices such as wifi phones or softclients, Vonage offers a national emergency call center which enables customers to get local help when they need it."

Maguire
maguire@kth.se
Vonage equips PSAPs with VoIP
2010.08.26
Module 12: 431 of 438
Practical Voice Over IP (VoIP): SIP and related protocols
GEOPRIV (http://www.ietf.org/html.charters/geopriv-charter.html) an IETF working group tasked with establishing a means of disseminating geographic data that is subject to the same sorts of privacy controls as presence is today.

The requirements for GEOPRIV are given in RFC 3693 [279]. Security threats are examined in RFC 3694 [280].

“A Presence-based GEOPRIV Location Object Format” is defined in RFC 4119 [281] based on earlier work done in formulating the basic requirements for presence data -- the Presence Information Data Format (PIDF) and a means of distributing these object described in RFC 4079 [284].
Emergency services

[264] Europe’s 112 website: http://www.sos112.info/

SIP Telephony

TRIP

Geopriv

Considerations, and Recommendations”, Internet Request for Comments, RFC Editor, RFC 5491 (Proposed Standard), ISSN 2070-1721, March 2009

http://www.rfc-editor.org/rfc/rfc5491.txt

http://www.rfc-editor.org/rfc/rfc4079.txt
Module 13: SIP Conferencing

Lecture notes of G. Q. Maguire Jr.
Conferencing

- Multimedia conferencing
 - Synchronized Multimedia Integration Language (SMIL) to enable other media (e.g., text, graphics and URLs) to be added to audio/video streams for synchronized display[307]
 - SMIL documents are XML 1.0 documents

- Multipoint conferencing
 - can exploit multicast where available

- Call control for conferencing

- Floor control [288]
 - this a particular focus of Push-to-talk service [291]
 - see Florian Maurer’s push-to-talk service for minisip http://push2talk.floHweb.ch
 - An example of a floor control protocol is given in RFC 4582 [289]

- RFC 4575 [290] defines a SIP Event Package for Conference State
Conferencing Models [285]

<table>
<thead>
<tr>
<th>Type of Conference</th>
<th>Description</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint mixing</td>
<td>One end point acts as a mixer for all the other end points</td>
<td>small</td>
</tr>
<tr>
<td>SIP Server and distributed media</td>
<td>Central SIP server establishes a full mesh between all participants - each participant does their own mixing</td>
<td>medium</td>
</tr>
<tr>
<td>Dial-in conference</td>
<td>All participants connect to a conference bridge which does the mixing for each participant</td>
<td>medium</td>
</tr>
<tr>
<td>Ad hoc centralized conference</td>
<td>Two users transition to a multiparty conference, by one of them using third-party signaling to move the call to a conference bridge</td>
<td>medium</td>
</tr>
<tr>
<td>Large multicast conference</td>
<td>user join the multicast based on the multicast address (which they got via:</td>
<td>small to very large</td>
</tr>
<tr>
<td></td>
<td>- announcement on the web</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- e-mail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Session Announcement Protocol (SAP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[306]</td>
<td></td>
</tr>
</tbody>
</table>

Commercial conference bridge authenticate the users joining the conference.
SIP Conferencing

RFC 4353 [286] defines SIP procedures for the following common operations:

- Creating Conferences (see RFC 5366 [299] for providing an initial list of participants)
- Adding/Removing Participants
- Destroying Conferences
- Obtaining Membership Information
- Adding/Removing Media
- Conference Announcements and Recordings

RFC 5850 [300] defines “A Call Control and Multi-Party Usage Framework for the Session Initiation Protocol (SIP)”.

RFC 4579 [296] defines SIP Call Control - Conferencing for User Agents

A variety of conferencing scenarios are described in RFC 4597 [298].
Realizing conferences

Conferences can be realized in many ways:

- Centralized Server, Endpoint Server, or Distributed Conferencing
- Media Server Component
- Distributed Mixing
- Cascaded Mixers
- Transcoding media at a conference bridge (see RFC 5370 [292])
Centralized Conferencing Framework

A framework for centralized conferences is defined in RFC 5239 [304]
Distributed Conferencing (DCON)

Distributed conferencing is an area where there is a lot of active development today, see the many Internet Drafts - such as “Requirements for Distributed Conferencing” [305].
Conference and IVR server control

The Media Server Control Protocol Requirements are defined in RFC 5167 [295]. The Media Server Control Markup Language (MSCML) and Protocol specified in RFC 5022 [302] enables the conference focus to mix and control input from a media server. This can be used to play a video clip, display a picture (for example a slide), etc.

See also the Media Server Markup Language (MSML) defined in RFC 5707 [303]. The XMLSchema for Media Control is defined in RFC 5168 [297].
Media types

RFC 3551: RTP Profile for Audio and Video Conferences with Minimal Control provides a basic RTP profile.

RFC 4245: High-Level Requirements for Tightly Coupled SIP Conferencing defines the media types for the languages of the W3C Speech Interface Framework [287]:

- Voice Extensible Markup Language (VoiceXML),
- Speech Synthesis Markup Language (SSML),
- Speech Recognition Grammar Specification (SRGS),
- CallControl XML (CCXML), and
- Pronunciation Lexicon Specification (PLS).
Speaker recognition in a conference

Abstract:

A system and method for identifying a participant during a conference call include the capability to receive a packet containing data that represents audible sounds spoken by one of a plurality of participants in a conference call and to determine a speaker of the audible sounds using voice profile information of the participants. The system and method further include the capability to provide identification information of the speaker to the other participants in the conference call contemporaneously with providing audible sounds based on the data to those participants.

Shmuel Shaffer and Michael E. Knappe, US patent 6,853,716 [308]
SIP Conferencing

http://www.rfc-editor.org/rfc/rfc4353.txt

http://www.ietf.org/internet-drafts/draft-ietf-sipping-conferencing-requirements-01.txt

http://www.rfc-editor.org/rfc/rfc4376.txt

[301] J. Van Dyke, E. Burger, and A. Spitzer, “Media Server Control Markup Language (MSCML) and Protocol”, Internet Request for Comments, RFC
[302] J. Van Dyke, E. Burger, and A. Spitzer, “Media Server Control Markup Language (MSCML) and Protocol”, Internet Request for Comments, RFC Editor, RFC 5022 (Informational), ISSN 2070-1721, September 2007

http://www.rfc-editor.org/rfc/rfc5022.txt

[303] A. Saleem, Y. Xin, and G. Sharratt, “Media Server Markup Language (MSML)”, Internet Request for Comments, RFC Editor, RFC 5707 (Informational), ISSN 2070-1721, February 2010

http://www.rfc-editor.org/rfc/rfc5707.txt

http://www.rfc-editor.org/rfc/rfc5239.txt

[305] S. P. Romano, A. Amirante, T. Castaldi, L. Miniero, and A. Buono, “Requirements for Distributed Conferencing”, Internet-Draft, Network
Session Announcement Protocol

http://www.ietf.org/rfc/rfc2974.txt

SMIL

Speaker recognition in a conference

Mixed Internet-PSTN Services

- PSTN and Internetworking (PINT)
- Servers in the PSTN Initiating Requests to Internet Servers (SPIRITS)
- Telephony Routing over IP (TRIP)
- Opticall AB’s Dial over Data solution
PSTN and Internetworking (PINT)

PSTN and Internetworking (PINT) [309] - action from the internet invokes a PSTN service (note: this is one way invocation), examples:

- Request to Call ⇒ “Click to Connect” from a web page
- Request to Fax Content ⇒ “Click to FAX”
- Request to Speak/Send/Play Content
- ...

Based on SIP extensions (SIPext), which in actuality are SDP extensions (i.e., the body of SIP messages). Redefines some methods (INVITE, REGISTER, and BYE) and introduces three new methods:

- **Subscribe** - request completion status of a request
- **Notify** - receive status updates
- **Unsubscribe** - cancel subscriptions

PINT extensions to SDP: Network type (TN) and Address type: RFC2543 (SIP)
SPIRITS protocol [312] - implementing a family of IN services via internet server (rather than in the PSTN)

For example, internet call waiting (ICW) - calling a busy phone in the PSTN network could pop up a call waiting panel on the client that is using this telephone line, this replaces earlier solutions such as:

- for example, Ericsson’s PhoneDoubler, Ericsson Review, No. 04, 1997 [322], http://www.ericsson.com/about/publications/review/1997_04/article55.shtml
- PDF of the entire article: http://www.ericsson.com/about/publications/review/1997_04/files/1997041.pdf

SPIRITS unlike PINT allows two way interaction between Internet and PSTN.

See also [322].

Note that the IETF SPIRITS working group has concluded their work.
Telephony Routing Protocol is modeled after the Border Gateway Protocol (BGP)
See also TRIP MIB definitions in RFC 3872 [320] and providing TRIP with a way to provided prioritized services to certain callers (generally special government employees) - RFC 5115 [321].
Opticall AB’s Dial over Data solution

This approach uses a SIP proxy + VoIP gateway to couple calls to and from the PSTN, SIP trunks, SIP handsets, etc. in order to reduce the cost of calls. For details see the masters theses by Max Weltz [323], Li Zhang [324], Xiao Wu [325], Tao Sun [326], and others.
References and Further Reading

PINT

http://www.ietf.org/rfc/rfc2848.txt

http://www.ietf.org/rfc/rfc2458.txt

SPIRITS

Dial over Data

[324] Zhang Li, Service Improvements for a VoIP Provider, Masters thesis, Royal Institute of Technology (KTH), School of Information and Communications Technology, TRITA-ICT-EX-2009:104, August 2009

[325] Xiao Wu, SIP on an Overlay Network. Masters thesis, Royal Institute of Technology (KTH), School of Information and Communications Technology

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/091015-Tao_Sun-with-cover.pdf
IK2554 Practical Voice Over IP (VoIP): SIP and related protocols
Fall 2010, Period 1
Module 15: AAA and QoS for SIP

Lecture notes of G. Q. Maguire Jr.
Authentication, Authorization, Accounting (AAA)

This become a major issue especially in conjunction with QoS since for better than best effort service, someone probably has to pay for this high QoS - AAA is necessary to decide who you are, if you are allowed to ask for this service, and how much you should be charged. See [336] and “Authentication, Authorization and Accounting Requirements for the Session Initiation Protocol”[329].
SIP Accounting

For definition of terms see RFC 2975 [333]

Purposes:

- controlling resource usage (e.g., gateways to PSTN via which someone could place very expensive international or ‘premium rate’ calls)
- real-time
 - fraud detection
 - pre-paid subscriptions
- off-line
 - monthly/quarterly billing
 - deriving usage patterns ⇒ planning upgrades (resource dimensioning), input for fraud detection, …

Resources to account for:

- resources used by SIP itself
- resource consumed once initiated by SIP
- services initiated and controlled by SIP {voice mail, media translation/transcoding, …}
Open Settlement Protocol (OSP)

(mostly) off-line settlement between operators based on Call Detail Records

Open Settlement Protocol developed as part of ETSI project TIPHON
(Telecommunications and Internet Protocol Harmonization Over Networks) [334]

Based on exchange of Extensible Markup Language (XML) messages via HTTP

<!DOCTYPE Message [
 <!ELEMENT Message((PricingIndication | PricingConfirmation | AuthorisationRequest | AuthorisationResponse | AuthorisationIndication | AuthorisationConfirmation | UsageIndication | UsageConfirmation | ReauthorisationRequest | ReauthorisationResponse)+) >

...]>
Achieving QoS

- Over provision!
 - Simplest approach

- If this fails, then use TOS field or Diffserv
 - Much of the problem is on the access network - hence TOS or Diffserv even only on these links may be enough

- If this fails, then use RSVP
 - Much more complex - especially when done over several operator’s domains
Some measured delays

Actual performance of SIP phone to SIP phone and software applications over a LAN, shows that the performance of SIP phones is well within acceptable delay.

Measurements of mouth to ear one-way delay, from “Aside: SIP phone QoS” slide 15 of [60]

<table>
<thead>
<tr>
<th>end-point A</th>
<th>end-point B</th>
<th>A⇒B</th>
<th>B⇒A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM</td>
<td>PSTN</td>
<td>115 ms</td>
<td>109 ms</td>
</tr>
<tr>
<td>3Com</td>
<td>Cisco</td>
<td>51 ms</td>
<td>63 ms</td>
</tr>
<tr>
<td>NetMeeting</td>
<td>NetMeeting</td>
<td>401 ms</td>
<td>421 ms</td>
</tr>
<tr>
<td>Messanger XP</td>
<td>Messanger XP</td>
<td>109 ms</td>
<td>120 ms</td>
</tr>
</tbody>
</table>
Some statistics from Qwest for POP to POP measurements

Table 1: February Monthly Averages

<table>
<thead>
<tr>
<th></th>
<th>Atlanta</th>
<th>Chicago</th>
<th>Dallas</th>
<th>Denver</th>
<th>Los Angeles (LA)</th>
<th>New York (NY)</th>
<th>Sunnyvale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>loss (%)</td>
<td>latency (ms)</td>
<td>jitter (ms)</td>
<td>loss</td>
<td>latency (ms)</td>
<td>jitter</td>
<td>loss</td>
</tr>
<tr>
<td>Atlanta</td>
<td>0.00</td>
<td>39.64</td>
<td>0.05</td>
<td>0.00</td>
<td>24.13</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Chicago</td>
<td>0.00</td>
<td>39.46</td>
<td>0.09</td>
<td>0.00</td>
<td>24.10</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>Dallas</td>
<td>0.00</td>
<td>24.13</td>
<td>0.05</td>
<td>0.00</td>
<td>24.12</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Denver</td>
<td>0.00</td>
<td>45.16</td>
<td>0.09</td>
<td>0.00</td>
<td>23.32</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>LA</td>
<td>0.00</td>
<td>52.07</td>
<td>0.06</td>
<td>0.00</td>
<td>56.09</td>
<td>0.20</td>
<td>0.00</td>
</tr>
<tr>
<td>NY</td>
<td>0.00</td>
<td>20.36</td>
<td>0.00</td>
<td>0.00</td>
<td>20.21</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Sunnyvale</td>
<td>0.02</td>
<td>61.14</td>
<td>0.09</td>
<td>0.01</td>
<td>48.20</td>
<td>0.08</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1. Numbers takes from http://209.3.158.116/statqwest/statistics.jsp
Voice Quality

Some major tests:

- **Mean Opinion Score (MOS)**- defined in ITU-T P.800 [328]
 - ITU test based on using 40 or more people from different ethnic or language backgrounds listening to audio samples of several seconds each
 - **Human listeners** rating the quality from 1 to 5; 5 being perfect, 4 “toll-quality”, …

- **Perceptual Speech Quality Measurement (PSQM)** - ITU-T P.861
 - A computer algorithm - so it is easy to automate
 - scale of 0 to 6.5, with 0 being perfect
 - Designed for testing codecs
 - test tools from JDSU[338], QEmpirix, Finisar, … - cost US$50k and up

- **PSQM+**
 - Developed by Opticom
 - for VoIP testing

- **PESQ (Perceptual Evaluation of Speech Quality)**
 - submitted to ITU-T by Psytechnics, Opticom, and SwissQual
 - 0.95 correlation with human listeners

- **Perceptual Analysis Measurement System (PAMS)**
 - Developed by British Telecommunications ~1998
• **ITU-T’s P.563**
 • Passive monitoring
 • 0.85 to 0.9 correlation with human listeners
 • ITU standard May 2004
• **Psytechnics algorithm: psyvoip**
 • passive listening
 • uses RTP statistics
• **"E Model" - ITU-T G.107**
 • passive monitoring
Rating voice quality in practice

One approach is to occasionally ask IP phone users to indicate how the quality of their call was at the end of the call ⇒ MOS scoring!

Another is exemplified by Susan Knott, global network architecture for PricewaterhoursCoopers:

“But I’ve found that if my vice president of finance can talk to my CIO [over a VoIP connection], and they both say the quality of the connection is OK, then I say that’s good enough.”

QoS Proprietary vs. Standards based

Past

Agere Systems, Inc. VoIP “Phone-On-A-Chip” used a proprietary voice packet prioritization scheme called Ethernet Quality of Service using BlackBurst (EQuB), an algorithm (implemented in hardware) ensures that voice packets are given the highest priority in their collision domain.

2002

Their Phone-On-A-Chip solution now implements a software-based IEEE 802.1q tagging protocol (i.e. Virtual local area network (VLAN) tagging) for outgoing Ethernet frames.¹

QoS for SIP

SDP can be used to convey conditions which must be met:

- direction for QoS support: send, receive, or bidirectional
- along with a “strength” parameter: optional or mandatory

If conditions can be met then a COMET is sent.

See also RFC 4412 [351].
VoIP traffic and Congestion Control

RFC 3714: IAB Concerns Regarding Congestion Control for Voice Traffic in the Internet [343] - describes the concerns of the IAB due to the persistence of VoIP clients which continue to send RTP streams **despite** high packet loss rates WRT\(^1\):

- the risks of congestion collapse (along the end-to-end route) and
- fairness for congestion-controlled TCP traffic sharing the links.

When a steady-state packet drop rate \(>\) a specified drop rate the flow should be terminated or suspended. Thus:

- RFC3551: RTP Profile for Audio and Video Conferences with Minimal Control - should be changed to say:
 - “… RTP receivers **MUST** monitor packet loss to ensure that the packet loss rate is within acceptable parameters.” and hence “**MUST** detect and respond to a persistent high loss rate”
- CODECs - should adapt so as to reduce congestion

Suggested heuristic: VoIP applications should suspend or terminate when:

- RTCP reported loss rate is greater than 30%, or
- \(N\) back-to-back RTCP reports are missing

1. With Respect To
Delay and Packet Loss effects

Effect of delay and packet loss on VoIP when using FEC has been studied by many researchers [345], [346], [347], [348].

A rule of thumb: When the packet loss rate exceeds 20%, the audio quality of VoIP is degraded beyond usefulness (cited as [S03] in [343]).

Normally in telephony, when the quality falls below a certain level users give up (i.e., they hang up). Does this occur in the absence of a cost associated with not hanging up?

∴ according to [343]:

if loss rate is persistently unacceptably high relative to the current sending rate & the best-effort application is unable to lower its sending rate:

⇒ flow must discontinue:

• multicast session ⇒ receiver withdraws from the multicast group
• unicast session ⇒ unicast connection termination
When to continue (try again)

Probabilistic Congestion Control (PCC) [349] based on:

- calculating a probability for the two possible states (on/off) so that the expected average rate of the flow is TCP-friendly
- to perform a random experiment that succeeds with the above probability to determine the new state of the non-adaptable flow, and
- repeat the previous steps frequently to account for changes in network conditions.

The off periods need to be fairly distributed among users and the on period need to be long enough to be useful.

When to try again is determined by: **Probing the network while in the off** state (the authors of [349] have not implemented this yet).

Note that PCC only applies when there is a significant level of statistical multiplexing on the link (otherwise the use of statistics is not meaningful).

Other examples of probe based measurements are described at [350].
More about congestion

D. Willis and B. Campbell in “Session Initiation Protocol Extension to Assure Congestion Safety”, and (expired) Internet-Draft, October 13, 2003 examine:

- UAC may require that any proxy processing its requests **must** transmit those requests over a transport protocol providing congestion management
 - with a "Proxy-Require: congestion-management" header field
- In turn the UAS receiving these requests can be required to respond in similar fashion
- If a proxy finds that it has no route supporting congestion management it may reject the request with a 514 response (“No available route with congestion management”)
- If the request would be fragmented, the proxy can reject it with a 516 response (“Proxying of request would induce fragmentation”)
- If the originating request did **not** require congestion-managed transport, then a UAS may reject a request that would result in a response that requires congestion-managed transport.
RTP (over UDP) playing fair with TCP

Real-time multimedia communications wants (adapted from):

- timely delivery (vs. reliable but late delivery via TCP)
- smooth & predictable throughput

This lead to proposals to use a transport layer such as Datagram Congestion Control Protocol (DCCP) [354] - as this implements TCP Friendly Rate Control (TFRC) [353].

However, this has some problems - including[358]:

- when a flow traverses a low statistically multiplexed network link (e.g., DSL link) using drop-tail queueing, TFRC traffic can starve TCP traffic
- oscillation on a short time scale
- if the RTT is less than the CPU interrupt cycle, then TRFC is hard to implement!
TCP-Friendly Window-based Congestion Control (TFWC)

Soo-Hyun Choi (together with his advisors) introduce TCP-Friendly Window-based Congestion Control (TFWC)[357][358].

This is based upon ACK clocking, sent using an ACK vector (to allow missing packets).

The claim is that TFWC is much fairer than TFRC when competing TCP flows and it is simple to implement in applications (in their case: VIC\(^1\) and RAT)

\(^1\) Code for TFWC over VIC can be found at http://tfwc.sourceforge.net/download.html
VoIP quality over IEEE 802.11b

Two exjobb reports:

Juan Carlos Martín Severiano, “IEEE 802.11b MAC layer’s influence on VoIP quality: Measurements and Analysis” [359]

Victor Yuri Diogo Nunes, “VoIP quality aspects in 802.11b networks” [360]
Measurements of VoIP QoS

For an overview of VoIP and QoS see the doctoral dissertation of Ian Marsh [361]. Additional measurements of VoIP QoS are given in his licentiate thesis[362].
Gross, et al. proposed the use of an Application Policy Server (APS) [337]

IETF Integrated Services over Specific Lower Layers (issll) Working group (http://www.ietf.org/html.charters/issll-charter.html) is defining protocols to control the link layer.
References and Further Reading

[334] Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON): Inter-domain pricing, authorisation, and usage exchange; ETSI DTS/TIPHON-03004 V1.4.0 (1998-09).

[338] JDSU (formerly Agilent) Voice Quality Tester (VQT) J1981B
http://www.jdsu.com/

[341] Cisco’s “Monitoring Voice over IP Quality of Service”
http://cs.uccs.edu/~cs522/projF2002/msoliman/doc/QoS%20of%20VoIP%20over%20WLAN.doc

[346] Wenyu Jiang and Henning Schulzrinne, “Comparison and Optimization of

[361] Ian Marsh, Quality aspects of Internet telephony, Doctoral Dissertation, Royal Institute of Technology (KTH), Skolan för Elektro- och systemteknik, TRITA-EE, ISSN 1653-5146; 2009:025, SICS Dissertaion Series, ISSN 1101-1335; 51 2009 or http://kth.diva-portal.org/smash/get/diva2:219379/FULLTEXT01 or http://www.sics.se/~ianm/PhD/thesis.pdf

[362] Ian Marsh, Quality aspects of audio communication, Licentiate thesis, Royal Institute of Technology (KTH), Microelectronics and Information Technology) Trita-IMIT-LCN. AVH; 03:01, 2003

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1592
SIP for applications related to telephony and multimedia. One of the significant features of using SIP for building applications is that it is much easier to build open, distributed, and scalable services that the traditional method of Intelligent Networks (IN); thus putting services into the hands of user!

Specific tasks for SIPPING were:

1. **PSTN and/or 3G telephony-equivalent applications that need a standardized approach**
 - informational guide to common call flows
 - support for T.38 fax
 - requirements from 3GPP for SIP usage
 - framework of SIP for telephony (SIP-T)
 - call transfer and call forwarding
 - AAA application in SIP telephony
 - mapping between SIP and ISUP

1. Former working group - it no longer exists.
2 Messaging-like applications of SIP
 • support for hearing-/speech-impaired calling
 • development of usage guidelines for subscribe-notify (RFC 2848, SIP events) to ensure commonality among applications using them, including SIMPLE WG’s instant messaging.

3 Multi-party applications of SIP

4 SIP calling to media servers
 • develop a requirements draft for an approach to SIP interaction with media servers, e.g., whether a voicemail server is just a box that a caller can send an INVITE to.
Advantages

• Decomposition
 • No complex APIs, just HTTP and SIP ⇒ rapid development
 • User can provide input to the service controller via Web servers, DTMF digit collector, voice portal (via VoiceXML), DTMF input, ... ⇒ just about any internet attached device can be used to provide input.
 • Easy to scale
 • New services can combine the "best of the best" (thus allowing developers to specialize)
 • Servers and services can be located anywhere on the internet and operated by anyone

• Decoupling
 • Loosely coupled and distributed
 – Flexible location of servers
 – if properly designed, implemented, and operated ⇒ higher reliability and resilience
 • Separation of businesses (leads to a rich variety of outsourcing, reseller, ... models)
 • Since the functions are highly independent ⇒ rapid development

• Anyone can introduce a new service

However, if you want to use service components of others, then you may need to work out a suitable agreement (which will probably include an agreement about authorization) ⇒ security can be more complex.
Collecting DTMF digits for use within a service

1. INVITE
2. INVITE
3. 200 OK
4. ACK
5. INVITE
6. 200 OK
7. 200 OK
8. ACK
9. SIP ACK
10. INVITE
11. 200 OK
13. ACK
14. RTP DTMF digits
15. HTTP GET
16. HTTP OK
Response “3. 200 OK” looks like:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 100.101.102.103
To: User A <sip:UserA@here.com>
From: UserB <sip:UserB@there.com>
Call-ID: a84b4c76e66710100.101.102.103
CSeq: 1 INVITE
Contact: <sip:UserB@there.com>
Content-Type: application/sdp
Content-Length: ...

v=0
o=UserA 289375749 289375749 IN IP5 110.111.112.113
S=-
c=IN IP4 110.111.112.113
t=0 0
m=audio 5004 RTP/AVP 0
Controller issues a “re-Invite” at 11 which looks like:

```
INVITE sip:UserB@there.com SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103
To: UserB <sip:UserB@there.com>
From: User A <sip:UserA@here.com>
Call-ID: a84b4c76e66710100.101.102.103
CSeq: 1 INVITE
Contact: <sip:UserB@there.com>
Content-Type: application/sdp
Content-Length: ...
```

```
v=0
o=UserA 289375749 289375749 IN IP5 100.101.102.103
s=-
c=IN IP4 100.101.102.103
t=0 0
m=audio 5004 RTP/AVP 0
m=audio 53000 RTP/AVP 0
c=IN IP4 200.201.202.203
a=rtpmap:96 telephone-event
```

Note the 2nd “m=audio” line in the SDP (see Sinnreich Johnston page 257), this second connection is the RTP connection to the DTMF digit collector.
The service controller proxies the caller to the IVR system.
Managing Services

Avgeropoulos Konstantinos in “Service Policy Management for User-Centric Services in Heterogeneous Mobile Networks”[364] proposes the use of SIP as signaling protocol for **policy based management** of a user’s multiple UAs. He proposes a new SIP entity, called the **SIP Service Manager** (SSM).
Context aware SIP services

See for example these masters theses:

- Bemnet Tesfaye Merha, Secure Context-Aware Mobile SIP User Agent [365]
- Ke Wang, Exploiting Presence [366]
- Xueliang Ren, A Meeting Detector to Provide Context to a SIP Proxy [367]

See the licentiate thesis:

- Alisa Devlic, Context-addressed communication dispatch [368]
Unified communications

Unified communications (UC) - integration of both real-time (IM, presence, IP telephony, multimedia conferencing, …) and non-real-time communications (e-mail, SMS, MMS, fax, …).

- Sender sends a communication in their preferred format & Receiver receives the communications in their preferred format
- Integrates communication with business processes
- all via a consistent user interface (even when using different devices and media)

Interview with Mats Lundgren, Bygg UC med genomtänkt kundrelation, TDC Ahead, Winder 2008/2009, pages 12-15

http://download.opasia.dk/pub/song-sverige/ahead/Ahead_vinter_0809_TDC.pdf
SIP Web APIs

H. Sinnreich and A. Johnston in an internet draft entitled “SIP APIs for Communications on the Web” [371] - propose a SIP API to enable web developers to easily build services which utilize SIP - see the related for on Simple SIP - which also facilitate exploitation of the possibilities of so-called rich internet applications.
Simpler approach to SIP applications

“Simple SIP Usage Scenario for Applications in the Endpoints” RFC 5638 [369] describes how to exploit processing in the endpoints rather than emulating telephony to simplify the implementation of application and reduce the number of SIP documents that one needs to comply with.

Simple SIP = only the required functions for rendezvous and session setup + security

Goal is to leverage rich internet applications (RIAs) approach rather than trying to be like telephony! RIAs leverage the web browser as the user interface and facilitate the combination (mashups) of various information sources. SIP URIs should be able to be used as flexibly as other URIs in new RIA applications.

Relegates telephony aspects of SIP to something that is done in the gateway to the PSTN and not something that has to be built into every SIP UA.
Lots more services

See the list of SIP applications documents related to IBM's WebSphere Application Server, via the following web page (last accessed 2010.08.20)

<< more to be added here - as time permits >>
Avoiding declarative service IDs

J. Rosenberg in “Identification of Communications Services in the Session Initiation Protocol (SIP)” RFC 5897 [370] argues that services should not be identified by a service identifier (such as a new Service-ID header).
References and Further Reading

SIPPING

http://www.ietf.org/rfc/rfc3263.txt

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/040401-Konstantinos_Avgeropoulos-with-cover.pdf

[366] Ke Wang, Exploiting Presence, Masters thesis, Royal Institute of
Technology (KTH), School of Information and Communications Technology, Stockholm, Sweden, COS/CCS 2008-27, December 2008

[367]Xueliang Ren, A Meeting Detector to Provide Context to a SIP Proxy, Masters thesis, Royal Institute of Technology (KTH), School of Information and Communications Technology, Stockholm, Sweden, COS/CCS 2008-24, October 2008

http://web.it.kth.se/~devlic/licentiate%20thesis/Alisa_Devlic-licentiate-thesis.pdf or
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10282

SIP Web API

Module 17: More than Voice

Lecture notes of G. Q. Maguire Jr.
Non-voice Services and IP Phones

Phone Services: built using scripts which the IP phone executes to acquire information and display it

For example, some of the Cisco IP telephones (7940 and 7960) have a web browser which understands XML and a 133x65 pixel-based LCD display to display output.

Sample services:
- Conference room scheduler
- E-mail and voice-mail messages list
- Daily and weekly schedule and appointments
- Personal address book entries (⇒ any phone can become “your” phone)
- Weather reports, Stock information, Company news, Flight status, Transit schedules, …
- Viewing images from remote camera (for security, for a remote receptionist, …)
XML objects include: CiscoIPPhoneMenu, CiscoIPPhoneText, CiscoIPPhoneInput, CiscoIPPhoneDirectory, CiscoIPPhoneImage, CiscoIPPhoneGraphicMenu, CiscoIPPhoneIconMenu, CiscoIPPhoneExecute, CiscoIPPhoneError and CiscoIPPhoneResponse.

Cisco IP Phone Services Software Developer’s Kit

Invoking RTP streams

On the Cisco phones it is possible to invoke RTP streaming (transmit or receive) via URIs in above services. RTP information for the stream types must be of the form:

<table>
<thead>
<tr>
<th>CODEC</th>
<th>G.711 mu-Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet size</td>
<td>20 ms</td>
</tr>
</tbody>
</table>
see ‘Thinking Outside the “Talk” Box: Building Productivity-Boosting Applications for Your Cisco IP Phones’ by Anne Smith, Cisco Packet, Third Quarter, 2002, pp. 21-23\(^1\)

The book includes a CD which has a CallManager Simulator - so you can write applications with just a web server and a Cisco IP phone.

The SDK\(^2\) should be available via http://developer.cisco.com)

Services for sale - building a market

Purchase existing services or contract for new third party XML services or support for Cisco’s IP Telephony products: HotDispatch.

They have 91 Existing products as of 20 October 2002

HotDispatch has partnered with Cisco to provide IP Telephony marketplace, this is an example of a Community Knowledge Marketplace.
Figure 19: Using SIP for Service Portability (adapted from figure 2 of Moyer, Maples, Tsang, and Ghosh)

Proposed Extension of SIP

Add **DO** message type

Adding a new optional header: History-Info

- provides information as to how and why a call arrives at a specific application or user [383]

Build upon Event extensions (specifically **SUBSCRIBE** and **NOTIFY**)

- For example, you can subscribe to know when a user is invited to a session or there is a change in a state of an INVITE initiated dialog [382]

Add a new payload type via the new MIME type: **Device Message Protocol (DMP)** -- this payload is translated into device specific payload at the SIP User Agent.

Note that you could also send **SOAP** payload either separately or as part of DMP.
Service Location Protocol (SLP) URL

To: [SLP:/d=lamp, r=office, u=maguire]@it.kth.se

Note that the information inside the [] can be encoded in BASE-64 and encrypted, those making it opaque to entities outside the domain.

See [378].
Example service

This example is adapted from the above article, and the service is a network-based alarm clock service:

- delivers user specific information (latest news, weather, etc.)
- at a user selected time
- to the user’s “alarm clock” network appliance

Specifically:

1. REGISTER register@home.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 From: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 Content-type: application/ddp
 [Device address]

2. INVITE sip:[slp:/d=alarmclock, r=bedroom, u=maguire]@home.net SIP/2.0
 From: sip:announcement@alarmclock.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 Via: alarmclock.net
 Content-type: application/sdp
 [SDP for uni-directional RTP stream]
3. INVITE sip:[slp:/d=alarmclock, r=bedroom, u=maguire]@home.net SIP/2.0
 From: sip:announcement@alarmclock.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 Via: home.net
 Via: alarmclock.net
 Content-type: application/sdp
 [SDP for uni-directional RTP stream]

4. INVITE sip:[slp:/d=alarmclock, r=bedroom, u=maguire]@home.net SIP/2.0
 From: sip:announcement@alarmclock.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 Via: chips.home.net
 Via: home.net
 Via: alarmclock.net
 Content-type: application/sdp
 [SDP for uni-directional RTP stream]

5. The alarm clock responds with its RTP parameters and the RTP session plays the announcement to the user via the “alarm clock” network appliance.
Example of service portability

This example is adapted from the above article, Chip visits his friend Mark:

- delivers user specific information (latest news, weather, etc.)
- at a user selected time
- to the user’s “alarm clock” network appliance
- But the service now has to be delivered to the correct “alarm clock”
 - Either Chip takes his alarm clock with him or
 - Utilizes Mark’s guest alarm clock as his alarm clock

1. REGISTER register@home.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 From: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 Contact: *; expires=0

 The above cancels the service to Chip’s home alarm clock

2. REGISTER register@home.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 From: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 Contact: sip:[slp:/d=alarmclock, r=guest_bedroom, u=maguire]@ua.marks.home.net
 Content-type: application/ddp
 [Device description (including address)]
3. INVITE sip:[slp:/d=alarmclock, r=bedroom, u=maguire]@home.net SIP/2.0
 From: sip:announcement@alarmclock.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@us.chips.home.net
 Via: alarmclock.net
 Content-type: application/sdp
 [SDP for uni-directional RTP stream]

 Now the SIP Proxy at home.net looks up
 [slp:/d=alarmclock, r=bedroom, u=maguire]@home.net and determines that it is
 [slp:/d=alarmclock, r=guest_bedroom, u=maguire]@ua.marks.home.net] so it forwards the messages to the SIP proxy at marks.home.net

4. INVITE sip:[slp:/d=alarmclock, r=guest_bedroom, u=maguire]@ua.marks.home.net] SIP/2.0
 From: sip:announcement@alarmclock.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 Via: home.net
 Via: alarmclock.net
 Content-type: application/sdp
 [SDP for uni-directional RTP stream]

5. INVITE sip:[slp:/d=alarmclock, r=guest_bedroom, u=maguire]@ua.marks.home.net] SIP/2.0
 From: sip:announcement@alarmclock.net
 To: [slp:/d=alarmclock, r=bedroom, u=maguire]@ua.chips.home.net
 Via: marks.home.net
 Via: home.net
 Via: alarmclock.net
Content-type: application/sdp
[SDP for uni-directional RTP stream]

6. Mark’s guest bedroom alarm clock responds with its RTP parameters and the RTP session plays the announcement to the user via the “alarm clock” network appliance.
Interleaved text

RTP can be used to carry real-time text conversations, the contents use ITU-T Recommendation T.140.[381]

Timed Text

The 3rd Generation Partnership Project (3GPP) has defined "timed text" as “time-lined, decorated text media format with defined storage in a 3GP file”[380].

“Timed Text can be synchronized with audio/video contents and used in applications such as captioning, titling, and multimedia presentations.”[380]
SOS and other URNs

H. Schulzrinne in “A Uniform Resource Name (URN) for Emergency and Other Well-Known Services” RFC 5031 [384] describes a service URN scheme for context-dependent services.

Just a dialing 911 in North America or 112 in Europe is mapped to the local emergency services “address”, there are other well known services that could be supported by having a well-known URN to be used with SIP.

These can be combined with Location-to-Service Translation protocol (LoST), RFC 5222 [385] to map the URN to the local instance of the “address”.

Examples:
- urn:service:sos
- urn:service:sos.ambulance
- urn:service:sos.fire
- urn:service:sos.police
Not all emergencies should go to the local authorities nor should they all be voice sessions.

Consider a user with a portable monitoring device for a chronic health problem, this monitor might detect that the user’s blood chemistry is going out of the expected range and automatically set up a session between the user’s monitor and the user’s physician or other health care professions - or perhaps even an online expert system.
Gurbani, Burger, T. Anjali, H. Abdelnur, and O. Festor in an internet draft entitled “The Common Log Format (CLF) for the Session Initiation Protocol (SIP)” [386] emphasize the value of having a standard log format - in terms of enabling tools that can manipulate (and mine) this data - independent of the SIP entity that produces the data.

They describe what call data records are not sufficient.
References and Further Reading

Phone Services

Network Appliances

[375] Open Services Gateway Initiative (OSGi), http://www.osgi.org

http://www.ietf.org/rfc/rfc2608.txt

http://www.rfc-editor.org/rfc/rfc3224.txt

http://www.rfc-editor.org/rfc/rfc4396.txt

Log file format

Module 18: VOCAL

Lecture notes of G. Q. Maguire Jr.

Figure 20: VOCAL: Simplified overview

MGCP = Media Gateway Control Protocol
VOCAL Servers

- Marshal server (MS)
 - User Agent (UA) Marshal server
 - interface to/from IP phones connected to this network
 - can do different types of authentication on a per-user basis
 - (PSTN) Gateway Marshal servers
 - provides interworking with PSTN
 - Internet Marshal server
 - interface to/from a SIP proxy server on another IP network
 - authenticate calls via Open Settlement Protocol (OSP)
 - can request QoS via Common Open Policy Service (COPS)
 - Conference Bridge Marshal server
 - interface to/from third party conference servers
- Feature server (FS) - to provide advanced telephony services
- Redirect server (RS) - keep track of registered users and provide routing to/from them
- Provisioning server (PS) - for configuration
- Call Detail Record (CDR) server - stores start/end information about calls for billing and other purposes
Scaling of a VOCAL system

From table 3-1 of *Practical VoIP: Using VOCAL*

<table>
<thead>
<tr>
<th>Server types</th>
<th>6-host system</th>
<th>14-host system</th>
<th>26-host system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redirect servers</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Feature servers</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Marshal servers</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Call Detail Record servers</td>
<td>1/2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Provisioning servers</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Policy servers</td>
<td>1/2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total number of hosts</td>
<td>6</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>Capacity in calls per second</td>
<td>35</td>
<td>70</td>
<td>175</td>
</tr>
<tr>
<td>Capacity in busy-hour call attempts (BHCA)</td>
<td>125,000</td>
<td>250,000</td>
<td>630,000</td>
</tr>
</tbody>
</table>

Each host is a 700MHz Pentium III with 512 MB or RAM.

- Note that unlike a PBX or Public Exchange, the capacity in calls per second (or BHCA) is **independent** of the call durations, since the **call traffic** is carried directly between the endpoints via RTP and **does not use** the VOCAL system!
For comparison with a PBX

- NEC’s PBX: EAX2400 IMX - Integrated Multimedia eXchange, model ICS IMGdxh uses a Pentium control process and the claimed\(^1\) BHCA is 25,600.
- Tekelec's softswitch\(^2\) "VXiTM Media Gateway Controller" claims\(^3\) a capacity which scales from 250,000 to over 1 million BHCA - a Class 5 exchange.
- Lucent’s 5E-XC™ Switch High Capacity Switch - supports 4 million BHCA, 250K trunks, and 99.9999% availability [390]
- Frank D. Ohrtman Jr. says that a Class 4 Softswitch should handle 800,000 BHCA, support 100,000 DS0s (i.e., 100K 64 bps channels), with a reliability of 99.999%, and MOS of 4.0 (i.e., high quality voice)[387].
 - His pricing data shows that softswitches are about 1/4 the price per DS0 of Class 4 exchanges (e.g., Nortel DMS250 and Lucent 4ESS vs. Convergent Networks’s ICS2000 and SONUS GSX9000) -- additionally the softswitches are physically much smaller.
 - Many claim that softswitch and VoIP reliability already exceeds that of central office exchanges; because with VoIP it is cheaper to implement redundancy and easier to build physically distributed systems; plus more features {sooner}, while also providing potentially better quality (i.e., better than "toll" quality)!

Radcom’s MegaSIP test software generates 3,500,000 BHCA calls per server.

1. Was available from http://www.stfi.com/STF_part3e.html
2. "A softswitch is the intelligence in a network that coordinates call control, signaling, and features that make a call across a network or multiple networks possible."[387]
Marshal server (MS)

A SIP proxy server which provides:

- authentication of users
- generates call detail records (CDRs)
- provides an entry point for SIP messages into the VOCAL system
 - thus the other elements of the VOCAL system don’t need to authenticate each message
- monitor heartbeats - can use this for load balancing across RSs
- SIP transaction stateful, but not call (dialog) stateful

Allows better scaling, since these servers can be replicated as needed; while allowing the redirect server to focus just on keeping registration information.
Redirect Server (RS)

• receives SIP REGISTER messages from User Agents (UAs)
• keeps track of registered users and their locations (i.e., registrations)
• provides routing information for SIP INVITE messages
 • based on caller, callee, and registration information (for either or both parties)
 • based on where the INVITE message has already been
• Supports redundancy
 • Utilizes multicast heartbeat
 – starts by listening for 2s for another RS
 – if found, then it synchronizes with this RS and will act as a redundant backup RS (following synchronization)
 – if not found, then it starts transmitting its own heartbeat
 • a given RS must mirror REGISTER messages (received from the MS) to the other RSs
Feature Server (FS)

- Implements Call Forward, Call Screening, Call Blocking
 - The “Core Features” are implemented “within the network”
 - for example, you can’t implement features in a phone which is not there!
 - you can’t give an end system the caller’s ID, but guarantee that they don’t display it, …
- Execute arbitrary Call Processing Language (CPL) scripts written by users
 - CPL is parsed into eXtensible Markup Language (XML) document object model (DOM) trees, these are then turned into state machines (in C++), then executed.
Residential Gateway (RG)

A residential gateway (RG) provides “… Internet access throughout the home and remote management of common household appliances such as lights, security systems, utility meters, air conditioners, and entertainment systems.”

Open Services Gateway Initiative (OSGi™) Alliance [http://www.osgi.org/] is attempting to define a standard framework and API for network delivery of managed services to local networks and devices.

An alternative to using a residential gateway to attach analog phones are devices such as the Cisco Analog Telephone Adaptor (ATA) 186 [391].

In VOCAL: “SIP Residential Gateway is an IP Telephony gateway based on SIP which allows a SIP user agent to make/receive SIP call to/from the Public Switched Telephone Network (PSTN).”

1. from http://www.national.com/appinfo/solutions/0,2062,974,00.html - “National Semiconductor signed a definitive agreement in August 2003 to sell its Information Appliance (IA) business unit, consisting primarily of the Geode™ family of microprocessor products, to Advanced Micro Devices (AMD)”

Residential Gateways

A very important aspect of such gateways is provisioning them, for example via the Broadband Forum’s CPE WAN Protocol, TR-069 standard. This enables the operators to control the boxes, perform updates, set the device’s configuration, etc. This protocol is based upon SOAP over HTTP.

Provisioning is very important when an operator may have 10^5 to 10^7 devices installed at their customers premises.
References and Further Reading

[389] Abacus2 Test equipment, Spirent Communications, Calabasas, CA, USA, www.spirentcom.com - generates and switches more than 20 million calls per hour

[390] 5ESS Switch High Capacity Switching Applications, 5E-XCi v1, Sept. 2003
 http://www.lucent.com/livelink/090094038004f536_Brochure_datasheet.pdf

[391] Cisco Analog Telephone Adaptor (ATA) 186
 http://www.cisco.com/warp/public/cc/pd/as/180/186/
SIP Express Router (SER)

SER is an open-source implementation which can act as SIP registrar, proxy or redirect server. SER features:

- an application-server interface,
- presence support,
- SMS gateway,
- SIMPLE2Jabber gateway,
- RADIUS/syslog accounting and authorization,
- server status monitoring,
- Firewall Communication Protocol (FCP)\(^1\) security, …
- Web-based user provisioning (serweb)

For configuration help see: http://www.mit.edu/afs/athena/project/sip/sip.edu/ser.shtml

For performance of a SER server see [394]

\(^1\)http://www.iptel.org/fcp/
Many SIP Express Routers

The OpenSER project has split into a number of projects, see:

- Open SIP Server (OpenSIPS) http://www.opensips.org/

SER and Kamailo are part of the sip-router project (http://sip-router.org).

Additionally there are lots of other projects, see

or use your favorite search engine!
SipFoundry

http://www.sipfoundry.org/ was formed on March 29, 2004 - goal improving and adopting open source projects related to SIP

Pingtel Corp. contributed their sipX family of projects (distributed under the LGPL). This includes:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sipXphone</td>
<td>SIP soft phone</td>
</tr>
<tr>
<td>sipXproxy</td>
<td>pair of applications that together form a configurable SIP router.</td>
</tr>
<tr>
<td>sipXregistry</td>
<td>SIP Registry/Redirect server</td>
</tr>
<tr>
<td>sipXpublisher</td>
<td>server to handle SIP SUBSCRIBE/NOTIFY handling + flexible plugin architecture for different event types.</td>
</tr>
<tr>
<td>sipXvxml</td>
<td>VXML scripting engine supporting creation of IVR and other VXML applications (including auto-attendant and voice mail)</td>
</tr>
<tr>
<td>sipXconfig</td>
<td>SIP configuration server</td>
</tr>
<tr>
<td>sipXpbx</td>
<td>full PBX solution; combining sipXproxy, sipXregistry, sipXpublisher, sipXvxml, and sipXconfig</td>
</tr>
<tr>
<td>sipXtest</td>
<td>testing tools and frameworks</td>
</tr>
</tbody>
</table>
Other SIP Proxies

- **JAIN-SIP Proxy**
 - JAIN-SIP proxy, JAIN-SIP IM client, SIP communicator, SIP trace viewer, JAIN-SIP gateway, JAIN-SIP 3PCC, ...

- **SaRP SIP and RTP Proxy**
 - written in Perl

- **sipd SIP Proxy**

- **Siproxd SIP and RTP Proxy**
 - http://sourceforge.net/projects/siproxd/
 - an proxy/masquerading daemon for the SIP protocol

- **partysip**
 - http://www.nongnu.org/partysip/partysip.html
 - Has a plugin to enable use of SCTP transport

- **Yxa: Written in the Erlang programming language**
 - http://www.stacken.kth.se/projekt/yxa/

...
SIP Tools

- **Callflow**
 - Generates SIP call flow diagrams based on an ethereal capture file

- **SIPbomber**
 - a SIP proxy testing tool for server implementations (i.e., proxies, user agent servers, redirect servers, and registrars)

- **Sipsak**
 - http://sipsak.org/
 - sipsak a command line tool for developers and administrators of SIP applications

- **PROTOS Test-Suite**
 - https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c07-sip
 - SIP Testing tools from the "PROTOS - Security Testing of Protocol Implementations" project
SIP Clients

- **kphone**
 - http://sourceforge.net/projects/kphone/
 - IPv4 and IPv6 UA for Linux, also supports Presence and Instant Messaging
 - UA for Linux - for KDE

- **Linphone**
 - http://www.linphone.org/?lang=us&rubrique=1
 - UA for Linux - for GNOME

- **CounterPath Corporation’s X-Lite** - free demo version for Windows and Linux
 - The also have a "Business-class SIP Softphone"

- **minisip**
 - http://www.minisip.org/

- …
CPL and Ontology extentions to SER

See:

References and Further Reading

[393] Amos Nungu, VoIP Service Provider (Internet Telephony Service Provider using SIP Protocol), Masters thesis, School of Information and Communication Technology, Royal Institute of Technology (KTH), April 2005

Module 20: Non-SIP applications
Skype™ Technologies [http://www.skype.com/]

- “Skype is free Internet telephony that just works.”

<table>
<thead>
<tr>
<th>Downloads</th>
<th>Simultaneous users</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,438,790,535</td>
<td>18,386,099</td>
<td>2010.08.20 at 20:00 MEST</td>
</tr>
<tr>
<td>1,587,992,602</td>
<td>15,627,990</td>
<td>2009.08.19 at 17:20 MEST</td>
</tr>
<tr>
<td>844,062,744</td>
<td>11,306,336</td>
<td>2008.03.24</td>
</tr>
<tr>
<td>522,932,765</td>
<td>~5,512,395</td>
<td>2007.03.27</td>
</tr>
<tr>
<td>~200,000,000</td>
<td>~9 million</td>
<td>2007.01.29</td>
</tr>
<tr>
<td></td>
<td>> 5 million</td>
<td>2005.11.08</td>
</tr>
</tbody>
</table>

- in 2005: ~1 Million downloads/day, downloads at peak are ~0.5 Gbit/sec

Statistics as an RSS feed at: http://share.skype.com/stats_rss.xml updated every few minutes
Cisco’s Skinny

Cisco’s Skinny Call Control Protocol (SCCP) is used in Cisco’s CallManager - a proprietary protocol between the CallManager and their VoIP phones. Audio is carried via RTP over UDP.

Skinny messages use TCP port 2000.¹

Skinny was originally developed by Selsius Corporation.

¹ The message types formerly could be found at http://www.javvin.com/protocolSCCP.html.
H.323 and MGCP

International Telecommunication Union (ITU-T)’s H.323

- further details at: http://www.h323forum.org/

Internet Engineering Task Force (IETF)’s Media Gateway Control Protocol (MGCP) defined in RFC 3435 [396] and updated by RFC 3661 [397]- used for controlling telephony gateways.
Asterisk

Asterisk is an open source PBX system, see http://www.asterisk.org/

Asterisk can function as a PBX (Switch), gateway, feature or media server.

Asterisk supports SIP, H.323, their own Inter-Asterisk Exchange (IAX) protocol, Media Gateway Control Protocol (MGCP), and Skinny Client Control Protocol (SCCP).

- Inter-Asterisk eXchange (IAX2) - a protocol for calls between Asterisk servers (also implemented by some IP phones) has replaced IAX.

For an example of a system implemented using Asterisk and SER see Max Weltz’s thesis [398].
References and Further Reading

Module 21: Conclusions and your projects

Lecture notes of G. Q. Maguire Jr.
Conclusions

VoIP is both feasible and increasingly being adopted as a substitute for fixed line telephony (and as the basis for mobile telephony).

SIP is more complex than it first seemed, but it is still approachable.

Secure VoIP is possible, but like all security it takes effort.

There are lots of details, but there is also a lot of existing code, implementations, and documents.
Seven Myths About VoIP

Let us consider Steven Cherry’s, “Seven Myths About Voice over IP: VoIP is turning telephony into just another Internet application - and a cheap one at that”[18]

<table>
<thead>
<tr>
<th>Myth</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>“VoIP is free”</td>
<td>Not quite, but given a flat rate Internet subscription the incremental cost is small.</td>
</tr>
<tr>
<td>“The only difference between VoIP and regular telephony is the price”</td>
<td>About the only thing they have in common is “voice” content and “calls”.</td>
</tr>
<tr>
<td>“Quality of service isn’t an issue nonadways, because there’s plenty of bandwidth in the network”</td>
<td>latency, jitter, and packet loss can still matter, but over-provisioning goes a long way to avoiding problems</td>
</tr>
<tr>
<td>“VoIP can’t replace regular telephony, because it still can’t guarantee quality of service”</td>
<td>MPLS and QoS aware routing are used to provision VoIP services</td>
</tr>
<tr>
<td>“VoIP is just another data application”</td>
<td>Issues about providing 911, lawful intercept, etc.</td>
</tr>
<tr>
<td>“VoIP isn’t secure”</td>
<td>SRTP + MIKEY + tunnels ==> very high security</td>
</tr>
<tr>
<td>“A Phone is a Phone is a Phone”</td>
<td>Modern phones are computers - with all the problems and advantages that brings!</td>
</tr>
</tbody>
</table>
Your projects

Discussion of topics

Reminder: Write complete references and do not use anyone else’s work without clearly identifying it!