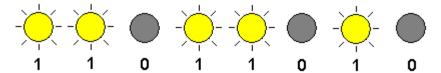
Control with binary code



Row with indicator lamps showing 8-bit number, Byte

```
Bin \rightarrow Dec

1 1 0 1 1 0 1 0

2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

128 64 32 16 8 4 2 1

128+64+0+16+8+0+2+0=218

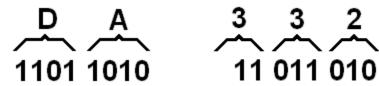
16 1

13·16+10·1=218
```

Dec – Bin – Hex – Oct

Dec	Bin	Hex	Dec	Bin	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	В
4	0100	4	12	1100	С
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

11011010



$$218_{10} = 11011010_2 = DA_{16} = 332_8$$

Ex 1.1c Decimal to Binäry

$$71_{10} = ?_2$$

Ex 1.1c Decimal to Binäry

$$71_{10} = ?_2$$

$$71_{10} =$$
 $(64+7=64+4+2+1)=1000111_{2}$

Ex. 1.2a Binary to Decimal

$$101101001_2 = ?_{10}$$

Ex. 1.2a Binary to Decimal

$$101101001_2 = ?_{10}$$

$$101101001_2 =$$
 $(2^8+2^6+2^5+2^3+2^0=256+64+32+8+1)$
 $=361_{10}$

Ex 1.3c Binary/Octal/Hexadecimal

$$100110101_2 = ?_{16} = ?_8$$

Ex 1.3c Binary/Octal/Hexadecimal

$$100110101_2 = ?_{16} = ?_8$$

$$1\ 0011\ 0101_2 = 1\ 3\ 5_{16}$$

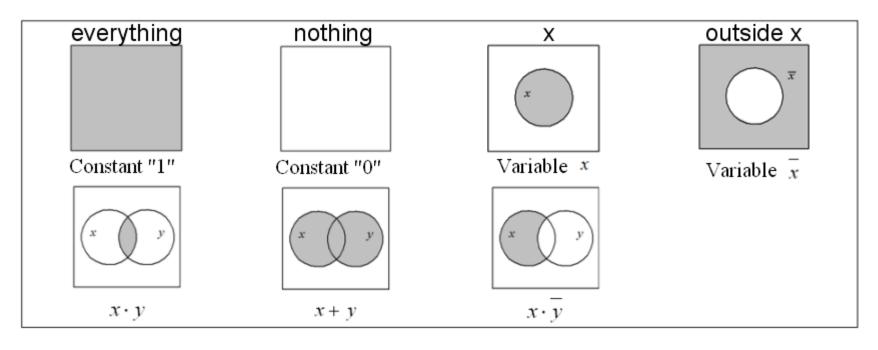
Ex 1.3c Binary/Octal/Hexadecimal

$$100110101_2 = ?_{16} = ?_8$$

$$1\ 0011\ 0101_2 = 1\ 3\ 5_{16}$$

$$100\ 110\ 101_2 = 4\ 6\ 5_8$$

Venn-diagram



x in common with y x together with y

x in common with outside y

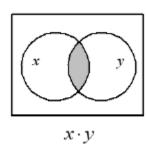
Ex. 3.2 De Morgans theorem with Venn diagram

Prove De Morgans theorem with the use of Venn Diagram.

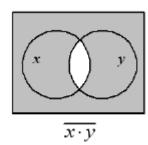
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

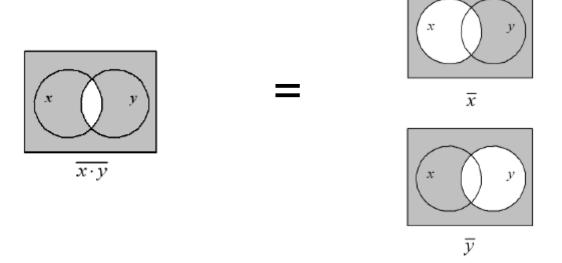
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$



$$\overline{x \cdot y} = \overline{x} + \overline{y}$$



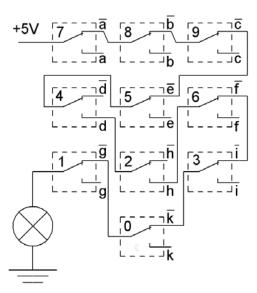
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$



$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

Now proved!

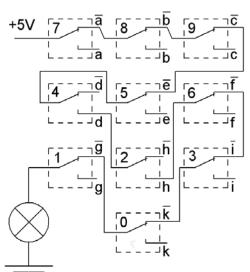
Which buttons should be simultaneously pressed in order to light up the lamp? (= open up the lock)



123456789

Which buttons should be simultaneously pressed in order to light up the lamp? (= open up the lock)

Answer: 4,d and 2,h but you must simultaneously *avoid* pressing a b c e f g i and k!



123456789

Which buttons should be simultaneously pressed in order to light up the lamp? (= open up the lock)

Answer: 4,d and 2,h but you must simultaneously *avoid* pressing a b c e f g i and k!

$$T = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d \cdot \overline{e} \cdot \overline{f} \cdot \overline{g} \cdot h \cdot \overline{i} \cdot \overline{k}$$

Which buttons should be simultaneously pressed in order to light up the lamp? (= open up the lock)

Answer: 4,d and 2,h but you must simultaneously *avoid* pressing a b c e f g i and k!

$$d = \frac{1}{1 \cdot 1 \cdot 1 \cdot 1}$$

$$T = a \cdot b \cdot c \cdot d \cdot e \cdot f \cdot g \cdot h \cdot i \cdot k$$

A product-term with *all* variables is called a **minterm**

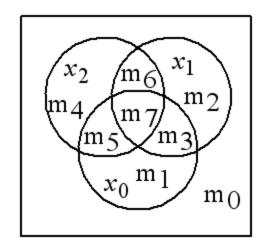
Ex 3.3 Venn Diagram

- a) Draw a Venn Diagram for thre variables and mark all truth table minterms in the diagram.
- b) Minimize this function with the help of the Venn Diagram.

$$f = \overline{x_2} \overline{x_1} x_0 + \overline{x_2} x_1 x_0 + \overline{x_2} \overline{x_1} x_0 + \overline{x_2} x_1 x_0 + \overline{x_2} x_1 x_0 + \overline{x_2} x_1 x_0$$

Ex. 3.3a Truth Table – Venn diagram

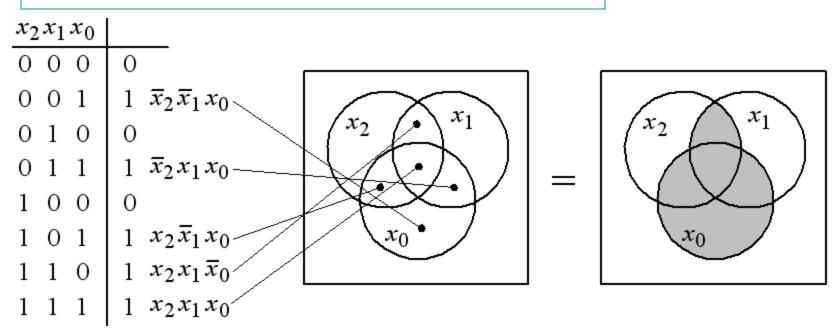
$x_2x_1x_0$			
0	0	0	mo
0	0	1	m 1
0	1	0	m 2
0	1	1	m 3
1	0	0	m_4
1	0	1	m 5
1	1	0	m6
1	1	1	m 7



Ex. 3.3b simplified expression

Orginal expression.

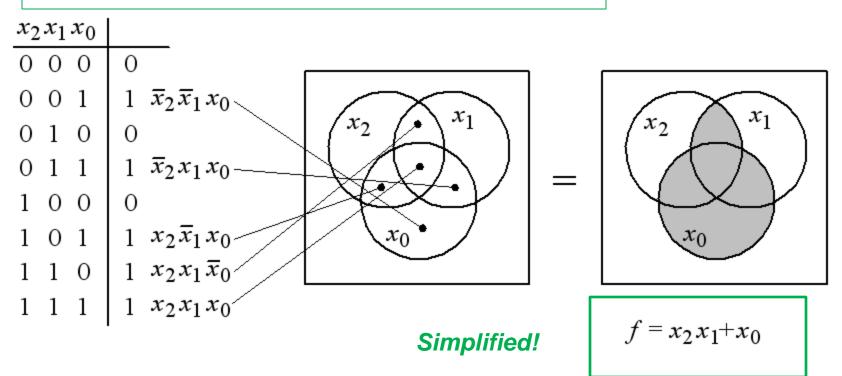
$$f = \overline{x}_{2} \, \overline{x}_{1} \, x_{0} + \overline{x}_{2} \, x_{1} \, x_{0} + x_{2} \, \overline{x}_{1} \, x_{0} + x_{2} \, x_{1} \, \overline{x}_{0} + x_{2} \, x_{1} \, x_{0}$$



Ex. 3.3b simplified expression

Orginal expression.

$$f = \overline{x}_{2} \, \overline{x}_{1} \, x_{0} + \overline{x}_{2} \, x_{1} \, x_{0} + x_{2} \, \overline{x}_{1} \, x_{0} + x_{2} \, x_{1} \, \overline{x}_{0} + x_{2} \, x_{1} \, x_{0}$$



Boole's algebra rules

Logical addition "+", **OR**, and logical multiplication "×", **AND**, broadly follows the usual normal algebraic distributive, commutative and associative laws (with one exception).

Distributiva lagarna	$A \cdot (B + C) = A \cdot B + A \cdot C$ $A + (B \cdot C) = (A + B) \cdot (A + C)$ Exeption!	
Kommutativa lagarna	$A \cdot B = B \cdot A$ $A + B = B + A$	
Associativa lagarna	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$ (A + B) + C = A + (B + C)	

Theorems

Rules

$$A \cdot A = A$$
 $A \cdot 0 = 0$ $A + 0 = A$
 $A + A = A$ $A \cdot 1 = A$ $A + 1 = 1$

Some theorems

Absorption	$A + A \cdot B = A$		
	$A \cdot (A+B) = A$ $A \cdot B + \overline{A} \cdot C =$		
Consensus	$A \cdot B + \overline{A} \cdot C + B \cdot C$		
de Morgan	$\overline{(A+B)} = \overline{A} \cdot \overline{B}$		
ut morgan	$\overline{(A \cdot B)} = \overline{A} + \overline{B}$		

William Sandqvist william@kth.se

Ex. 4.1(a, b, c, h) Boolean algebra

4.1

(a)
$$f = a \cdot \overline{c} \cdot d + a \cdot d$$

(b) $f = a \cdot (\overline{b} + \overline{a} \cdot c + a \cdot b)$
(c) $f = a + \overline{b} + \overline{a} \cdot b + \overline{c}$
(d) $f = (a + \overline{b} \cdot \overline{c}) \cdot (\overline{a} \cdot \overline{b} + c)$
(e) $f = (a + \overline{b}) \cdot (\overline{a} + b) \cdot (a + b)$
(f) $f = \overline{a} \cdot \overline{b} \cdot c + a \cdot b \cdot c + \overline{a} \cdot b \cdot c$
(g) $f = \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{d} + c \cdot d$
(h) $f = \overline{a} + (\overline{a} \cdot \overline{b})$
i) $f = \overline{a} + \overline{a} \cdot \overline{b} + \overline{c}$

Ex. 4.1a

$$f = a \cdot \overline{c} \cdot d + a \cdot d = \{factor \text{ ad}\} = a \cdot d \cdot (\overline{c} + 1) = a \cdot d$$

Ex. 4.1b

$$f = a \cdot (\overline{b} + \overline{a} \cdot c + a \cdot b) = a \cdot \overline{b} + a \cdot \overline{a} \cdot c + a \cdot a \cdot b =$$

$$= a\overline{b} + 0 + a \cdot b = a \cdot (\overline{b} + b) = a$$

Ex. 4.1c

$$f = a + \overline{b} + \overline{a} \cdot b + \overline{c} =$$

Ex. 4.1c

$$f = a + \overline{b} + \overline{a} \cdot b + \overline{c} = a + \overline{(a + \overline{a})} \cdot \overline{b} + \overline{a} \cdot b + \overline{c} =$$

$$= a + \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{b} + \overline{a} \cdot b + \overline{c} =$$

$$= a + a \cdot \overline{b} + \overline{a} \cdot (\overline{b} + b) + \overline{c} =$$

$$= \dots \quad a + \overline{a} \dots = 1$$

Ex. 4.1h

$$f = a + (\overline{a \cdot b}) =$$

Ex. 4.1h

$$f = a + (\overline{a}) \overline{b}) = \{deMorgan\} = a + \overline{a}) = a + b$$

Ex. 4.4 De Morgan

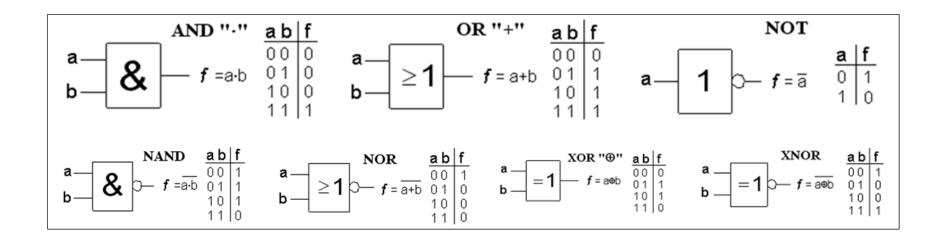
4.4

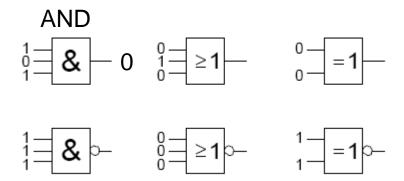
$$(a+b+c)(a+\overline{b}+c)(\overline{a}+\overline{b}c+bc)$$

Ex. 4.4

$$\overline{(a+b+c)(a+\overline{b}+c)(\overline{a}+\overline{bc}+\overline{bc})} = \overline{(a+b+c)(a+\overline{b}+\overline{c})(\overline{a}+\overline{b}+\overline{c})} = \overline{(a+b+c)(a+\overline{b}+\overline{c})} = \overline{(a+b+c)(a+\overline{b}+\overline{$$

Logic gates

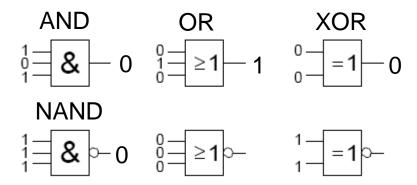


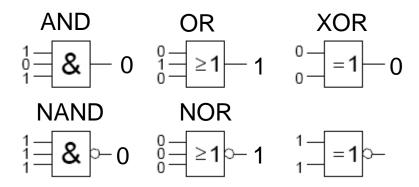


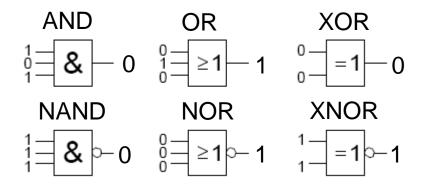
AND OR XOR
$$\begin{vmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{vmatrix} = 21 - 1$$

$$\begin{vmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{vmatrix} = 21 - 0$$

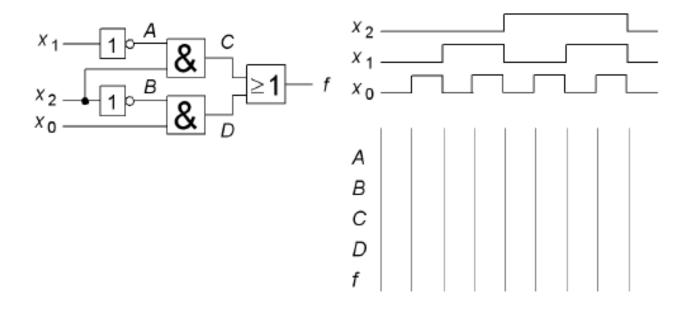
$$\begin{vmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{vmatrix} = 21 - 0$$

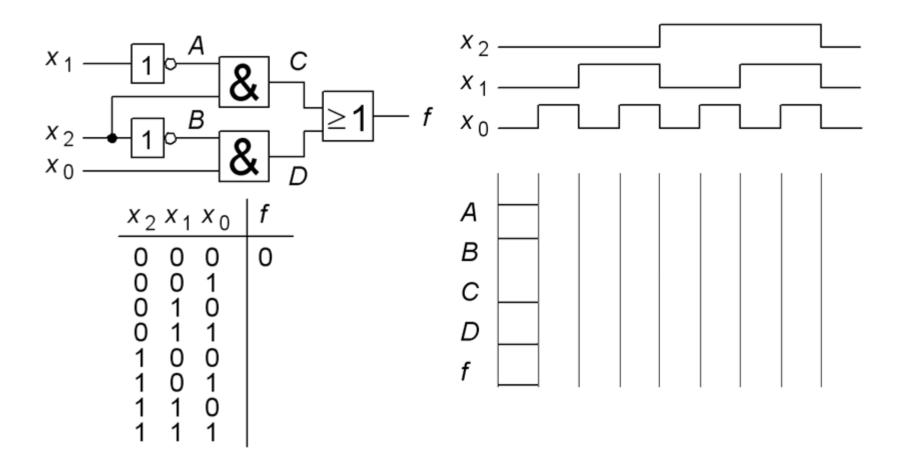


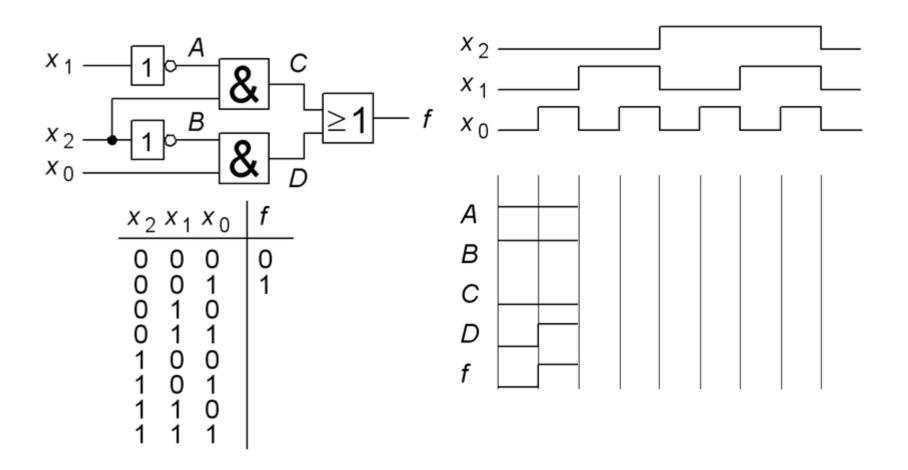


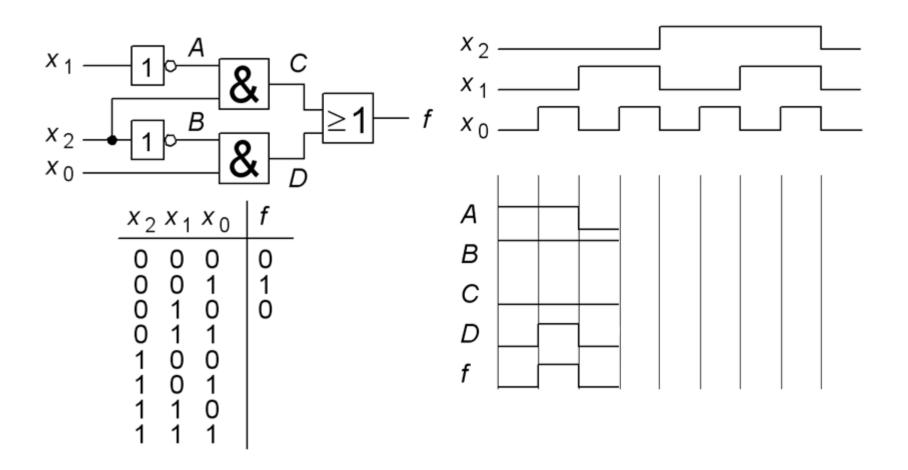


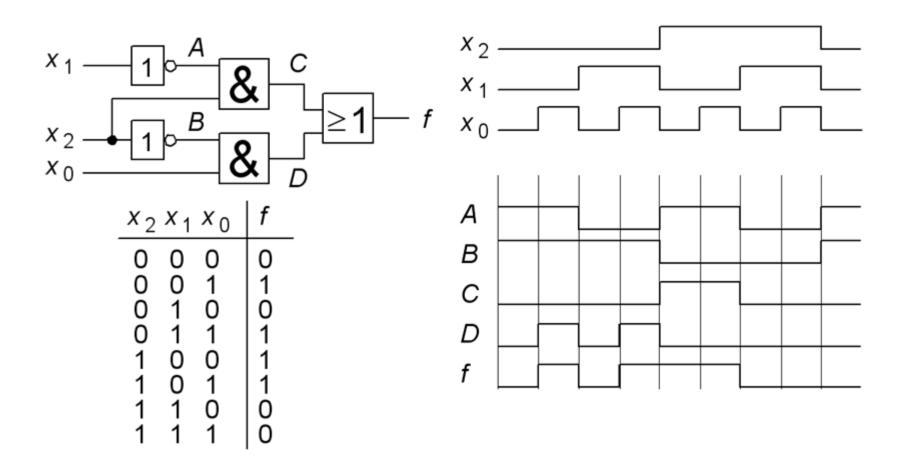
Ex. 4.7 Timing diagram and Truth Table



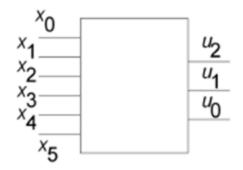








Ex. 4.12 From text to Boolean equations



A combinatorical circuit with six input signals x_5 , x_4 , x_3 , x_2 , x_1 and three output signals u_2 , u_1 , u_0 , is described in this way:

- $u_0 = 1$ if and only if "either both x_0 and x_2 are 0 or x_4 and x_5 are different"
- $u_1 = 1$ if and only if " x_0 and x_1 are equal and x_5 is the inverse of x_2 "
- $u_2 = 0$ if and only if " x_0 is 1 and some of $x_1 \dots x_5$ is 0"

ÖH 4.12

$$u_0 = 1$$
 if and only if

"either both x_0 and x_2 are 0 not

xor

or x_4 and x_5 are different" xor

$$u_0 = \overline{x}_0 \cdot \overline{x}_2 \oplus (x_4 \oplus x_5)$$

ÖH 4.12

$$u_1 = 1 \text{ if and only if}$$

$$"x_0 \text{ and } x_1 \text{ are equal and } x_5 \text{ is the inverse of } x_2$$

$$"x_0 \text{ and } x_1 \text{ are equal and } x_5 \text{ is the inverse of } x_2$$

$$u_1 = \overline{x_0 \oplus x_1} \cdot (x_5 \oplus x_2)$$

$$= (x_0 x_1 + \overline{x_0} \overline{x_1}) \cdot (x_5 \overline{x_2} + \overline{x_5} x_2)$$

ÖH 4.12

NOT
$$u_{2} = 0 \text{ if and only if}$$
" x_{0} is 1 and some of $x_{1} \dots x_{5}$ is 0"

AND OR NOT
$$u_{2} = x_{0} \cdot (\overline{x_{1}} + \overline{x_{2}} + \overline{x_{3}} + \overline{x_{4}} + \overline{x_{5}})$$

$$\Rightarrow u_{2} = \overline{x_{0}} \cdot (\overline{x_{1}} + \overline{x_{2}} + \overline{x_{3}} + \overline{x_{4}} + \overline{x_{5}}) =$$

$$= \overline{x_{0}} + (\overline{x_{1}} + \overline{x_{2}} + \overline{x_{3}} + \overline{x_{4}} + \overline{x_{5}}) =$$

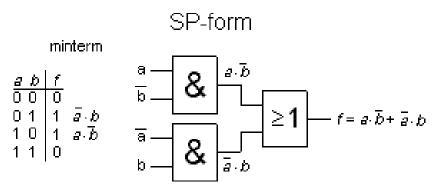
William Sandqvist william@kth.se

 $= x_0 + x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5$

Logic circuits of SoP-form

All the logical functions can be realized by using gate types AND and OR combined in two steps. We assume here that the input variables are also available in inverted form, if not then you of course inverters too.

AND-OR logic, SoP-form



One can realize the gate circuit direct from the truth table. Each "1" in the table is a minterm. The function is the sum of these minterms. One says that the function is expressed in the SoP form (Sum of Products).

However, there may exist a simpler circuit with fewer gates that do the same job.

Ex. 5.2 SoP and PoS normal form

5.2 A locic function has this Truth Table:

a b c	f
000	1
001	0
010	0
011	0
100	1
101	1
110	0
111	1

Write the function on SoP normal form:

$$f(a, b, c) =$$

Write the function on PoS normal form:

$$f(a, b, c) =$$

abc	f
000	1
001	0
010	0
011	0
100	1
101	1
110	0
111	1

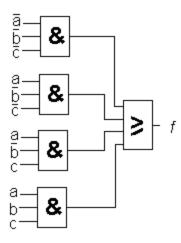
abc	f	
000	1	abo
001	0	
010	0	
011	0	
100	1	abo
101	1	abc
110	0	
111	1	abc

abc	f	
000	1	ābc
001	0	
010	0	
011	0	
100	1	abc
101	1	аБс
110	0	
111	1	abc

$$f = \overline{a} \cdot \overline{b} \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + a \cdot \overline{b} \cdot c + a \cdot b \cdot c$$

a b c	f	
000	1	ābc
001	0	
010	0	
011	0	
100	1	abc
101	1	аБс
110	0	
111	1	abc

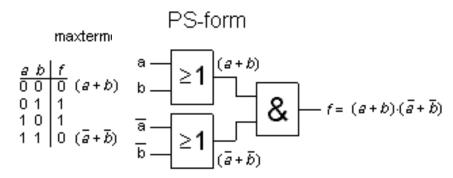
$$f = \overline{a} \cdot \overline{b} \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + a \cdot \overline{b} \cdot c + a \cdot b \cdot c$$



Logik circuits of PoS-form

Alternatively, one can focus on the truth table 0s. If a gate circuit reproduces the function 0's correct then of course the 1's are right to!

OR-AND logic, PoS form



Thus, if the function is to be "0" for a particular variable combination (a, b) for example (0.0) one is forming the sum (a + b). This sum could only be "0" for the combination (0.0).

Such a sum is called a maxterm. The function is expressed as a product of all such maxtermer. Each maxterm contributes with a 0 from the truth-table. The function is said to be expressed in the PoS form (Product of Sums).

a	b	С	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

```
        a b c
        f

        0 0 0
        1

        0 0 1
        0 (a+b+c̄)

        0 1 0
        0 (a+b̄+c̄)

        0 1 1
        0 (a+b̄+c̄)

        1 0 0
        1

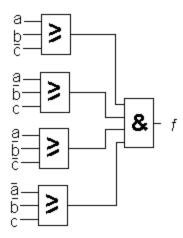
        1 1 0
        0 (ā+b̄+c̄)

        1 1 1
        1
```

$$f = (a+b+\overline{c})\cdot(a+\overline{b}+c)\cdot(a+\overline{b}+\overline{c})\cdot(\overline{a}+\overline{b}+c)$$

abc	f	
000	1	
001	0	(a+b+c)
010	0	(a+b+c)
011	0	(a+b+c)
100	1	
101	1	
110	0	(ā+b+c)
111	1	

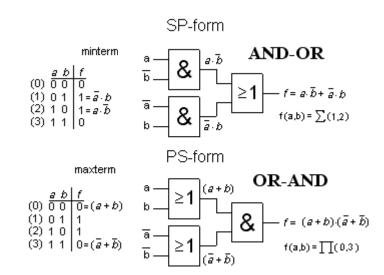
$$f = (a+b+\overline{c}) \cdot (a+\overline{b}+c) \cdot (a+\overline{b}+\overline{c}) \cdot (\overline{a}+\overline{b}+c)$$



\sum and Π

SoP and PoS-forms are usually simplifies to a list of the included maxtermerm's / mintermerm's serial number:

$$f(a,b) = \sum m(1,2)$$
$$f(a,b) = \prod M(0,3)$$



Ex. 5.3 SoP and PoS -form

A minimized function is given on SoP form (Sum of Products). Specify this function with minterms on SoP normal form, and with maxterms on PoS (Product of Sums) normal form.

$$f(x, y, z) = x\overline{y} + y\overline{z} + x\overline{z}$$

Ex. 5.3

$$f(x, y, z) = x\overline{y} + y\overline{z} + x\overline{z} = x\overline{y}(z + \overline{z}) + (x + \overline{x})y\overline{z} + \overline{x}(y + \overline{y})z =$$

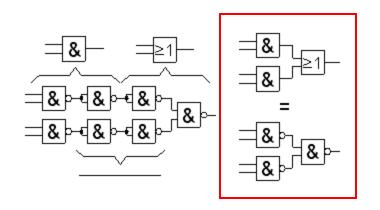
$$= x\overline{y}z + x\overline{y}z + xy\overline{z} + xy\overline{z} + xy\overline{z} + xy\overline{z} + xy\overline{z}$$

$$\Rightarrow f(x, y, z) = \sum m(001, 010, 011, 100, 101, 110) = \sum m(1, 2, 3, 4, 5, 6)$$

$$\Rightarrow f(x, y, z) = \prod M(0,7) = (x + y + z)(\overline{x} + \overline{y} + \overline{z})$$

complete logic NAND-NAND

OR AND and NOT could be produces with NAND gates. For logic functions on the SoP form, you can change the AND-OR circuit to NAND-NAND "straight off".

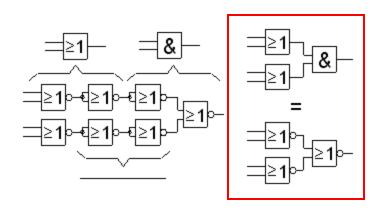


NAND-NAND

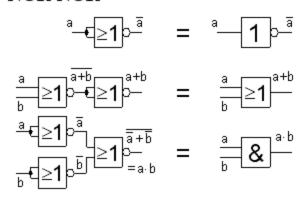
The cost, the number of gates, will be the same!

complete logic NOR-NOR

OR AND and NOT can also be produced with NOR gates. For logic functions on the PoS form, you can replace the OR-AND circuit to NOR-NOR "straight off".



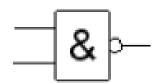
NOR-NOR

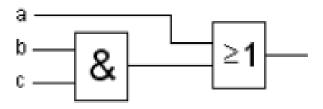


The cost, the number of gates, will be the same!

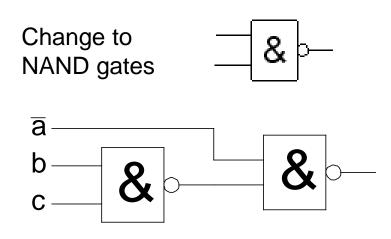
Ex. 5.5 NAND-gates

5.5 Change to NAND gates!



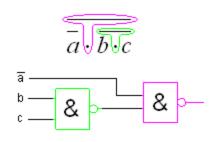


Ex. 5.5



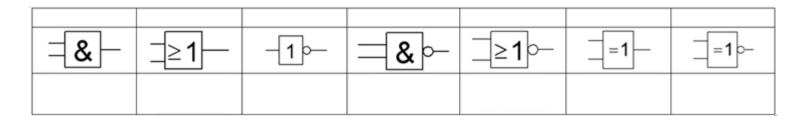
Algebraically:

$$a + b \cdot c = \overline{\overline{a + b \cdot c}} = \overline{\overline{a \cdot b \cdot c}}$$



(Ex. 4.11) European and American Symbols

Try out yourself ...



(Ex. 4.11) European and American Symbols

Try out yourself ...

