Ex 11.1 "Glitches"

If the signals passes different amount of gate delays before they are combined at the output, then momentary unwanted deviations from the truth table can occur, so-called "glitches".

Show in Karnaugh map how to avoid them.

(in the figure, only the delay in the inverter is included - the other gate delays that do not affect the "glitch" has not been included)

Ex 11.1 "Glitches"

If the signals passes different amount of gate delays before they are combined at the output, then momentary unwanted deviations from the truth table can occur, so-called "glitches".

Show in Karnaugh map how to avoid them.

The signal D is delayed compared to A BC.

(in the figure, only the delay in the inverter is included - the other gate delays that do not affect the "glitch" has not been included)

(with all gate delays included)

William Sandqvist william@kth.se

11.1

William Sandqvist william@kth.se

11.1

Make sure the groupings in the Karnaugh map form a continuous "continent" - no islands! (You include the consensus terms to obtain the function in full prime implicator form).

11.1

Make sure the groupings in the Karnaugh map form a continuous "continent" - no islands! (You include the consensus terms to obtain the function in full prime implicator form).

$$
G=\bar{B} C+A B \quad\{\text { No Hazards }\} \quad G=\bar{B} C+A B+A C
$$

11.1

We see that the signal X is "covering up" when there is a risk
 of a "glitch", to the price of a more complex network!

Ex 11.2 SR asynchronous sequential circuit

SR-latch is an asynchronous sequential circuit.

All gate delays present in the network is thought placed in the symbol Δ which has a similar function to the D-flip-flop in a synchronous sequential circuit.

SR Analyses:

William Sandqvist william@kth.se

SR Analyses:

William Sandqvist william@kth.se

SR Analyses:

$$
Q^{+}=\overline{R+\overline{S+Q}}=\bar{R} \cdot \overline{\overline{(S+Q)}}=\bar{R} \cdot(S+Q)=S \bar{R}+\bar{R} Q
$$

SR Coded state table

The encoded state table is usually called excitationstable when working with asynchronous state machines.

Present state \mathbf{Q}	${\text { Next state } \mathbf{Q}^{+}}^{$$}$			
	00	01	11	10
0	0	0	0	1
1	1	0	0	1

William Sandqvist william@kth.se

SR Coded state table

The encoded state table is usually called excitationstable when working with asynchronous state machines.

Present state \mathbf{Q}	Next state \mathbf{Q}^{+}			
	Input signals SR			
	00	01	11	10
0	0	0	0	1
1	1	0	0	1

For each input (column), there must be at least one state where $\mathrm{Q}=\mathrm{Q}^{+}$. Such conditions are stable and they are usually marked by a circle.

SR Coded state table

The encoded state table is usually called excitationstable when working with asynchronous state machines.

Present state Q	Next state \mathbf{Q}^{+}			
	Input signals SR			
	00	01	11	10
0	0	0	0	1
1	1	0	0	1

For each input (column), there must be at least one state where $\mathrm{Q}=\mathrm{Q}^{+}$. Such conditions are stable and they are usually marked by a circle.

SR Coded state table

The encoded state table is usually called excitationstable when working with asynchronous state machines.

Present state Q	Next state \mathbf{Q}^{+}			
	Input signals SR			
	00	01	11	10
0	0	0	0	1
1	1	0	0	1

For each input (column), there must be at least one state where $\mathrm{Q}=\mathrm{Q}^{+}$. Such conditions are stable and they are usually marked by a circle.

SR State diagram

Present state Q	Next state \mathbf{Q}^{+}			
	Input signals SR			
	00	01	11	10
0	0	0	0	1
1	1	0	0	1

William Sandqvist william@kth.se

SR State table

The state table is named flow table when working with asynchronous state machines.

Present state Q	Next state \mathbf{Q}^{+}			
	Input signals SR			
	00	01	11	10
A	A	A	A	B
B	B	A	A	B

William Sandqvist william@kth.se

Ex 11.3 Oscillator?

Ex 11.3 Oscillator?

$$
Q^{+}=\bar{Q}
$$

William Sandqvist william@kth.se

Ex 11.3 Oscillator?

Ex 11.3 Oscillator?

William Sandqvist william@kth.se

Ex 11.3 Oscillator?

Numerical Example: $\quad t_{p d}=5 \cdot 10^{-9} \quad f=\frac{1}{6 \cdot 5 \cdot 10^{-9}}=33 \mathrm{MHz}$

Ex 11.3 Oscillator?

Numerical Example: $\quad t_{p d}=5 \cdot 10^{-9} \quad f=\frac{1}{6 \cdot 5 \cdot 10^{-9}}=33 \mathrm{MHz}$
Can be used to indirectly measure the gate delay of logic circuits.

Especially for asynchronous circuits

- The states must be encoded Race-free (eg. Gray code).

SR latch is race free because there is only one state signal, which of course can not run races with itself.

- Next state decoder must be glitch free / Hazard free (with the consensus terms included).

SR-latch circuit groupings are contiguous in the Karnaugh map, there are no more consensus terms that need to be included.

Especially for asynchronous circuits

- The states must be encoded Race-free (eg. Gray code).

SR latch is race free because there is only one state signal, which of course can not run races with itself.

- Next state decoder must be glitch free / Hazard free (with the consensus terms included).

SR-latch circuit groupings are contiguous in the Karnaugh map, there are no more consensus terms that need to be included.

The SR-latch is thus an "goof-proof" design. Larger asynchronous sequential circuits are significantly more complex to construct!

State Diagram as hypercubes

The state diagram is placed on a hypercube with Gray-coded corners.

With two state variables, it becomes a square.

State Diagram as hypercubes

With three state variables, it becomes a cube

State Diagram as hypercubes

With three state variables, it becomes a cube

William Sandqvist william@kth.se

State Diagram as hypercubes

With three state variables, it becomes a cube

(Four variables)

(Compare with the Karnaugh map)

William Sandqvist william@kth.se

Ex 11.4

Analyze the following circuit. Draw a State Diagram.
Consider the circuit as an asynchronous sequential circuit which clock pulse input is one of the asynchronous inputs. What is the function of the circuit?

11.4 Positive edge and negative edge

- At a positive edge $\uparrow \mathbf{C}$ changes from 0 to 1 and when $\mathbf{C = 1}$ the MUX connects the upper flip-flop $q 0$ to the output.
- At a negative edge $\downarrow \mathbf{C}$ changes from 1 to 0 and when $\mathbf{C =}=0$ the MUX connects the lower flip-flop q1 to the output.

The result is a D-flip-flop that reacts on both edges of the clock.
William Sandqvist william@kth.se

DETFF-flip-flop

Double Edge Trigered Flip Flop (DETFF) has advantages in speed and power consumption. It can in principle provide twice as fast sequential circuits!
(Introduction of DETFF-flip-flops would require rethinking and redesigning of the other logic).

In order to benefit from the advantages of DETFF-flip-flop it must be designed as a separate component - ie as an asynchronous sequential circuit.

Ex 11.5 DETFF $\sqrt{100}$

Construct an asynchronous state machine that functions as a dubble edge triggered D flip-flop (DETFF), the flip-flop will change value at both the positive and the negative edge of the clock.
a) Derive the FSM.
b) Construct the flow table and minimize it.
c) Assign states, transfer to Karnaugh maps and derive the Boolean expressions.
d) Draw the schematic for the circuit.

11.5 Possible in/out combinations

11.5 Possible in/out combinations

DETFF
Characteristic table

$C D$	Q^{+}
$0-$	Q
$1-$	Q
$\uparrow 0$	0
$\uparrow 1$	1
$\downarrow 0$	0
$\downarrow 1$	1

11.5 Possible in/out combinations

There are four input combinations (CD) and two output combinations (Q). A total of 8 possible states (CD Q).

DETFF
Characteristic table

$C D$	Q^{+}
$0-$	Q
$1-$	Q
$\uparrow 0$	0
$\uparrow 1$	1
$\downarrow 0$	0
$\downarrow 1$	1

11.5 Possible in/out combinations

There are four input combinations (CD) and two output combinations (Q). A total of 8 possible states (CD Q).

A new next state we get by changing either C or D . When C is changed, we get a positive edge (\uparrow) or negative edge (\downarrow). For both edges comes that D are copied to Q^{+}. (according to the characteristic table)

Present state		Next state
Name:	$(\mathrm{CD} Q)$	$(\mathrm{CD} \text { Q })^{+}$
A	000	
B	001	
C	010	
D	011	
E	100	
F	101	
G	110	
H	111	

DETFF
Characteristic table

$C D$	Q^{+}
$0-$	Q
$1-$	Q
$\uparrow 0$	0
$\uparrow 1$	1
$\downarrow 0$	0
$\downarrow 1$	1

11.5 Possible in/out combinations

There are four input combinations (CD) and two output combinations (Q). A total of 8 possible states (CD Q).

A new next state we get by changing either C or D . When C is changed, we get a positive edge (\uparrow) or negative edge (\downarrow). For both edges comes that D are copied to Q^{+}. (according to the characteristic table)

Present state		Next state
Name:	(CD Q)	(CD Q) ${ }^{+}$
A	000	个 $\begin{array}{r}010 \mathrm{C} \\ 100 \mathrm{E}\end{array}$
B	001	011 D $\uparrow 100 \mathrm{E}$
C	010	000 A $\uparrow 111 \mathrm{H}$
D	011	$\uparrow \begin{gathered}001 \mathrm{~B} \\ \\ 111 \mathrm{H}\end{gathered}$
E	100	$\begin{array}{r} \downarrow 000 \mathrm{~A} \\ \\ 110 \mathrm{G} \end{array}$
F	101	$\begin{array}{r} \downarrow 000 \mathrm{~A} \\ 111 \mathrm{H} \end{array}$
G	110	$\begin{aligned} & \downarrow 011 \mathrm{D} \\ & 100 \mathrm{E} \end{aligned}$
H	111	$\begin{array}{r} \hline \\ \hline 101 \mathrm{D} \\ 101 \\ \hline \end{array}$

DETFF
Characteristic table

$C D$	Q^{+}
$0-$	Q
$1-$	Q
$\uparrow 0$	0
$\uparrow 1$	1
$\downarrow 0$	0
$\downarrow 1$	1

11.5 Flow table

Present state	Next state CD				Output Q	
	OO	01	11	10		
A	A	C	-	E	0	
B	B	D	-	E	1	
C	A	C	H	-	0	
D	B	D	H	-	1	
E	A	-	G	C	0	
F	A	-	H	(F	1	
G	-	D	G	E	0	
H	-	D	(H)	F	1	

Present state		Next state
Name:	(CD Q)	(CD Q) ${ }^{+}$
A	000	010 C $\uparrow 100 \mathrm{E}$
B	001	011 D 100 E
C	010	¢ \uparrow $\uparrow 111 \mathrm{H}$
D	011	$\uparrow{ }^{0} 011 \mathrm{~B}$
E	100	$\begin{gathered} \downarrow 000 \mathrm{~A} \\ 110 \mathrm{G} \end{gathered}$
F	101	$\begin{array}{r} \downarrow 000 \mathrm{~A} \\ 111 \mathrm{H} \\ \hline \end{array}$
G	110	$\downarrow \begin{aligned} & \downarrow 011 \mathrm{D} \\ & 100 \mathrm{E}\end{aligned}$
H	111	$\begin{array}{\|c} \downarrow 011 \mathrm{D} \\ \\ \hline 101 \mathrm{~F} \end{array}$

Stable states are marked by the ring. Make sure that each column "CD" contains at least one stable state, otherwise you get an "oscillating" network for that input signal. Don't-care "-" is introduced where the input "CD" contains more than change in one input variable from the steady state for the line.

11.5 State minimization

A and B are not equivalent if ...

Equivalence means that the states should be stable for the same input signals, and to have their "do not care" for the same inputs - not to lose the flexibility for the continued minimization.

Kompatibility will be different for Moore or Mealy. For Moorecompatible machines it applies that the outputs must be equal, and the outputs of the follower states (all, if several) must also be equal. Otherwise, the two conditions are not compatible!

stateninininininn

We start with a block of all state $P_{1}=(A B C D E F G H)$
Thera are no Equvivalent states, we then look at Kompatibility

Present state	Next state CD=				$\begin{aligned} & \text { Output } \\ & \text { Q } \end{aligned}$
A	(A)	C	-	E	0
B	(B)	D	-	E	1
C	A	(C)	H	-	0
D	B	(D)	H	-	1
E	A	-	G	(E)	0
F	A	-	H	(F)	1
G	-	D	(G)	E	0
H	-	D	(H)	F	1

The states are first divided in two blocks by output value. ACEG has output 0, BDFH has output 1.
$P_{2}=[A C E G][B D F H]$
A and C has same follower state (as don't-care can be utilized as H or E)

$$
A C-E
$$

ACH-
$P_{3}=[(A C) \ldots][B D F H]$
(For compatibility it's enough that output from the follower states are same, it need not be exactly the same state as it happens to be in this example.)

State minimization

E and G has same follower state (as don't-care can be utilized as A or D)

A-GE
-DGE

Present state	Next state			Output	
	CD $=$				
	00	01	11	10	
A	$($ A	C	-	E	0
B	B	D	-	E	1
C	A	C	H	-	0
D	B	D	H	-	1
E	A	-	G	C	0
F	A	-	H	(F	1
G	-	D	G	E	0
H	-	D	(H)	F	1

$P_{3}=[(A C)(E G)][B D F H]$
B and D has same follower state (as don't-care can be utilized as H or E) BD-E BDH-
$P_{3}=[(A C)(E G)][(B D) . .$.
F and H has same follower state
(as don't-care can be utilized as A or D)
A-HF
-DHF
$P_{3}=(\mathrm{AC})(\mathrm{EG})(\mathrm{BD})(\mathrm{FH})$ Four states are enough!

11.5 New Flow table

The new states are designated: $\mathrm{AC} \rightarrow \mathbf{A}, \mathrm{EG} \rightarrow \mathrm{E}, \mathrm{BD} \rightarrow \mathbf{B}, \mathrm{FH} \rightarrow \mathbf{F}$.

Nuvarande tillstånd	Nästa tillstånd				Output	
CD $=$						
	00	01	11	10		
A	(\bar{A})	C	-	E	0	
B	B	D	-	E	1	
C	A	(C)	H	-	0	
D	B	(D)	H	-	1	
E	A	-	G	(C)	0	
F	A	-	H	(1	
G	-	D	(G)	E	0	
H	-	D	(\mathbb{H})	F	1	

State diagram

Present state	Next state CD sta			Output Q	
O0	01	11	10		
A	A	A	F	E	0
E	B	B	F	E	1
F	A	B	C	(E)	0

William Sandqvist william@kth.se

11.5 State encoding

The states $\left(q_{1} q_{0}\right)$, are placed in the corners of a Gray-coded square.
 Eg. $A=00, F=01, B=11, E=10$.

11.5 State encoding

The states $\left(q_{1} q_{0}\right)$, are placed in the corners of a Gray-coded square.
 Eg. $A=00, F=01, B=11, E=10$.

Although all "rotations" and "reflections" of the code is valid state encodings.

11.5 State encoding

The states $\left(q_{1} q_{0}\right)$, are placed in the corners of a Gray-coded square.
 Eg. $A=00, F=01, B=11, E=10$.

Although all "rotations" and "reflections" of the code is valid state encodings.

\mathbf{A}	\mathbf{F}	\mathbf{B}	\mathbf{E}	\mathbf{A}	\mathbf{F}	\mathbf{B}	\mathbf{E}
00	01	11	10	10	11	01	00
01	11	10	00	00	10	11	01
11	10	00	01	01	00	10	11
10	00	01	11	11	01	00	10

11.5 State encoding

The states $\left(q_{1} q_{0}\right)$, are placed in the corners of a Gray-coded square.
 Eg. $A=00, F=01, B=11, E=10$.

Although all "rotations" and "reflections" of the code is valid state encodings.

A	F	B	\mathbf{E}	A	\mathbf{F}	\mathbf{B}	\mathbf{E}		This will be our
00	01	11	10	10	11	01	00		This
01	11	10	00	00	10	11	01		shosen arbitrarily
11	10	00	01	01	00	10	11		state encoding.
10	00	01	11	11	01	00	10		

11.5 State encoding

The states $\left(q_{1} q_{0}\right)$, are placed in the corners of a Gray-coded square.
 Eg. $A=00, F=01, B=11, E=10$.

Although all "rotations" and "reflections" of the code is valid state encodings.

A	F	B	E	A	F	\mathbf{B}	\mathbf{E}
00	01	11	10	10	11	01	00
01	11	10	00	00	10	11	01
11	10	00	01	01	00	10	11
10	00	01	11		11	01	00

This will be our chosen arbitrarily state encoding.

Is this the best state encoding? Extensive search (= try all) is often the only solution for those who want to know!

11.5 Exitation table

Present state	Next state CD				Output
Q					
	00	01	11	10	
A	A	A	F	E	0
B	(B)	(B)	F	E	1
E	A	B	E	(E)	0
F	A	B	((1

Present state $q_{1} q_{0}$	$\begin{aligned} & \text { Next state } \\ & \text { CD= } \end{aligned}$				Output Q
10	(10)	(10)	11	00	0
01	01	01	11	00	1
00	10	01	00	00	0
11	10	01	(11)	(11)	1

William Sandqvist william@kth.se

11.5 Karnaugh maps

Present state $q_{1} q_{0}$	$\begin{aligned} & \text { Next state } \\ & \text { CD= } \end{aligned}$				$\begin{aligned} & \text { Output } \\ & \text { Q } \end{aligned}$
10	(10)	10	11	00	0
01	(01)	01	11	00	1
00	10	01	00	00	0
11	10	01	(11)	(11)	1

On K-map-form:

Present state	$\begin{aligned} & \text { Next state } \\ & \text { CD= } \end{aligned}$				$\begin{aligned} & \text { Output } \\ & \mathrm{Q} \end{aligned}$
$\mathrm{q}_{1} \mathrm{q}_{0}$	00	01	11	10	
00	10	01	00	00	0
01	01	01	11	00	1
11	10	01	11	11	1
10	10	10	11	00	0

$C D$	q_{0}^{+}		
$q_{1} 00$		11	10
${ }^{9} 00_{0}{ }^{\circ}$	1	${ }^{3} 0$	${ }^{2} 0$
${ }_{1} 1$	1	${ }^{7} 1$	\%
${ }^{1} 0$	1	1	1
$0_{0}^{18} 0$	${ }^{9} 0$	1	0

$Q=q_{0}$
$q_{1}^{+}=C D q_{1}+C D q_{0}+\bar{C} \bar{D} q_{1}+\bar{C} \bar{D} \bar{q}_{0}+$

$$
+q_{1} \bar{q}_{0} \bar{C}+q_{1} \bar{q}_{0} D+q_{1} q_{0} C+q_{1} q_{0} \bar{D}
$$

$$
q_{0}^{+}=q_{0} D+\bar{q}_{1} q_{0} \bar{C}+\bar{q}_{1} C D+q_{1} C D+q_{1} q_{0} C
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Ex 11.6 Analyze

Analyze the above circuit.
a) Derive the Boolean expressions for the state variables Y_{1} and Y_{0}.
b) Derive the exitations table. Which function (dashed) are in the inner loops.
c) Derive the flow table, assign symbolic states and draw FSM.
d) Which flip-flop does this correspond to?

11.6 Boolean equations

$$
Y_{0}^{+}=Y_{0} Y_{1}+Y_{0} \bar{C}+Y_{1} C
$$

$$
Y_{1}^{+}=Y_{1}\left(Y_{0} \oplus I\right)+\left(Y_{0} \oplus I\right) \bar{C}+Y_{1} C
$$

11.6 Glitch-free MUX?

William Sandqvist william@kth.se

11.6 Two Glitch-free MUXes

The network may be seen as composed of two glitch-free MUXes. This fact can be used if one wants to reason about the circuit's function.

11.6 Boolean equations

We use the Boolean functions to derive the function.

$$
\begin{aligned}
Q & =Y_{0} \\
Y_{1}^{+} & =Y_{1}\left(Y_{0} \oplus I\right)+\left(Y_{0} \oplus I\right) \bar{C}+Y_{1} C= \\
& =Y_{1}\left(Y_{0} \bar{I}+\bar{Y}_{0} I\right)+\left(Y_{0} \bar{I}+\bar{Y}_{0} I\right) \bar{C}+Y_{1} C= \\
& =Y_{1} Y_{0} \bar{I}+Y_{1} \bar{Y}_{0} I+Y_{0} \bar{I} \bar{C}+\bar{Y}_{0} I \bar{C}+Y_{1} C \\
Y_{0}^{+} & =Y_{0} Y_{1}+Y_{0} \bar{C}+Y_{1} C
\end{aligned}
$$

11.6 Excitation table

$$
Y_{1}^{+}=Y_{1} Y_{0} \bar{I}+Y_{1} \bar{Y}_{0} I+Y_{0} \bar{I} \bar{C}+\bar{Y}_{0} I \bar{C}+Y_{1} C \quad Y_{0}^{+}=Y_{0} Y_{1}+Y_{0} \bar{C}+Y_{1} C
$$

Red marked groupings are circuit Hazard Cover

William Sandqvist william@kth.se

11.6 Exitation table

Impossible states are denoted by strikethrough. These are states that, as to be reached, would require two changes of input the signals from the stable state of the current row.

Present state	$\begin{aligned} & \text { Next state } \\ & \text { IC= } \end{aligned}$				$\begin{aligned} & \text { Output } \\ & \text { Q } \end{aligned}$
$Y_{1} Y_{0}$	00	01	11	10	
00	00	00	00	10	0
01	11	00	00	04	1
11	11	(11)	(11)	01	1
10	00	14	11	10	0

IC $10 \rightarrow 01$ is an
$Q=Y_{0} \quad \begin{aligned} & \text { impossible } \\ & \text { simultaneous }\end{aligned}$ change of the input signals.

11.6 Flow table

Present state $\mathrm{Y}_{1} \mathrm{Y}_{0}$	Next state IC $=$ 00			01	11
A	Output				
Q					

Present state $Y_{1} Y_{0}$	Next state IC= 00			01	11
10	Qutput				
Q					

State diagram:

The impossible states (strikethrough text) could be used as don't-care if one at another time should change the state assignement.

William Sandqvist william@kth.se

If $I=\mathbf{1}$ and C are clockpulses $1,0,1,0 \ldots$ the sequence is:
IC: 101110 11, D-C-B-A-D-C-B-A Q: 0-1-1-0-0-1-1-0
The flip-flop toggles on positive edge (\uparrow) from C.
If $I=0$ it becomes instead "the same output"
$\mathrm{A} \rightarrow \mathrm{A}$ and $\mathrm{D} \rightarrow \mathrm{A} \quad \mathrm{Q}=0$
$C \rightarrow C$ and $B \rightarrow C \quad Q=1$
The flip-flop changes state at the transitions from $\mathrm{C}=0$ to $\mathrm{C}=$ 1 , so it is positive edgetriggered (\uparrow) T-flip-flop ($I=T$).

