

DD2434 Machine Learning, Advanced Course Lecture 1: Introduction

Hedvig Kjellström hedvig@kth.se https://www.kth.se/social/course/DD2434/

Making sense of signals (RGB-D video): Hand Tracking from MSR Cambridge

https://www.youtube.com/watch?v=A-xXrMpOHyc

Big Data

Predicting future events knowing the history: Botten Ada from Linköping U

http://bottenada.se

Learning to see suddle patterns in huge amounts of data: Cancer Therapy based on DNA Sequencing from IBM

https://www.youtube.com/watch?v=0M1DMdc1mQ0

Course Preliminaries

Today

Check the homepage at least 2 times / week! Or set it to send you emails!

Course preliminaries

All info at https://www.kth.se/social/course/DD2434/

Ask questions through the News forum!

Buy the book by Kevin Murphy:

The three teachers

Jens Lagergren

Carl Henrik Ek

Hedvig Kjellström

Introduction to Machine Learning
Murphy Chapter 1

Learning outcomes

Upon completion of the course, the student should be able to

- 1. explain, derive, and implement a number of models for supervised, unsupervised learning,
- 2. explain how various models and algorithms relate to one another,
- 3. describe the strengths and weaknesses of various models and algorithms,
- 4. select an appropriate model or approach for a new machine learning task.

Course organization

Assignments, detailed schedule with reading, etc, on the homepage

Jens Lagergren

Professor of Computer Science at KTH / Science for Life Laboratory Research area: Bio-informatics

Responsible for Lectures 2-5

Practicals 1-2

Assignment 1

The Three Teachers

DD2434 - Advanced Machine Learning

Lecture 6-8, Assignment 2, Practical 3-4

Carl Henrik Ek {chek}@csc.kth.se

Royal Institute of Technology

November 3, 2014

DD2434 - Advanced Machine Learning

КІП

DD2424 Advanced Machine Learning

KTH

Lectures

Theme

"How can I incorporate my knowledge/belief with observations such that data reduces my uncertainty?"

k

D2434 - Advanced Machine Learning

My Research

- Representation Learning
 - multi-view representations
- correspondence/alignment learning
- Non-parametric methods
- Gaussian Processes
- Structural representations
- Applications
- ► Animal welfare
- Motion modelling

► Computational Biology

EK

434 - Advanced Machine Learning

Lectures

- 6 Basic modelling
 - Likelihood, Prior & Posterior
 - Kernels
- 7 Non-parametric modelling
 - function uncertainty
- 8 Representation Learning
 - Pattern discovery
- 9 Hierarchical modelling
 - layered structures

D2434 - Advanced Machine Learning

KTH

Assignment

Regression

 $f: \mathbf{Y} \to \mathbf{X}$

- Three parts
- Building model
- Learning model
- Evaluating models

Ek DD2434 - Advanced Machine I earning KTH

MSc Thesis Work

- Start January/February
- Related to my research
- Associated with CVAP
- More on lecture 9

Ek KTI-

Assignment

• Regression

 $f: \mathbf{Y} \to \mathbf{X}$

- Three parts
- 1. Building models
- 2. Learning models
- 3. Evaluating models

k KTH

Practicals

My best friend the Gaussian

- Example of Conjugate priors
- Multiplication
- Marginalisation
- Derivatives of Matrices

Ek KTH
DD2434 - Advanced Machine Learning

Practicals

Learning: Tools of the trade

- · How to fit models to data
- Beyond ML & MAP
- Variational Approximation

Ek KTH
DD2434 - Advanced Machine Learning

Hedvig Kjellström: My research

Machine learning applied to Robotics and Computer Vision: Automatic perception of human activity in video

Object affordances, object-action complexes "automatic understanding of how objects are used in human activities what happens to them during the activity"

Human non-verbal communication "automatic understanding and modeling of non-verbal signals – face expressions, body motion - both conscious and unconscious"

Multi-modality and context in activity recognition "using several modalities – vision, sound, touch etc – to better understand human activity"

See my webpage for master project proposals!

Hedvig Kjellström

Associate Professor of Computer Science at CSC / CVAP Research area: Robotics and Computer Vision

Responsible for

Entire course Lectures 1, 10-12 Practical 5 Assignment 3

Hedvig Kjellström: My part of the course

Course block 3: Applied Machine Learning

Topic models

Just one out of many methods, but important Chosen to complement the methods covered in DD2427 Image Based Recognition and Classification, DD2431 Machine Learning, EN2202 Pattern Recognition

Practical Machine Learning

What happens to the performance when data is noisy and incomplete?

Introduction to Machine Learning

Supervised/Predictive Learning

Data (training set): $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$

features/attributes

response variable

Task: Learn mapping ${f x}$ y

5 min: Discuss with your neighbor

Give at least three examples of supervised learning problems

What is \mathbf{X} and $\mathbf{\mathcal{Y}}$ in each problem?

What does the mapping look like (linear/non-linear, one-toone/many-to-many, smooth/noisy)?

Uncertainty

Basic philosophy:

Data (observations) noisy and incomplete i.e. uncertain Decision making (prediction, classification, detection, estimation) under uncertainty

Uncertainty is best modeled with probability theory

Common division:

Supervised / Unsupervised

Supervised/Predictive Learning unknown true function

Functional approximation: $y = f(\mathbf{x})$

Use ${\mathcal D}$ to learn an approximative function $\hat y = \hat f({f x})$

Classification: $y \in \{1, \dots, C\}$ is discrete and finite

Probabilistic formulation: Model

$$p(y=1|\mathbf{x},\mathcal{D})$$
 , $p(y=2|\mathbf{x},\mathcal{D})$, etc...

Best $y \equiv \text{most probable } y$:

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg \max_{c=1}^{C} p(y = c | \mathbf{x}, \mathcal{D})$$

Unsupervised/Descriptive Learning

Data (training set): $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$

Task: discover patterns in ${\mathcal D}$

Under-specified problem – what patterns? How measure error?

5 min: Discuss with your neighbor

Give at least three examples of unsupervised learning problems

What is **X** in each problem? What kind of patterns are found?

What is the purpose?

Basic concept: Parametric vs Non-Parametric

Models $p(\mathbf{x})$ and $p(y|\mathbf{x})$

Parametric: Number of parameters constant with more data E.g., linear classifier

Non-parametric: Number of parameters grows with more data E.g., kNN classifier

Unsupervised/Descriptive Learning

Probabilistic formulation: Density estimation Models of the form $p(\mathbf{x}_i|\theta)$

Use \mathcal{D} to maximize the probability $p(\mathbf{x}_i|\theta)$ of seeing each \mathbf{X}_i given the model heta

New obstacles: Multivariate distributions

Unsupervised learning is more similar to how humans and animals learn!

Practical advantage: No labeling of data required!

Basic concept: Curse of Dimensionality

$$\begin{array}{c} \mathsf{2D} \\ \mathsf{cube/sphere} = \frac{\pi}{2^2} \end{array}$$

$$\frac{\text{3D}}{\text{cube/sphere}} = \frac{4\pi}{2^3*3}$$

cube/sphere
$$=\frac{\pi^4}{2^8*24}$$

Adressed by using parametric models (fewer parameters – more robust)

Basic concept: Overfitting

Model fits training data perfectly but not novel data

Reasons: Too little data, to high dimension, too flexible model

5 min: Discuss with your neighbor

How can you test if your classifier is overfitting the training data?

Basic concept: No Free Lunch Theorem

Do not believe the preachers...

There is no universally best model! All models contain assumptions that work well in one domain but not in another.

Basic concept: Model Selection

Overfitting and underfitting

More complex model always have lower training data error

Solution from last slide:
Divide data into training set and validation set
Evaluate each model, each parameter setting with the

validation set

What is next?

Check the homepage at least 2 times / week! Or set it to send you emails!

We use the homepage a lot: links to video lectures, readings for lectures, lecture slides, questions answered through the News forum

https://www.kth.se/social/course/DD2434/

Next on the schedule Wed 5 Nov 13:15-15:00 V32 Lecture 2: Graphical Models

Jens Lagergren

Readings: Murphy Chapter 10 (except 10.2.4, 10.2.5, 10.4)

Assignment 1 published today, deadline November 25