
\star Global (G): d-separation
\star Local (L)
$\boldsymbol{X}_{t} \perp \boldsymbol{X}_{V \backslash \operatorname{desc}(t)} \mid \boldsymbol{X}_{\mathrm{pa}(t)}$
\star Ordered (O): $\quad \boldsymbol{X}_{t} \perp \boldsymbol{X}_{\operatorname{pred}(t)} \mid \boldsymbol{X}_{\mathrm{pa}(t)}$
where pred is according to a topological order
\star Factorized (F): can be family-factorized

* Theorem: $G \Leftrightarrow L \Leftrightarrow O \Leftrightarrow F$

EQUIVALENCE OF INDEPENDENCE DEFINITIONS

MARKOV BLANKET

* A minimal set $B s / t X_{t}$ is independent from $X_{V(B u t)}$ given X_{B} is a Markov blanket
\star For $t, p a(t) \cup c(t) \cup p a(c(t))$ is a Markov blanket - i.e., parents, children, and co-parents (necessary due to v-structures)

LEARNING PARAMETERS COMPLETE DATA

* "...Bayesian view, the parameters are unknown variables and should also be inferred"
\star Learning from complete data $\mathcal{D}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}$
\star Likelihood

$$
\begin{aligned}
P(\mathcal{D} \mid \boldsymbol{\theta}) & =\prod_{n=1}^{N} P\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right)=\prod_{n=1}^{N} \prod_{v=1}^{V} P\left(\boldsymbol{x}_{n v} \mid \boldsymbol{x}_{n, \mathrm{pa}(v)}, \boldsymbol{\theta}\right) \\
& =\prod_{v=1}^{V} \prod_{n=1}^{N} P\left(\boldsymbol{x}_{n v} \mid \boldsymbol{x}_{n, \mathrm{pa}(v)}, \boldsymbol{\theta}\right)=\prod_{v=1}^{V} P\left(\mathcal{D}_{v} \mid \boldsymbol{\theta}_{v}\right)
\end{aligned}
$$

where D_{v} is values of v together with its parents and θ_{v} is v's CPD

EXTENDED STUDENT

 $\square \searrow A \wedge / D \mid \square$

MIXTURE MODELS AND THE EXPECTATION MAXIMIZATION (EM) ALGORITHM

EM iteratively improves parameters

E-step: compute expected sufficient
statistics (ESS) w.r.t. $\quad p\left(z_{k} \mid \boldsymbol{x}_{k}, \boldsymbol{\theta}\right)$

M-step: find optimal θ^{\prime} using the ESS

Used for MLE of
\star mixture models

* parameters of DGMs, HMMs
\star We observe the sequence of dice outcomes of visited vertices
* DAG in DGMs (the structural EM by Nir Friedman)

EXPECTATION-

 MAXIMIZATION THEORY
3.1 Introduction

Learning networks are commonly categorized in terms of supervised and unsuper-
vised networks vised networks. In unsupervised learning, the training set consists of input training
patterns only. In contrast, in supervised learning networks, the training data consist

GAUSSIAN M\|XTUREMODELS $\mathcal{D}=\left(x_{1}, \ldots, x_{N}\right)$ $Z \sim \operatorname{Cat}(\boldsymbol{\pi})$	
$p(\boldsymbol{X} \mid Z=c)=p_{c}(\boldsymbol{X})=\mathcal{N}\left(\boldsymbol{X} \mid \boldsymbol{\mu}_{c}, \sigma_{c}\right)$	
$\boldsymbol{\theta}_{c}=\left(\boldsymbol{\mu}_{c}, \sigma_{c}\right)$	

EXAMPLE

Z_{n} is red with probability $1 / 2$, green with probability $3 / 10$, blue with probability $1 / 5$

GMM
So,

$$
p\left(x_{n}, z_{n}\right)=p\left(z_{n}\right) p\left(x_{n} \mid z_{n}\right)
$$

and

$$
p\left(x_{n}\right)=\sum_{c=1}^{C} p\left(z_{n}=c\right) p\left(x_{n} \mid z_{n}=c\right)=\sum_{c=1}^{C} \pi_{c} p\left(x_{n} \mid z_{n}=c\right)
$$

and

$$
p\left(z_{n}=c \mid x_{n}\right)=\frac{p\left(z_{n}=c, x_{n}\right)}{p\left(x_{n}\right)}=\frac{\pi_{c} p\left(x_{n} \mid z_{n}=c\right)}{\sum_{c=1}^{C} \pi_{c} p\left(x_{n} \mid z_{n}=c\right)}
$$

COMPLETE LOG LIKELIHOOD (KNOWING ALL Z)

$l\left(\theta^{\prime} ; \mathcal{D}\right)=\log \prod p\left(x_{n}, z_{n} \mid \theta^{\prime}\right.$
$=\sum \log \prod\left(\pi_{c}^{\prime} p\left(x_{n} \mid Z_{n}=c, \theta^{\prime}\right)^{I\left(z_{n}=c\right)}\right.$
$=\sum_{n} \sum_{c} I\left(z_{n}=c\right) \log \left(\pi_{c}^{\prime} p\left(x_{n} \mid \theta_{c}^{\prime}\right)\right)$
$=\sum_{n}^{n} \sum_{c}^{c} I\left(z_{n}=c\right) \log \pi_{c}^{\prime}+\sum_{n} I\left(z_{n}=c\right) \log p\left(x_{n} \mid \theta_{c}^{\prime}\right)$
$=\sum_{c}^{n} \sum_{n: I\left(z_{n}=c\right)} \log \pi_{c}^{\prime}+\sum_{c} \sum_{n: I\left(z_{n}=c\right)}^{n} \log p\left(x_{n} \mid \theta_{c}^{\prime}\right)$
$=\sum_{c}^{c} N_{c} \log \pi_{c}^{\prime}+\sum_{c} \sum_{n: I\left(z_{n}=c\right)}^{c} \log p\left(\boldsymbol{x}_{n} \mid \theta_{c}^{\prime}\right)$
$N_{c}=\sum_{n} I\left(z_{n}=c\right) \uparrow$

MLE FOR
GAUSSIAN

- Maximizeing

$$
l\left(\theta^{\prime} ; \mathcal{D}\right)=\sum_{c} N_{c} \log \pi_{c}^{\prime}+\sum_{c} \sum_{n: I\left(z_{n}=c\right)} \log p\left(x_{n} \mid \theta_{c}^{\prime}\right)
$$

- Boils down to maximizing

$$
\begin{aligned}
& \sum_{n: I\left(z_{n}=c\right)} \log p\left(\boldsymbol{x}_{n} \mid \theta_{c}^{\prime}\right) \\
& \text { that is } \sum_{n: I\left(z_{n}=c\right)} \log \frac{1}{\sqrt{2 \pi \sigma_{c}^{\prime 2}}} \exp \left(-\frac{1}{2 \sigma_{c}^{\prime 2}}\left(x_{n}-\mu_{c}\right)^{2}\right)
\end{aligned}
$$

MLE FOR GAUSSIAN
 $$
\begin{aligned} f\left(\sigma_{c}^{\prime}, \mu_{c}^{\prime}\right) & =\sum_{n: I\left(z_{n}=c\right)} \log \frac{1}{\sqrt{2 \pi \sigma_{c}^{\prime 2}}} \exp \left(-\frac{1}{2 \sigma_{c}^{\prime 2}}\left(x_{n}-\mu_{c}^{\prime}\right)^{2}\right) \\ & =\sum_{n: I\left(z_{n}=c\right)} \log \frac{1}{\sqrt{2 \pi \sigma_{c}^{\prime 2}}}-\sum_{n: I\left(z_{n}=c\right)} \frac{1}{2 \sigma_{c}^{\prime 2}}\left(x_{n}-\mu_{c}^{\prime}\right)^{2} \end{aligned}
$$

Derivation, $\frac{\partial f}{\partial \mu_{c}^{\prime}}=\sum_{n:\left(e_{n}=c\right)} \frac{2}{2 \sigma_{c}^{\prime 2}}\left(x_{n}-\mu_{c}^{\prime}\right)$
Solving, $\frac{\partial f}{\partial \mu_{c}^{\prime}}=0 \Rightarrow \sum_{n: I\left(m_{n}=0\right)} x_{n}=\sum_{n=1\left(e_{n}=0\right)} \mu_{c}^{\prime}=N_{c} \mu_{c}^{\prime}$ So, $\mu_{c}^{\prime}=\frac{\sum_{m i l\left(s_{n}=0\right.} N_{c} x_{n}}{N_{c}} \quad$ where $N_{c}=\sum_{n} I\left(z_{n}=c\right)$

ASSIGN POINT TO MEANS

\star One step O(NKD), can be improved

K-MEANS AS GMM

EM \& EXPECTED LOG LIKELIHOOD (Q-TERM)

* Fixed variance, only means must be estimated $\quad \theta_{c}=\left(\mu_{c}, \sigma^{2}\right)$
- Iteratively maximizing the expected log likelihood in practice always leads to a local maxima
Ł Idea: each point can belong to several means (clusters)
\star Use responsibilities to find means

$$
\begin{aligned}
& r_{n c}=p\left(z_{n}=c \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)=\frac{p\left(z_{n}=c \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}=c, \boldsymbol{\theta}\right)}{\sum_{c=1}^{C} p\left(z_{n}=c \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}=c, \boldsymbol{\theta}\right)} \\
& \boldsymbol{\mu}_{c}=\frac{1}{N_{c}} \sum_{n} r_{n c} \boldsymbol{x}_{n}, \quad \quad \text { where } N_{c}=\sum_{n} r_{n c}
\end{aligned}
$$

The expectation is over latent variables given data and current parameters

- We maximize the expression by choosing new parameters.

EM FOR GMM

LOG LIKELIHOOD

\star Problem with previous most similar approach (MLE by derivation)

$$
\begin{aligned}
& L\left(\boldsymbol{\theta}^{\prime}\right)=\prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}^{\prime}\right)=\prod_{n=1}^{N} \sum_{z_{n}} p\left(\boldsymbol{x}_{n}, z_{n} \mid \boldsymbol{\theta}^{\prime}\right) \\
& l\left(\boldsymbol{\theta}^{\prime}\right)=\sum_{n=1}^{N} \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}^{\prime}\right)=\sum_{n=1}^{N} \log \sum_{z_{n}} p\left(\boldsymbol{x}_{n}, z_{n} \mid \boldsymbol{\theta}^{\prime}\right)
\end{aligned}
$$

\star How to handle the sum? the log cannot be pushed inside.

* Idea: use z_{i} from

$$
\begin{aligned}
& \text { EXPECTED LOG } \\
& \text { LIKELIHOOD (Q-TERM) } \\
& E_{p\left(t_{n} \mid a_{n} \theta\right)}\left[l\left(\theta^{\prime} ; \mathcal{D}\right)\right]=E_{p\left(t_{n} \mid a_{n}, \theta\right)}\left[\log _{n} \prod_{n} p\left(x_{n}, z_{n} \mid \theta^{\prime}\right)\right] \\
& =\sum_{n} E\left[\log \prod_{c}\left(\pi_{c}^{\prime} p\left(\boldsymbol{x}_{n} \mid z_{n}=c, \theta^{\prime}\right)^{I\left(z_{n}=c\right)}\right]\right. \\
& =\sum^{n} \sum^{{ }^{c}} E\left[I\left(z_{n}=c\right) \log \left(\pi_{c}^{\prime} p\left(\boldsymbol{x}_{n} \mid \theta_{c}^{\prime}\right)\right]\right. \\
& =\sum_{n}^{n} \sum_{c}^{c} p\left(z_{n}=c \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log \left(\pi_{c}^{\prime} p\left(\boldsymbol{x}_{n} \mid \theta_{c}^{\prime}\right)\right) \\
& =\sum_{n}^{n} \sum_{c}^{c} r_{n c} \log \pi_{c}^{\prime}+\sum_{n} \sum_{c} r_{n c} \log p\left(x_{n} \mid \theta_{c}^{\prime}\right)
\end{aligned}
$$

where for a one dim Gaussian $\quad \theta_{c}=\left(\mu_{c}, \sigma_{c}^{2}\right)$

HOW TO FIND θ^{\prime} ?

\star We want $\quad \operatorname{argmax}_{\theta^{\prime}} E_{p\left(z_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)}\left[l\left(\theta^{\prime} ; \mathcal{D}\right)\right]$
\star The 2 sums $\sum_{c}\left(\sum_{n} r_{n c}\right) \log \pi_{c}^{\prime} \quad \& \quad \sum_{c} \sum_{n} r_{n c} \log p\left(\boldsymbol{x}_{n} \mid \theta_{c}^{\prime}\right)$ are independent
\star So, $\pi_{c}^{\prime}=\sum_{n} r_{n c} / N=r_{c} / N$

* In the second, different c indices are independent
* So, we want to maximize each

$$
\sum_{n} r_{n c} \log \frac{1}{\sqrt{2 \pi \sigma_{c}^{\prime 2}}} \exp \left(-\frac{1}{2 \sigma_{c}^{\prime 2}}\left(x_{n}-\mu_{c}\right)^{2}\right)
$$

VARIANCE

Let $\alpha_{c}^{\prime}=1 / \sigma_{c}^{\prime}$

$$
\begin{aligned}
f\left(\sigma_{c}^{\prime}, \mu_{c}^{\prime}\right) & =\sum_{n} r_{n c} \log \frac{1}{\sqrt{2 \pi \sigma_{c}^{\prime 2}}}-\sum_{n} r_{n c} \frac{1}{2 \sigma_{c}^{\prime 2}}\left(x_{n}-\mu_{c}^{\prime}\right)^{2} \\
& =\sum_{n} r_{n c} \log \frac{\alpha_{c}^{\prime}}{\sqrt{2 \pi}}-\sum_{n} r_{n c} \frac{\alpha_{c}^{\prime 2}}{2}\left(x_{n}-\mu_{c}^{\prime}\right)^{2}
\end{aligned}
$$

Derivation, $\frac{\partial f}{\partial \alpha_{c}^{\prime}}=\sum_{n} \frac{r_{n c}}{\alpha_{c}^{\prime}}-\sum_{n} r_{n c} \alpha_{c}^{\prime}\left(x_{n}-\mu_{c}^{\prime}\right)^{2}$
Solving, $\quad \frac{\partial f}{\partial \alpha_{c}^{\prime}}=0 \Rightarrow \frac{r_{c}}{\alpha_{c}^{\prime}}=\sum_{n} r_{n c} \alpha_{c}^{\prime 2}\left(x_{n}-\mu_{c}^{\prime}\right)^{2}$
SO, $\sigma_{c}^{\prime 2}=\frac{1}{\alpha_{c}^{\prime 2}}=\sum_{n} r_{n c}\left(x_{n}-\mu_{c}^{\prime}\right)^{2} / r_{c}$

THEORETICAL BASIS FOR EM

\star 11.4.7 stared but read it.

* Three prerequisites
- Jensen's inequality - do not read
- Entropy - 2.8.1, read

Entropy and KL are interesting and included, but not necessary for the slides

- Kullback-Leibler (KL) divergence - 2.8.2, read
$c=a+s(b-a)=(1-s) a+s b$
JENSEN'S INEQUALITY
$c^{\prime}=(1-s) \log a+s \log b$

Then
$c^{\prime \prime}=\log c=\log [(1-s) a+s b]$ $\geq(1-s) \log a+s \log b=c^{\prime}$

In general,
$\log \sum_{x} p(x) f(x) \geq \sum_{x} p(x) \log f(x)$
$\log E[f(x)] \geq E[\log f(x)]$
a, b, c can be values that f takes on

Expected complete: notation

$\log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}^{\prime}\right)$

$$
=\log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)
$$

$=\log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)}$
$=\log E_{\boldsymbol{z}_{n}}\left(\left.\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)} \right\rvert\, \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$
$\geq^{\text {Jensen }} E_{\boldsymbol{z}_{n}}\left(\left.\log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)} \right\rvert\, \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$
$=\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)}$
$=\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)-\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$
$=Q_{n}\left(\boldsymbol{\theta}^{\prime} ; \boldsymbol{\theta}\right)-R_{n}(\boldsymbol{\theta} ; \boldsymbol{\theta})$

Expected complete: fewer steps

$\log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}^{\prime}\right)$
$=\log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)$
$=\log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)}$
$\geq \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)}$
$=\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)-\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$
$=Q_{n}\left(\boldsymbol{\theta}^{\prime} ; \boldsymbol{\theta}\right)-R_{n}(\boldsymbol{\theta} ; \boldsymbol{\theta})$

Expected complete: of all data

$\log p\left(\mathcal{D} \mid \boldsymbol{\theta}^{\prime}\right)$
$=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)$
$=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)}$
$\geq \sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)}$
$=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{\prime}\right)-\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}\right.$
$=\underbrace{\sum_{n} Q_{n}\left(\boldsymbol{\theta}^{\prime} ; \boldsymbol{\theta}\right)}_{Q\left(\boldsymbol{\theta}^{\prime} ; \boldsymbol{\theta}\right)}-\underbrace{\sum_{n} R_{n}(\boldsymbol{\theta} ; \boldsymbol{\theta})}_{R_{n}(\boldsymbol{\theta} ; \boldsymbol{\theta})}$

$$
\square-2+\square
$$

Expected complete: for Θ

$\log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right)$
$=\left[\log p\left(x_{n} \mid \boldsymbol{\theta}\right)\right] \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$
$=\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right)$
$=\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log \frac{p\left(\boldsymbol{z}_{n}, \boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right)}{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)}$
$=\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{z}_{n}, \boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right)-\sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right) \log p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$
$=Q_{n}(\boldsymbol{\theta}, \boldsymbol{\theta})-R_{n}(\boldsymbol{\theta}, \boldsymbol{\theta})$

RELATIONS BETWEEN LOGLIKELIHOODS AND Q-TERMS

Theorem: for $\quad \boldsymbol{\theta}^{\prime}=\operatorname{argmax}_{\boldsymbol{\theta}^{\prime \prime}} Q\left(\boldsymbol{\theta}^{\prime \prime}, \boldsymbol{\theta}\right)$

$$
\log p\left(\mathcal{D} \mid \boldsymbol{\theta}^{\prime}\right) \geq Q\left(\boldsymbol{\theta}^{\prime}, \boldsymbol{\theta}\right)-R(\boldsymbol{\theta}, \boldsymbol{\theta}) \geq Q(\boldsymbol{\theta}, \boldsymbol{\theta})-R(\boldsymbol{\theta}, \boldsymbol{\theta})=\log p(\mathcal{D} \mid \boldsymbol{\theta})
$$

So by maximizing Q-term (through ESS) we monotonically increase the likelihood.

The Q-term may not increase in every step!
\star Starting points
\star Number of starting points

* Sieving starting points
\star The competition
- The first iterations of EM show huge improvement in the likelihood. These are then followed by many iterations that slowly increase the likelihood. Conjugate gradient shows the opposite behaviour.

ENTROPY

\star Definition
 $$
H(q)=-\sum_{x} q(x) \log q(x)
$$

\star q a fair coin

$$
\begin{aligned}
H(q) & =-\frac{1}{2} \log \frac{1}{2}-\frac{1}{2} \log \frac{1}{2} \\
& =-1(-1)=1
\end{aligned}
$$

*q uniform on [K]

$$
H(q)=-\sum \frac{1}{K} \log \frac{1}{K}=\log K
$$

(q on $[K], \mathrm{q}(1)=1$
$H(q)=-1 \log 1-\sum_{k=2}^{K} 0 \log 0$
$\quad=0$

ENTROPY VS EXPECTATION

value	1	2	3	$\mu=1 / 2+1 / 2+3 / 4=7 / 4$
value	1	9	27	$\mu=1 / 2+9 / 4+27 / 4=38 / 4$
probability	$1 / 2$	$1 / 4$	$1 / 4$	$H=-(\log 1 / 2) / 2-2(\log 1 / 4) / 4=3 / 2$

\star Entropy depends on the distribution only

HMMS (LAYERED OR NOT)

$\mathrm{KL}(q \| p)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}$

* Theorem (you do not have to read the proof)
$\mathrm{KL}(q \| p) \geq 0$ with equality iff $p=q$

