
LOREM 

I P S U M

MACHINE 
LEARNING 2- 
EM 
ALGORITHM
LECTURE 2

Royal Institute of 
Technology

EXTENDED STUDENT 
EXAMPLE

HLHL

HL

BL

B - better 
H - higher 
L - less

B L

D-SEPARATION
★ A path is d-separated by O if it 
has 

• a chain X → Y → Z where Y ∈ O 

• a fork X ← Y → Z where Y ∈ O 

• a v-structure X → Y ← Z       
where (Y ⋃ desc(Y)) ⋂ O = ∅ 
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D-SEPARATION 
SETS AND CI OF 

DAGS
★ A is d-separated from B given O if 
every undirected path between A and 
B is d-separated by O 

★ In a DAG G,  

A is d-separated from B given O

A B

G
O

xA �G xB |xO



EQUIVALENCE OF 
INDEPENDENCE DEFINITIONS

★ Global (G): d-separation 

★ Local (L):  

★ Ordered (O):  

where pred is according to a topological order  

★ Factorized (F): can be family-factorized  

★ Theorem:  G ⇔ L ⇔ O ⇔ F

MARKOV BLANKET

★ A minimal set B s/t Xt  is independent from XV\(B⋃t) given XB is a 
Markov blanket  

★ For t, pa(t) ⋃ c(t) ⋃ pa(c(t)) is a Markov blanket – i.e., parents, 
children, and co-parents (necessary due to v-structures)
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LATENT = HIDDEN 

★ Can reduce #parameters 

★ Can represent common causes 
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LEARNING PARAMETERS 
COMPLETE DATA

★ “...Bayesian view, the parameters are unknown variables and should 
also be inferred” 

★ Learning from complete data  

★ Likelihood 

where Dv is values of v together with its parents and θv is v’s CPD
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★ Each                       , i.e., here each  

can be maximized independently 

★ So,  MLE is 

★ where 

MLE FOR CAT CPDS

c
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I(xnv = k, xn,pa(v) = c)
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SUFFICIENT STATISTICS

EXTENDED STUDENT 
EXAMPLE

GIVEN DATA AND NON-
OPTIMAL PARAMETERS

Fair Biased/loaded

p

1-p 1-q

q
★ We observe the sequence of dice outcomes of visited vertices

MIXTURE MODELS AND THE 
EXPECTATION MAXIMIZATION (EM) 
ALGORITHM

Used for MLE of 
★ mixture models 
★ parameters of DGMs, HMMs 
★ DAG in DGMs (the structural EM by Nir Friedman)

X1

Z hidden

XV

EM iteratively improves parameters 

E-step: compute expected sufficient        
statistics (ESS) w.r.t. 

M-step: find optimal θ´ using the ESS 



Chapter 3

EXPECTATION-
MAXIMIZATION

THEORY

3.1 Introduction

Learning networks are commonly categorized in terms of supervised and unsuper-
vised networks. In unsupervised learning, the training set consists of input training
patterns only. In contrast, in supervised learning networks, the training data consist
of many pairs of input/output patterns. Therefore, the learning process can benefit
greatly from the teacher’s assistance. In fact, the amount of adjustment of the up-
dating coe±cients often depends on the diÆerence between the desired teacher value
and the actual response. As demonstrated in Chapter 5, many supervised learning
models have been found to be promising for biometric authentication; their imple-
mentation often hinges on an eÆective data-clustering scheme, which is perhaps the
most critical component in unsupervised learning methods. This chapter addresses
a data-clustering algorithm, called the expectation-maximization (EM) algorithm,
when complete or partial information of observed data is made available.

3.1.1 K-Means and VQ algorithms

An eÆective data-clustering algorithm is known as K-means [85], which is very sim-
ilar to another clustering scheme known as the vector quantization (VQ) algorithm
[118]. Both methods classify data patterns based on the nearest-neighbor criterion.

Verbally, the problem is to cluster a given data set X = {xt; t = 1, . . . , T} into
K groups, each represented by its centroid denoted by µ(j), j = 1, . . . ,K. The task
is (1) to determine the K centroids {µ(1), µ(2), . . . , µ(K)} and (2) to assign each
pattern xt to one of the centroids. The nearest-neighbor rule assigns a pattern x to
the class associated with its nearest centroid, say µ(i).

Mathematically speaking, one denotes the centroid associated with xt as µt,
where µt 2 {µ(1), µ(2), . . . , µ(K)}. Then the objective of the K-means algorithm is
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GAUSSIAN – MVN
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 GAUSSIAN 
MIXTURE 

MODELS (GMM)

Z hidden � Cat(�)D = (x1, . . . ,xN )

xn = (xn1, . . . , xnD)

X � N (µc,�c)

p(X|Z = c) = pc(X) = N (X|µc,�c)



 1-DIM  
GAUSSIAN 

MIXTURE MODELS

Z hidden � Cat(�)D = (x1, . . . ,xN )

p(X|Z = c) = pc(X) = N (X|µc,�c)

X � N (µc,�c)

EXAMPLE
zn is red with probability 1/2, green with probability 3/10, blue with probability 1/5

xn is generated from the Gaussian indicated by zn

We get x1,…,xN

zn = blue

xn 

GMM

and

and

So,

p(xn, zn) = p(zn)p(xn|zn)

COMPLETE LOG LIKELIHOOD 
(KNOWING ALL Z) 

Nc =
�

n

I(zn = c)

All paremeters



MLE FOR 
GAUSSIAN

• Maximizeing 

• Boils down to maximizing 
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MLE FOR GAUSSIAN
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K-MEANS
★ Data vectors D={x1,…,xN} 

★ Randomly selected classes z1,…,zN 

★ Iteratively do 

★ One step O(NKD), can be improved

µc =
1

Nc

�

n:zn=c

xn, where Nc = |{n : zn = c}|

zn = argminc||xn � µc||2

ASSIGN POINT TO 
MEANS 
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K-MEANS AS GMM
★ Fixed variance, only means must be estimated 

★ Idea: each point can belong to several means (clusters) 

★ Use responsibilities to find means

rnc = p(zn = c|xn,�) =
p(zn = c|�)p(xn|zn = c,�)

�C
c=1 p(zn = c|�)p(xn|zn = c,�)
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�

n
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�

n

rnc

�c = (µc,�
2)

EM & EXPECTED LOG 
LIKELIHOOD (Q-TERM)

• Iteratively maximizing the expected log likelihood 
in practice always leads to a local maxima 

• The expectation is over latent variables given 
data and current parameters 

• We maximize the expression by choosing new 
parameters.

EM FOR GMM
★ Problem with previous most similar approach (MLE by derivation) 

★ How to handle the sum? the log cannot be pushed inside. 

★ Idea: use zi from 
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LOG LIKELIHOOD



where for a one dim Gaussian �c = (µc,�
2
c )

EXPECTED LOG 
LIKELIHOOD (Q-TERM)
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★ We want  

★ The 2 sums                                          &   

are independent  

★ So,                                      

★ In the second, different c indices are independent 

★ So, we want to maximize each

HOW TO FIND ϴ ´?
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WEIGHTED GAUSS - MEAN
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VARIANCE

So,
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THEORETICAL BASIS 
FOR EM  
★ 11.4.7 stared but read it.  

★ Three prerequisites  

• Jensen’s inequality – do not read 

• Entropy – 2.8.1, read 

• Kullback-Leibler (KL) divergence – 2.8.2, read

Or make sure to understand these slides 
or read the EM theory text

Entropy and KL are interesting and  
included, but not necessary for the slides

JENSEN’S 
INEQUALITY

In general,

s � [0, 1]
c = a + s(b� a) = (1� s)a + sb

c� = (1� s) log a + s log b

c�� = log c = log[(1� s)a + sb]
� (1� s) log a + s log b = c�

log
�

x

p(x)f(x) �
�

x

p(x) log f(x)

i.e.,
log E[f(x)] � E[log f(x)]

Let

Let

Then

a,b,c can be values that f takes on

log p(x|��)

= log
�

z

p(x,z|��)

= log
�

z

p(z|x,�)
p(x,z|��)
p(z|x,�)

= log Ez

�
p(x,z|��)
p(z|x,�)

| x,�

�

�Jensen Ez

�
log

p(x,z|��)
p(z|x,�)

| x,�

�

=
�

z

p(z|x,�) log
p(x,z|��)
p(z|x,�)

=
�

z

p(z|x,�) log p(x,z|��)�
�

z

p(z|x,�) log p(z|x,�)

= Q(��;�)�R(�;�)

Expected complete log-likelihood – Q Expected complete: notation
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Expected complete: fewer steps
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RELATIONS BETWEEN  LOG-
LIKELIHOODS AND Q-TERMS 

Theorem:     for  

So by maximizing Q-term (through ESS) we monotonically 
increase the likelihood. 

The Q-term may not increase in every step!

�� = argmax���Q(���,�)

log p(D|��) � Q(��,�)�R(�,�) � Q(�,�)�R(�,�) = log p(D|�)



PRACTICAL ISSUES

★ Starting points 

★ Number of starting points  

★ Sieving starting points 

★ The competition 

• The first iterations of EM show huge improvement in the likelihood. These are then  
followed by many iterations that slowly increase the likelihood. Conjugate gradient shows 
the opposite behaviour.

THE END

MVN MLE

FOR MVN��
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Z hidden � Cat(�)

X � N (µc,�c)



ENTROPY
★ Definition 

★ q a fair coin 

★q uniform on [K]

0 0.5 10
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H
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)

★q on [K], q(1)=1
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q(x) log q(x)

H(q) = �1
2

log
1
2
� 1

2
log

1
2

= �1(�1) = 1

H(q) = �
� 1

K
log

1
K

= log K

H(q) = �1 log 1�
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0 log 0
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ENTROPY VS 
EXPECTATION  

★ Entropy depends on the distribution only

value 1 2 3 μ= 1/2 +1/2+3/4 = 7/4

value 1 9 27 μ= 1/2 +9/4+27/4 = 38/4

probability 1/2 1/4 1/4  H= -(log 1/2)/2-2(log 1/4)/4=3/2

KL-divergence 
★  Definition  

★ Alternative 

★  Theorem (you do not have to read the proof)  

KL(q||p) =
K�

k=1

pk log
pk

qk

KL(q||p) =
�

x

p(x) log
p(x)
q(x)

KL(q||p) � 0 with equality i� p = q

HMMS (LAYERED OR 
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GIVEN DATA AND NON-
OPTIMAL PARAMETERS

Fair Biased/loaded

p

1-p 1-q

q
★ We observe the sequence of dice outcomes of visited vertices

………………………………………………………………………………….………………………………………………………………………………….………………………………………………………………………………….


