Ex. 8.4 7-4-2-1 code

Codeconverter 7-4-2-1-code to BCD-code.

When encoding the digits $0 \ldots 9$ sometimes in the past a code having weights $7-4-2-1$ instead of the binary code weights 8-4-2-1 was used.

In the cases where a digit's code word can be expressed in various ways the code word that contains the least number of ones is selected
(A variation of the $7-$ $4-2-1$ code is used today to store the bar code)

Ex. 8.4 7-4-2-1 code

Codeconverter 7-4-2-1-code to BCD-code.

When encoding the digits $0 \ldots 9$ sometimes in the past a code having weights $7-4-2-1$ instead of the binary code weights 8-4-2-1 was used.

In the cases where a digit's code word can be expressed in various ways the code word that contains the least number of ones is selected
(A variation of the 7-$4-2-1$ code is used today to store the bar code)
(0)
(1)
(2)
(4)

Ex. 8.4 7-4-2-1 code

Codeconverter 7-4-2-1-code to BCD-code.

When encoding the digits 0 ... 9

	7	4	2	1		8	4	2	1
	x_{7}	x_{4}	x_{2}	x_{1}		y_{8}	y_{4}	y_{2}	y_{1}
	0	0	0	0	0	0	0	0	0
(0)	0	0	0	1	1	0	0	0	1
(1)	0	0	1	0	2	0	0	1	0
(2)	0	0	1	1	3	0	0	1	1
(3)	0	0	1	1					
(4)	0	1	0	0	4	0	1	0	0
(5)	0	1	0	1	5	0	1	0	1
(6)	0	1	1	0	6	0	1	1	0
(8)	1	0	0	0	7	0	1	1	1
(9)	1	0	0	1	8	1	0	0	0
(10)	1	0	1	0	9	1	0	0	1

	7	4	2	1		8	4	2
		1						
	x_{7}	x_{4}	x_{2}	x_{1}		y_{8}	y_{4}	y_{2}

8.4

William Sandqvist william@kth.se

	7	4	2	1		8	4	2	1
	x_{7}	x_{4}	x_{2}	x_{1}		y_{8}	y_{4}	y_{2}	y_{1}
	0	0	0	0	0	0	0	0	0
(0)	0	0	0	1	1	0	0	0	1
(2)	0	0	1	0	2	0	0	1	0
(3)	0	0	1	1	3	0	0	1	1
(4)	0	1	0	0	4	0	1	0	0
(5)	0	1	0	1	5	0	1	0	1
(6)	0	1	1	0	6	0	1	1	0
(8)	1	0	0	0	7	0	1	1	1
(9)	1	0	0	1	8	1	0	0	0
(10)	1	0	1	0	9	1	0	0	1

8.4

	y_{8}			y_{4}					y_{2}						y_{1}			
$x_{7} \overbrace{0}^{x_{2} x_{1}}$													10	${ }^{x_{2}}$		01	11	10
00	0	0	0	${ }^{4}$	0	0	0	0	${ }_{4}{ }^{4}$	${ }^{0} 0$	0	${ }^{3} 1$	1	${ }_{0}$	0	1	1	20
${ }^{4} 0$	0	-	0	${ }_{1}{ }_{1}$	1	1	-	1		0	0	-	1		0	1	-	0
$\underline{12}$	13	15	14		12	13	15	14		12	13	15	14		$\underline{12}$	13	15	14
${ }^{8}$	1	11	1	0	1	0	11	0		1	0	11	0	1	1	0	11	1

William Sandqvist william@kth.se

| | 7 | 4 | 2 | 1 | | 8 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1

8.4

	y_{8}			y_{4}					y_{2}							y_{1}		
$x_{7}{ }^{x_{2} x_{1}}$												11		${ }^{x}$		01	11	10
0	0	0	0	0	0	0	${ }^{3}$	0	40	0	0	1	1	0	0	1	1	0
${ }^{4}$	0	-	0	1	4	${ }^{5} 1$	-	1		${ }^{4} 0$	${ }^{5} 0$	-	${ }^{6} 1$		${ }^{4}$	1	-	${ }^{6} 0$
$\underline{12}$	-	-	-		$\underline{12}$	13	$\underline{15}$	14		$\underline{12}$	13	15	14		12	13	15	14
0	1	-	1	0	1	0	11	0		1	0	11	0		1	0	11	1

$$
y_{8}=x_{7} x_{2}+x_{7} x_{1}
$$

	7 x_{7} 0	4 x_{4}	x_{2}				y_{4}	y_{2}	y
(0)	0	0	0)	0	0	0	0	0
(1)	0	0	0			0	0	0	
(2)	0	0	1			0	0		0
(3)	0	0	1		3	0	0		
(4)	0	1	0		4	0	1	0	
(5)	0	1	0		5	0	1	0	
(6)	0	1	1		6	0	1	1	0
(8)	1	0	0		7	0		1	
(9)	1	0	0		8	1	0	0	
(10)	1	0	1	0	9		0	0	

8.4

| | 7 | 4 | 2 | 1 | | 8 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1

8.4

	y_{8}		
$x_{7} \stackrel{x_{2} x_{1}}{0}$	01	11	10
${ }_{0}^{0} 0$	0	0	0
0	0	-	0
12	-	-	-
${ }_{0}^{1} 8^{8} 0$	1	11	1

$$
y_{8}=x_{7} x_{2}+x_{7} x_{1} \quad y_{4}=x_{4}+x_{7} \overline{x_{2}} \overline{x_{1}} \quad y_{2}=\overline{x_{7}} x_{2}+x_{7} \overline{x_{2}} \overline{x_{1}}
$$

$$
y_{1}=\overline{x_{7}} x_{1}+x_{7} x_{2}+x_{7} \overline{x_{2}} \overline{x_{1}}
$$

William Sandqvist william@kth.se

	7	4	2	1		8	4	2	1
	x_{7}	x_{4}	x_{2}	x_{1}		y_{8}	y_{4}	y_{2}	y_{1}
(0)	0	0	0	0	0	0	0	0	0
(1)	0	0	0	1	1	0	0	0	1
)	0	0	1	0	2	0	-		0
(3)	0	0	1	1	3	0	0	1	1
(4)	0	1	0	0	4	0	1	0	0
(5)	0	1	0	1	5	0	1	0	1
(6)	0	1	1	0	6	0	1	1	0
(8)	1	0	0	0	7	0	1	1	1
(9)	1	0	0	1	8	1	0	0	0
(10)	1	0	1	0	9	1	0	0	1

8.4

Common groupings can provide for shared gates!

$x_{x_{7}}^{x_{2}{ }^{2}{ }_{-1}^{0} 00}$	y_{4}		
			10
${ }_{0} 0^{0} 0$	10	0	0
1	1	-	1
2-	13	15	4
1 0 0	0	-	0

$$
y_{8}=x_{7} x_{2}+x_{7} x_{1} \quad y_{4}=x_{4}+x_{7} \overline{x_{2}} \overline{x_{1}} \quad y_{2}=\overline{x_{7}} x_{2}+x_{7} \overline{x_{2}} \overline{x_{1}}
$$

$$
y_{1}=\overline{x_{7}} x_{1}+x_{7} x_{2}+x_{7} \overline{x_{2}} \overline{x_{1}}
$$

8.4

PLA circuits containing programmable AND and OR gates.
(This turned out to be unnecessarily complex, so the common chips became PAL circuits with only the AND network programmable).
The gates have many programmable input connections. The many inputs are usually drawn in a "simplified" way.

Programmerbar logik

förenklat ritsătt för 8 ingångars grind

$$
\begin{aligned}
& y_{8}=\overline{x_{7} x_{2}}+x_{7} x_{1} \\
& y_{4}=x_{4}+x_{7} \overline{x_{2}} \overline{x_{1}} \\
& y_{2}=\overline{x_{7}} x_{2}+\overline{x_{7} \overline{x_{2}} \overline{x_{1}}} \\
& y_{1}=\overline{x_{7}} x_{1}+\overline{x_{7} x_{2}}+\overline{x_{7}} \overline{x_{2}} \overline{x_{1}}
\end{aligned} \quad \text { 8.4. } \quad \text { Shared-gates! }
$$

William Sandqvist william@kth.se

$$
\begin{aligned}
& y_{8}=x_{7} x_{2}+x_{7} x_{1} \\
& y_{4}=x_{4}+x_{7} x_{2} x_{1} \\
& 8.4
\end{aligned}
$$

William Sandqvist william@kth.se

$$
\begin{aligned}
& y_{8}=x_{7} x_{2}+x_{7} x_{1} \\
& y_{4}=x_{4}+x_{7} x_{2} x_{1} \\
& 8.4
\end{aligned}
$$

William Sandqvist william@kth.se

Real numbers

Decimalcomma "," and Binarypoint "."

$$
10,3125_{10}=1010.0101_{2}
$$

$\mathrm{Bin} \rightarrow$ Dec

$$
\begin{array}{llllllll}
1 & 0 & 1 & 0 & =0 & 1 & 0 & 1 \\
2^{3} & 2^{2} & 2^{1} & 2^{0}=2^{-1} & 2^{-2} & 2^{-3} & 2^{-4} \\
8 & 4 & 2 & 1 & 0,5 & 0,25 & 0,125 & 0,0625 \\
8+0 & +2+0 & +0+0,25+0+0,0625=10,3125
\end{array}
$$

Ex. 1.2b

$110100.010_{2}=$

Ex. 1.2b

$110100.010_{2}=$

$=\left(2^{5}+2^{4}+2^{2}+2^{-2}=32+16+4+0.25\right)=$
$=52,25_{10}$

Calculation with complement

Subtraction with an adding machine = counting with the complement
$63-17=46$
The number -17 is entered with red digits 17 and gets 82 . When the - key is pressed 1 is added. The result is: $63+82+1=146$. If only two digits are shown: 46

2-complement

The binary number 3, 0011, gets negative -3 if one inverts the digits and adds one, 1101.

Register arithmetic

- Computer registers are "rings"
\square A four bit register could contains $2^{4}=16$ numbers.

Either 8 positive ($+0 \ldots+7$) and 8 negative ($-1 \ldots-8$) "signed integers", or 16 (0...F) "unsigned integers".

If the register is full +1 makes the
 register to the "turn around".

Register width

- 4 bit is called a Nibble. The register contains $2^{4}=16$ numbers. 0...15, -8...+7
- 8 bit is called a Byte. The register contains $2^{8}=256$ numbers 0...255, -128...+127
- 16 bit is a Word. $2^{16}=65536$ numbers. 0...65535, -32768...+32767

Today, general sizes are now 32 bits (Double Word) and 64 bits (Quad Word)..

Ex. 1.8

Write the following signed numbers with two's complement notation, $x=\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right)$.
a) -23
b) $-1=$
c) $+38=$
d) $-64=$

Ex. 1.8

Write the following signed numbers with two's complement notation, $x=\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right)$.
a) $-23=\left(+23_{10}=0010111_{2} \rightarrow-23_{10}=1101000_{2}+1_{2}\right)=1101001_{2}$
$=105_{10}$
b) $-1=$
c) $+38=$
d) $-64=$

Ex. 1.8

Write the following signed numbers with two's complement notation, $x=\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right)$.
a) $-23=\left(+23_{10}=0010111_{2} \rightarrow-23_{10}=1101000_{2}+1_{2}\right)=1101001_{2}$
$=105_{10}$
b) $-1=\left(+1_{10}=0000001_{2} \rightarrow-1_{10}=1111110_{2}+1_{2}\right)=1111111_{2}=127_{10}$
c) $+38=$
d) $-64=$

Ex. 1.8

Write the following signed numbers with two's complement notation, $x=\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right)$.
a) $-23=\left(+23_{10}=0010111_{2} \rightarrow-23_{10}=1101000_{2}+1_{2}\right)=1101001_{2}$
$=105_{10}$
b) $-1=\left(+1_{10}=0000001_{2} \rightarrow-1_{10}=1111110_{2}+1_{2}\right)=1111111_{2}=127_{10}$
c) $+38=\left(32_{10}+4_{10}+2_{10}\right)=0100110_{2}=38_{10}$
d) $-64=$

Ex. 1.8

Write the following signed numbers with two's complement notation, $x=\left(x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right)$.
a) $-23=\left(+23_{10}=0010111_{2} \rightarrow-23_{10}=1101000_{2}+1_{2}\right)=1101001_{2}$
$=105_{10}$
b) $-1=\left(+1_{10}=0000001_{2} \rightarrow-1_{10}=1111110_{2}+1_{2}\right)=1111111_{2}=127_{10}$
c) $+38=\left(32_{10}+4_{10}+2_{10}\right)=0100110_{2}=38_{10}$
d) $-64=\left(+64_{10}=1000000_{2}\right.$ är ett för stort positivt tal! men fungerar ändå $-64_{10} \rightarrow 0111111_{2}+1_{2}$) $=1000000_{2}=64_{10}$

Ex. 2.1

a) $110+010$ b) $1110+1001$
 c) $110011.01+111.1$ d) $0.1101+0.1110$

a) $\frac{1}{1} \frac{1}{1} 10$
b) $\stackrel{1}{1}_{1} 1110$
010
+0000
10101
+10111
c) $\begin{array}{rrrrlll}11 & 1 & \frac{1}{1} & \frac{1}{1} & & & \\ + & & 1 & 1 & 1.0 & 1 \\ +1111 & 1 & 1 & 0.11\end{array}$
d) $\begin{array}{r}\frac{1}{0} \frac{1}{1} 1101 \\ +0.11111 \\ \hline 1.11011\end{array}$

William Sandqvist william@kth.se

Full adder

Full adder

A logic circuit that makes a binary addition on any bit position with two binary numbers is called a full adder.

4-bit adder

An addition circuit for binary fourbitnumbers thus consists of four fulladdercircuits.

Subtraction?

Subtracting the binary numbers can be done vith the two-complement. Negative numbers are represented as the true complement, which means that all bits are inverted and a one is added. The adder is then used also for subtraction.

The inversion of the bits could be done with XOR-gates, and a one could then be added to the number by letting $\mathrm{C}_{\mathrm{IN}}=1$.

Figure 5.13. Adder/subtractor unit.

2-complement "fast"

- In order to easily produce 2's complement of a binary number, you can use the following procedure:
- Start from right
- Copy all bits from all zeroes to the first 1.
- Invert all the rest of the bits

Example: 2-complement of 110 is 010 Invert

Copy

Ex. 2.2

Add or subtract (add with the corresponding negative number) the numbers below. The numbers are representated as binary 2-complement 4-bit numbers (nibble).
a) $1+2$
b) 4-1
c) 7-8
d) $-3-5$

The negative number that are used in the examples:

$$
\begin{aligned}
& -1_{10}=\left(+1_{10}=0001_{2} \rightarrow-1_{10}=1110_{2}+1_{2}\right)=1111_{2} \\
& -8_{10}=\left(+8_{10}=1000_{2} \rightarrow-8_{10}=0111_{2}+1_{2}\right)=1000_{2} \\
& -3_{10}=\left(+3_{10}=0011_{2} \rightarrow-3_{10}=1100_{2}+1_{2}\right)=1101_{2} \\
& -5_{10}=\left(+5_{10}=0101_{2} \rightarrow-5_{10}=1010_{2}+1_{2}\right)=1011_{2}
\end{aligned}
$$

2.2

$$
\begin{array}{ll}
-1_{10}=1111_{2} & -3_{10}=1101_{2} \\
-8_{10}=1000_{2} & -5_{10}=1011_{2}
\end{array}
$$

a) $\begin{array}{lllll} & \left.\left\lvert\, \begin{array}{llllll}0 & 0 & 0 & 1 & =1 \\ 0 & 0 & 1 & 0 & =2 \\ 0 & 0 & 1 & 1 & =3\end{array}\right.\right)\end{array}$
b) $\begin{array}{rllll}\underline{1} \left\lvert\, \begin{array}{lllll}1 & & & & \\ 0 & 1 & 0 & 0 & =4 \\ + & 1 & 1 & 1 & =-1 \\ \times & 0 & 0 & 1 & 1\end{array}\right. & =3\end{array}$
$7-8=-1$
c)

William Sandqvist william@kth.se

Ex. 2.3 a,b

Multiplicate by hand the following pairs of unsigned binary numbers.
a) 110.010
b) $1110 \cdot 1001$

$$
\begin{aligned}
& 110 \cdot 010=(6 \cdot 2=12)=1100 \quad 1110 \cdot 1001=1111110 \\
& \text { a) } \\
& \begin{array}{rlllll}
& 1 & 1 & 0 & =6 \\
\times & 0 & 1 & 0 & =2 \\
\hline & 0 & 0 & 0 & \\
& 1 & 1 & 0 & \\
0 & 0 & 0 & & & \\
\hline 0 & 1 & 1 & 0 & 0 & =12
\end{array} \\
& \text { b) } \\
& \left.\begin{array}{llllllll}
& & 1 & 1 & 1 & 0 & =14 \\
& & 1 & 0 & 0 & 1 & =9 \\
& 1 & 1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Ex. 2.3 c,d

Multiplicate by hand the following pairs of unsigned binary numbers.
110011.01•111.1= $=110000000.011$
c)

11001101
$\times \quad 111[$
11001101
11001101
11001101
11001101
110000000011

$=110000000.011$
$(51,25 \cdot 7,5=384,376)$
$0.1101 \cdot 0.1110=$
d) $=0.10110110$ $\begin{array}{r}1101 \\ \times \quad 1110 \\ \hline 0000\end{array}$ 1101
1101
$\frac{+1101}{10110110}$
$=0.10110110$
$(0,8125 \cdot 0,875=0.7109375)$

Fixpointmultiplication is an "integermultiplication", the binarypoint is inserted in the result.

Ex. 2.4

Divide by hand the following pairs of unsigned binary numbers.
Methood the Stairs:
$110 / 010=(6 / 2=3)=011$
a)

William Sandqvist william@kth.se

Ex. 2.4

Divide by hand the following pairs of unsigned binary numbers. Methood the Stairs:
$110 / 010=(6 / 2=3)=011$
$1110 / 1001=(14 / 9)=1.10 \ldots$

b)

If integer division the answer will be 1 .

Ex 2.4

Divide by hand the following pairs of unsigned binary numbers. Methood Short division:

$$
\begin{aligned}
& \text { a) } 110 / 010=(6 / 2=3)=011 \\
& \frac{1}{10}=\quad \frac{110}{10}=1 \quad \frac{110}{10}=11
\end{aligned}
$$

Ex 2.4

Divide by hand the following pairs of unsigned binary numbers. Methood Short division:

$$
\begin{gathered}
\text { b) } 1110 / 1001=(14 / 9=1,55 \ldots)=1.10 \ldots \\
\frac{1110}{1001}=\quad \frac{1110}{1001}=1
\end{gathered} \frac{1010}{1001}=1 . \quad \frac{1110 .}{1001}=1.1 .
$$

If integer division the answer will be 1 .

William Sandqvist william@kth.se

IEEE - 32 bit float

The exponent is written exess-127. It is then possible to sort float by size with ordinary integer arithmetic!

Dec \rightarrow IEEE-754

William Sandqvist william@kth.se

2.5 Float format

IEEE 32 bit float
s eeeeeeee fffffffffffffffffffffff
31302322
0

2.5 Float format

IEEE 32 bit float
s eeeeeeee fffffffffffffffffffffff
$3130 \quad 2322$
0
What is:
$4 \quad 0 \quad \mathrm{C} \quad 8 \quad 0 \quad 0 \quad 0 \quad 0$
01000000110010000000000000000000

2.5 Float format

IEEE 32 bit float
s eeeeeeee fffffffffffffffffffffff
$3130 \quad 2322$
0
What is:
$4 \quad 0 \quad \mathrm{C} \quad 8 \quad 0 \quad 0 \quad 0 \quad 0$

01000000110010000000000000000000
01000000110010000000000000000000

+ 129-127 $1+0.5+0.0625$

2.5 Float format

IEEE 32 bit float
s eeeeeeee fffffffffffffffffffffff
$3130 \quad 2322$
What is:
$4 \quad 0 \quad \mathrm{C} \quad 8 \quad 0 \quad 0 \quad 0 \quad 0$
01000000110010000000000000000000
01000000110010000000000000000000

+ 129-127 $1+0.5+0.0625$
$+1,5625 \cdot 2^{2}=+6,25$

http://babbage.cs.qc.cuny.edu/IEEE-754/32bit.html

William Sandqvist william@kth.se

(a) Single precision

(b) Double precision

Figure 5.34. IEEE Standard floating-point formats.

Overflow

When using signed numbers the sum of two positive numbers cold be incorrectly negative (eg. " +4 " $+"+5$ " $="-7$ "), in the same way the sum of two negative numbers could incorrectly be positive (eg. "-6" + "-7" = "+3").
This is called Overflow.

Logic to detect overflow

For 4-bit-numbers
Overflow if c_{3} and c_{4} are different Otherwise it's not overflow

For n-bit-numbers

$$
\text { Overflow }=c_{n-1} \oplus c_{n}
$$

Figure 5.42. A comparator circuit.

BV ex 5.10, < > =

Flags, Comparator. Two four-bit signed numbers, $X=x_{3} x_{2} x_{1} x_{0}$ and $Y=$ $y_{3} y_{2} y_{1} y_{0}$, can be compared by using a subtractor circuit, which performs the operation $X-Y$. The three Flag-outputs denote the following:

- $Z=1$ if the result is 0 ; otherwise $Z=0$
- $N=1$ if the result is negative; otherwise $N=0$
- $V=1$ if aritmetic overflow occurs; otherwise $V=0$

Show how Z, N, and V can be used to determine the cases $X=Y, X<Y, X>Y$.

William Sandqvist william@kth.se

BV ex 5.10

$X=Y$?

$$
\begin{aligned}
& X-Y \\
& V=c_{4} \oplus c_{3} \quad N=s_{3} \\
& Z=\overline{\left(s_{3}+s_{2}+s_{1}+s_{0}\right)}
\end{aligned}
$$

$X=Y$?

William Sandqvist william@kth.se

BV ex 5.10

$$
X=Y ?
$$

$$
\begin{aligned}
& X-Y \\
& V=c_{4} \oplus c_{3} \quad N=s_{3} \\
& Z=\overline{\left(s_{3}+s_{2}+s_{1}+s_{0}\right)}
\end{aligned}
$$

$$
X=Y ?
$$

$$
X=Y \quad \Rightarrow \quad Z=1
$$

William Sandqvist william@kth.se

BV ex 5.10

$X<Y$?

$$
\begin{aligned}
& X-Y \\
& V=c_{4} \oplus c_{3} \quad N=s_{3} \\
& Z=\overline{\left(s_{3}+s_{2}+s_{1}+s_{0}\right)}
\end{aligned}
$$

Some test numbers:

\[

\]

BV ex 5.10

$X<Y$?

$$
\begin{aligned}
& X-Y \\
& V=c_{4} \oplus c_{3} \quad N=s_{3} \\
& Z=\overline{\left(s_{3}+s_{2}+s_{1}+s_{0}\right)}
\end{aligned}
$$

If X and Y has the same sign $X-Y$ will always be correct and the flag $V=0$. X, Y positive eg. 3-4 $N=1$. X, Y negative eg. $-4-(-3) N=1$.
If X neg and Y pos and $X-Y$ has the correct sign, $V=0$ and $N=1$.
Tex. -3-4.
If X neg and Y but $X-Y$ gets the wrong sign, $V=1$.
Then $N=0$. Ex. $-5-4$.

- Summary: when $X<Y$ the flags V and N is always different. This could be indicated by a XOR gate.

BV ex 5.10

$X<Y$?

$$
\begin{aligned}
& X-Y \\
& V=c_{4} \oplus c_{3} \quad N=s_{3} \\
& Z=\overline{\left(s_{3}+s_{2}+s_{1}+s_{0}\right)}
\end{aligned}
$$

If X and Y has the same sign $X-Y$ will always be correct and the flag $V=0$. X, Y positive eg. 3-4 $N=1$. X, Y negative eg. $-4-(-3) N=1$.
If X neg and Y pos and $X-Y$ has the correct sign, $V=0$ and $N=1$.
Tex. -3-4.
If X neg and Y but $X-Y$ gets the wrong sign, $V=1$.
Then $N=0$. Ex. $-5-4$.

- Summary: when $X<Y$ the flags V and N is always different. This could be indicated by a XOR gate.

$$
X<Y \quad \Rightarrow \quad N \oplus V
$$

William Sandqvist william@kth.se

BV ex 5.10

$$
\begin{aligned}
& X-Y \\
& V=c_{4} \oplus c_{3} \quad N=s_{3} \\
& Z=\overline{\left(s_{3}+s_{2}+s_{1}+s_{0}\right)}
\end{aligned}
$$

$$
\begin{array}{lll}
X=Y & \Rightarrow & Z=1 \\
X<Y & \Rightarrow & N \oplus V \\
X \leq Y & \Rightarrow & \\
X>Y & \Rightarrow & \\
X \geq Y & \Rightarrow &
\end{array}
$$

BV ex 5.10

$$
\begin{aligned}
X=Y & \Rightarrow Z=1 \\
X<Y & \Rightarrow N \oplus V \\
X \leq Y & \Rightarrow Z+N \oplus V \\
X>Y & \Rightarrow \overline{Z+N \oplus V}=\bar{Z} \cdot(\overline{N \oplus V}) \\
X \geq Y & \Rightarrow \overline{N \oplus V}
\end{aligned}
$$

BV ex 5.10

$$
\begin{aligned}
X & -Y \\
V & =c_{4} \oplus c_{3} \quad N=s_{3} \\
Z & =\overline{\left(s_{3}+s_{2}+s_{1}+s_{0}\right)}
\end{aligned}
$$

$$
\left.\begin{array}{lll}
X=Y & \Rightarrow Z=1 & \text { This is how a computer } \\
X<Y & \Rightarrow N \oplus V & \text { can perform the most } \\
\text { common comparisions }
\end{array}\right] \begin{array}{lll}
X \leq Y & \Rightarrow Z+N \oplus V & \cdots \\
X>Y & \Rightarrow \overline{Z+N \oplus V}=\bar{Z} \cdot(\overline{N \oplus V}) \\
X \geq Y & \Rightarrow \overline{N \oplus V} &
\end{array}
$$

William Sandqvist william@kth.se

Ex 8.11 Multiply with 6 ?

William Sandqvist william@kth.se

Ex 8.11 Multiply with 6 !

William Sandqvist william@kth.se

Ex 8.11 Multiply with 6!

William Sandqvist william@kth.se

Ex 8.11 Multiply with 6!

William Sandqvist william@kth.se

Ex 8.11 Multiply with 6 !

William Sandqvist william@kth.se

William Sandqvist william@kth.se

