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Ex. 8.4   7-4-2-1 code 
Codeconverter 7-4-2-1-code to 
BCD-code. 

When encoding the digits 0 ... 9 
sometimes in the past a code having 
weights 7-4-2-1 instead of the binary 
code weights 8-4-2-1 was used.  

In the cases where a digit's code 
word can be expressed in various 
ways the code word that contains the 
least number of ones is selected 

(A variation of the 7-
4-2-1 code is used 
today to store the 
bar code) 
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8.4 

17278 xxxxy +=
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8.4 

17278 xxxxy += 12744 xxxxy +=
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8.4 

17278 xxxxy += 12744 xxxxy += 127272 xxxxxy +=

12727171 xxxxxxxy ++=
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8.4 

17278 xxxxy += 12744 xxxxy += 127272 xxxxxy +=

12727171 xxxxxxxy ++=

Common groupings can provide for 
shared gates! 
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8.4 
PLA circuits containing programmable AND and OR gates. 
(This turned out to be unnecessarily complex, so the 
common chips became PAL circuits with only the AND 
network programmable). 

The gates have many programmable input connections. The many inputs are 
usually drawn in a "simplified" way. 
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8.4 
Shared-gates! 
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8.4 
Shared-gates! 



Real numbers 
Decimalcomma ”,”  and Binarypoint ”.”  

10,312510 = 1010.01012 
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Ex. 1.2b 

110100.0102 = 
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Ex. 1.2b 

110100.0102 = 

= ( 25+24+22  +  2-2  = 32+16+4  +  0.25 ) = 

= 52,2510 



Calculation with complement 
Subtraction with an adding machine = counting with the 
complement 

63 - 17 = 46 

The number -17 is entered with red digits 
17 and gets 82. When the – key is pressed 
1 is added. The result is: 63+82+1 = 146. If 
only two digits are shown:  46 



2-complement 

The binary number 3, 0011, gets negative -3 if one inverts 
the digits and adds one, 1101. 



Register arithmetic 

Either  8 positive (+0…+7) and 8 
negative (-1…-8)  ”signed integers”, 
or 16 (0…F) ”unsigned integers”. 

• Computer registers are ”rings” 

If the register is full +1 makes the 
register to the "turn around". 

A four bit register could 
contains 24 = 16 numbers. 



Register width 

• 4 bit is called a Nibble. The register contains 24 = 16 
numbers. 0…15,  -8…+7 

• 8 bit is called a Byte. The register contains 28 = 256 
numbers 0…255, -128…+127 

• 16 bit is a Word. 216 = 65536 numbers. 
0…65535, -32768…+32767 

Today, general sizes are now 32 bits (Double Word) and 64 
bits (Quad Word).. 

William Sandqvist william@kth.se 
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Ex. 1.8 

b)  -1  = 

Write the following signed numbers with two's complement notation, 
x = (x6, x5, x4, x3, x2, x1, x0). 

a)   -23 

d)  -64 = 

c) +38  = 
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b)  -1  = 

a)   -23 =  (+2310  =  00101112  →  -2310 =  11010002 + 12 ) = 11010012  
= 10510 

d)  -64 =   

c) +38  = 

Ex. 1.8 
Write the following signed numbers with two's complement notation, 
x = (x6, x5, x4, x3, x2, x1, x0). 
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b)  -1  =  (+110 = 00000012  →  -110 =  11111102 + 12) = 11111112  = 12710 

a)   -23 =  (+2310  =  00101112  →  -2310 =  11010002 + 12 ) = 11010012  
= 10510 

d)  -64 = 

c) +38  = 

Ex. 1.8 
Write the following signed numbers with two's complement notation, 
x = (x6, x5, x4, x3, x2, x1, x0). 
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b)  -1  =  (+110 = 00000012  →  -110 =  11111102 + 12) = 11111112  = 12710 

a)   -23 =  (+2310  =  00101112  →  -2310 =  11010002 + 12 ) = 11010012  
= 10510 

d)  -64 = 

c) +38  =  (3210+410+210) = 01001102  =  3810   

Ex. 1.8 
Write the following signed numbers with two's complement notation, 
x = (x6, x5, x4, x3, x2, x1, x0). 
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b)  -1  =  (+110 = 00000012  →  -110 =  11111102 + 12) = 11111112  = 12710 

a)   -23 =  (+2310  =  00101112  →  -2310 =  11010002 + 12 ) = 11010012  
= 10510 

d)  -64 = (+6410  = 10000002  är ett för stort positivt tal! 
    men fungerar ändå  -6410 → 01111112  + 12)  = 10000002 =  6410  

c) +38  =  (3210+410+210) = 01001102  =  3810   

Ex. 1.8 
Write the following signed numbers with two's complement notation, 
x = (x6, x5, x4, x3, x2, x1, x0). 
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Ex. 2.1 
a)   110 + 010   b)  1110 + 1001 

c)  11 0011.01 + 111.1   d)  0.1101 + 0.1110 



Full adder 



Full adder 

A logic circuit that makes a binary addition on any bit position with 
two binary numbers is called a full adder. 



4-bit adder 
An addition circuit for binary fourbitnumbers thus consists of four 
fulladdercircuits. 



Subtraction? 
Subtracting the binary numbers can be 
done vith the two-complement.  
Negative numbers are represented as the 
true complement, which means that all bits 
are inverted and a one is added. 
The adder is then used also for subtraction. 

The inversion of the bits could be done with 
XOR-gates, and a one could then be added to the 
number by letting CIN = 1. 



Figure 5.13.   Adder/subtractor unit. 

s  0  s  1  s  n  1  –  

x  0  x  1  x  n  1  –  

c  n  n  -bit adder 

y  0  y  1  y  n  1  –  

c  0  

Add  ⁄  Sub  
control  



2-complement ”fast” 
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• In order to easily produce 2's complement of a binary 
number, you can use the following procedure: 
– Start from right 
– Copy all bits from all zeroes to the first 1. 
– Invert all the rest of the bits 

 
Example: 2-complement of      110 is 010 

Copy 

Invert 
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Ex. 2.2 
Add or subtract (add with the corresponding negative number)  the 
numbers below. The numbers are representated as binary 2-complement 
4-bit numbers (nibble). 

a)   1 + 2   b)  4 – 1   c)  7 – 8   d)  -3 – 5  

The negative number that are used in the examples: 

-110 = (+110 = 00012  →   -110 = 11102  +12 ) = 11112 

-810 = (+810 = 10002  →   -810 = 01112  +12 ) = 10002 

-310 = (+310 = 00112  →   -310 = 11002  +12 ) = 11012 

-510 = (+510 = 01012  →   -510 = 10102  +12 ) = 10112 
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2.2 
-110 = 11112 

-810 = 10002 

-310 =  11012 

-510 =  10112 
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Ex. 2.3 a,b 
Multiplicate by hand the following pairs of unsigned binary numbers. 

a)  110⋅010   b)  1110⋅1001 
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Ex. 2.3 c,d 

(51,25⋅7,5 =384,376) (0,8125⋅0,875 =0.7109375) 

=110000000.011 =0.10110110 

Fixpointmultiplication is an ”integermultiplication”, the binarypoint is 
inserted in the result. 

Multiplicate by hand the following pairs of unsigned binary numbers. 
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Ex. 2.4 
Divide by hand the following pairs of unsigned binary numbers. 

Methood the Stairs: 
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Ex. 2.4 

If integer division the answer will be 1. 

Divide by hand the following pairs of unsigned binary numbers. 

Methood the Stairs: 
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Ex 2.4 
Divide by hand the following pairs of unsigned binary numbers. 

Methood Short division: 

a)  110/010=(6/2=3)=011 

110
10

=

1
110 1
10

=

1
110 11
10

=
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Ex 2.4 

b)  1110/1001=(14/9=1,55…)=1.10… 

1110
1001

=

101
1110 1
1001

=

10 1 0
1110. 1.
1001

=

1
1110. 1.1

1001
=

. . . 

Divide by hand the following pairs of unsigned binary numbers. 

Methood Short division: 

If integer division the answer will be 1. 



IEEE – 32 bit float 

Dec → IEEE-754 

The exponent is written exess-127. It is then possible to 
sort float by size with ordinary integer arithmetic! 
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http://babbage.cs.qc.edu/IEEE-754/Decimal.html
http://babbage.cs.qc.edu/IEEE-754/Decimal.html
http://babbage.cs.qc.edu/IEEE-754/Decimal.html


2.5 Float format 

IEEE 32 bit float 

s  eeeeeeee fffffffffffffffffffffff 
31 30    23 22                    0 
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2.5 Float format 

IEEE 32 bit float 

s  eeeeeeee fffffffffffffffffffffff 
31 30    23 22                    0 

   4   0   C   8   0   0   0   0  
01000000110010000000000000000000  

What is: 
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2.5 Float format 

IEEE 32 bit float 

s  eeeeeeee fffffffffffffffffffffff 
31 30    23 22                    0 

   4   0   C   8   0   0   0   0  
01000000110010000000000000000000  

What is: 

0 10000001 10010000000000000000000 

+  129-127    1 + 0.5+0.0625  
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2.5 Float format 

IEEE 32 bit float 

s  eeeeeeee fffffffffffffffffffffff 
31 30    23 22                    0 

   4   0   C   8   0   0   0   0  
01000000110010000000000000000000  

What is: 

+1,5625⋅22  =  +6,25 

0 10000001 10010000000000000000000 

+  129-127    1 + 0.5+0.0625  

William Sandqvist william@kth.se 



http://babbage.cs.qc.cuny.edu/IEEE-754/32bit.html 
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http://babbage.cs.qc.cuny.edu/IEEE-754/32bit.html


Figure 5.34.   IEEE Standard floating-point formats. 

Sign 

32 bits  

23 bits of mantissa  
excess-127 
exponent 

8-bit  

52 bits of mantissa  11-bit excess-1023 
exponent 

64 bits  

Sign 

S  M  

S  M  

(a) Single precision 

(b) Double precision 

E  

+  

E  

0 denotes  
–  1 denotes  
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Overflow 

When using signed numbers the sum of 
two positive numbers cold be incorrectly 
negative (eg. ”+4” + ”+5” = ”-7”), in the 
same way the sum of two negative 
numbers could incorrectly be positive  
(eg. ”-6” + ”-7” =  ”+3”). 

This is called Overflow. 



Logic to detect overflow 
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For 4-bit-numbers 
Overflow if c3 and c4 are different 
Otherwise it’s not overflow 

 

Overflow =  c3c 4 + c 3c4 = c3 ⊕ c4

 

Overflow =  cn −1 ⊕ cn

For n-bit-numbers 

XOR detects 
”not equal” 



Figure 5.42.   A comparator circuit. 
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BV ex  5.10, < > = 
Flags, Comparator. Two four-bit signed numbers, X = x3x2x1x0 and Y =  
y3y2y1y0, can be compared by using a subtractor circuit, which performs the 
operation X – Y. The three Flag-outputs denote the following: 

Show how Z, N, and V 
can be used to 
determine the cases 
 X = Y,  X < Y,  X >Y. 

Subtractor circuit 

• Z = 1 if the result is 0; otherwise Z = 0  
• N = 1 if the result is negative; otherwise N = 0 
• V = 1 if aritmetic overflow occurs; otherwise V = 0 
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BV ex  5.10 

X = Y  ? 

)( 0123

334

ssssZ

sNccV
YX

+++=

=⊕=
−

X = Y  ? 
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BV ex  5.10 

X = Y  ? 

)( 0123

334

ssssZ

sNccV
YX

+++=

=⊕=
−

1=⇒= ZYX

X = Y  ? 
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BV ex  5.10 

X < Y  ? 
Some test numbers: 

)( 0123

334

ssssZ

sNccV
YX

+++=

=⊕=
−

3 4 3 4 1 0 1
4 3 4 3 1 0 1
3 4 3 4 7 0 1
5 4 5 4 7 1 0

X Y X Y V N< −
− = −

− − − − − = −
− − − = −
− − − = +



William Sandqvist william@kth.se 

BV ex  5.10 

X < Y  ? 
If X and Y has the same sign X - Y will always be correct and the flag  V = 0.  X, 
Y positive eg. 3 – 4  N = 1.  X, Y negative eg. -4 – (-3)  N = 1. 

If X neg and Y pos and X – Y has the correct sign, V = 0 and N = 1. 
Tex.  -3 – 4. 

If X neg and Y but X – Y gets the wrong sign, V = 1. 
Then N = 0.  Ex. -5 – 4 . 

• Summary: when  X<Y the flags V and N is always different. This could be 
indicated by a XOR gate. 

)( 0123

334

ssssZ

sNccV
YX

+++=

=⊕=
−



William Sandqvist william@kth.se 

BV ex  5.10 

)( 0123

334

ssssZ

sNccV
YX

+++=

=⊕=
−

VNYX ⊕⇒<

X < Y  ? 
If X and Y has the same sign X - Y will always be correct and the flag  V = 0.  X, 
Y positive eg. 3 – 4  N = 1.  X, Y negative eg. -4 – (-3)  N = 1. 

If X neg and Y pos and X – Y has the correct sign, V = 0 and N = 1. 
Tex.  -3 – 4. 

If X neg and Y but X – Y gets the wrong sign, V = 1. 
Then N = 0.  Ex. -5 – 4 . 

• Summary: when  X<Y the flags V and N is always different. This could be 
indicated by a XOR gate. 
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BV ex  5.10 

)( 0123

334

ssssZ

sNccV
YX

+++=

=⊕=
−

1X Y Z
X Y N V
X Y
X Y
X Y

= ⇒ =
< ⇒ ⊕
≤ ⇒
> ⇒
≥ ⇒
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BV ex  5.10 

)( 0123

334

ssssZ

sNccV
YX

+++=

=⊕=
−

VNYX

VNZVNZYX

VNZYX
VNYX

ZYX

⊕⇒≥

⊕⋅=⊕+⇒>

⊕+⇒≤
⊕⇒<
=⇒=

)(

1
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BV ex  5.10 

)( 0123

334

ssssZ

sNccV
YX

+++=

=⊕=
−

VNYX

VNZVNZYX

VNZYX
VNYX

ZYX

⊕⇒≥

⊕⋅=⊕+⇒>

⊕+⇒≤
⊕⇒<
=⇒=

)(

1 This is how a computer 
can perform the most 
common comparisions 
… 
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Ex 8.11 Multiply with 6 ? 



William Sandqvist  william@kth.se 

Ex 8.11 Multiply with 6 ! 

0
0

1x ⋅
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Ex 8.11 Multiply with 6 ! 

0
0

1x ⋅

0
2x ⋅
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Ex 8.11 Multiply with 6 ! 

0
0

1x ⋅

0
2x ⋅

0 2 ( 2 1)x x⋅ ⋅ + ⋅
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Ex 8.11 Multiply with 6 ! 

0
0

1x ⋅

0
2x ⋅

0

1111 15=

1011010 90=

15 6 90⋅ =

2 ( 2 1)x x⋅ ⋅ + ⋅
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