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What have you seen up till now?

• (In)-dependency structures
• Language of Graphical

Models
• Mixture Models
• Sequential models

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Whats the focus of this part of the course

My plan
• My view on Machine Learning
• Look at each part of a probabilistic model in detail

I how do they interact
I what do they provide

• Different models
I parametric
I non-parameteric
I hierarchical

• You should translate what you have seen in Jens part to this
• Really simple data: “as there is no free lunch lets avoid eating”

Ek KTH
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Whats the focus of this part of the course

Theme
“How I can incorporate my knowledge/belief with observations
such that when I see data it reduces my uncertainty according to
the evidence provided in the observations.”
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Whats the focus of this part of the course

Structure
• 4 Lectures
• 2 Practical sessions
• 1 Assignment

I Deadline December 3rd
I Review December 4th and 5th
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Assignment

• Three parts aligned with lectures
• Part 1 (Lecture 6 & 7)

I Task: probabilistic regression
I Aim: understand probabilistic objects

• Part 2 (Lecture 7 & 8)
I Task: probabilistic representation learning
I Aim: understand probabilistic methodology

• Part 3 (Self study)
I Task: probabilistic model selection
I Aim: show that you can extend your knowledge from 1 and 2

Ek KTH
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My view on Machine Learning

1
1URL
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My view on Machine Learning

An intelligence which at a given instant knew all the forces
acting in nature and the position of every object in the
universe

1
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My view on Machine Learning

An intelligence which at a given instant knew all the forces
acting in nature and the position of every object in the
universe - if endowed with a brain sufficiently vast to make all
necessary calculations - could describe with a single formula
the motions of the largest astronomical bodies and those of
the smallest atoms.
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My view on Machine Learning

An intelligence which at a given instant knew all the forces
acting in nature and the position of every object in the
universe - if endowed with a brain sufficiently vast to make all
necessary calculations - could describe with a single formula
the motions of the largest astronomical bodies and those of
the smallest atoms. To such an intelligence, nothing would
be uncertain; the future, like the past, would be an open
book.
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My view on Machine Learning

The theory of probabilities is at bottom nothing but common
sense reduced to calculus; it enables us to appreciate with
exactness that which accurate minds feel with a sort of
instinct for which of times they are unable to account.
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My view on Machine Learning

It is remarkable that a science which began with the
consideration of games of chance should have become the
most important object of human knowledge.

1
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Introduction

Regression

Kernel Methods
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Regression

• Two variates
I Input data xi ∈ Rq

I Output data yi ∈ RD

• Relationship: f : X→ Y

Ek KTH
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Regression

Uncertainty
• We are uncertain in our data
• This means we cannot trust

I our observations
I the mapping that we learn
I the predictions that we make under the mapping

• This part of the course is about making this principled!
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Outline
• Re-cap of Probability basics
• Re-cap Central Limit Theorem
• Probabilistic formulation
• Dual Formulation

Ek KTH
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Probability Basics2

Expected Value

E[x] = µ(x) =
∫

xp(x)dx (1)

• Shows the “center of gravity” of a distribution
• Sampled expected value (mean)

x =
1
N

N∑
i

xi (2)

2Murphy 2012, p. 2.2.7.
Ek KTH
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Probability Basics2

Variance

σ2(x) = var[x] = E[(x− E[x])2] (3)

• Shows the “spread” of a distribution
• Sample variance

σ2(x) =
1

N − 1

N∑
i

(xi − µ(xi))
2 (4)

2Murphy 2012, p. 2.2.7.
Ek KTH
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Probability Basics3

2

2Matplotlib3D, /Lecture1/probBasics.py
3Murphy 2012, p. 2.2.7.
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Probability Basics2

Covariance

σ(x,y) = E[(x− E[x])(y− E[y])] (5)
[σ(X,Y)]ij = σ(xi ,yj) = k(xi ,yj) (6)

• Shows how the “spread” of how to variables vary together
• Sample co-variance

σ(x,y) =
1

N − 1

N∑
i

(xi − µ(xi))(yi − µ(y)) (7)

2Murphy 2012, p. 2.2.7.
Ek KTH
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Linear Regression4

yi = Wxi (8)

Uncertainty
• Lets assume the relationship is linear
• Uncertainty in outputs yi

I Addative noise yi = Wxi + ε
I What form does the noise have ε ∝
I What do we know about the generating process?

4Murphy 2012, Ch 7.
Ek KTH
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Linear Regression4

Why always Gaussians?
• Central Limit Theorema

• The central limit theorem states that the distribution of the sum
(or average) of a large number of independent, identically
distributed variables will be approximately normal, regardless of
the underlying distribution.
aMurphy 2012, Sec. 2.6.3

4Murphy 2012, Ch 7.
Ek KTH
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Linear Regression5

4
4/Lecture1/centralLimit.py
5Murphy 2012, Ch 7.

Ek KTH
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Linear Regression5

URL

4
4/Lecture1/centralLimit.py
5Murphy 2012, Ch 7.
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Linear Regression4

p(W|Y,X) (10)

Uncertainty in Model
• Posterior

I conditional distribution
I after the relevant information has been taken into account

• What is relevant
I our belief
I the observations

4Murphy 2012, Ch 7.
Ek KTH
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Linear Regression4

p(W) (11)

Belief about model before seeing data
• Prior
• What do I know about the regression parameters
• Swear word of the day: “Empirical Bayes”

4Murphy 2012, Ch 7.
Ek KTH
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Linear Regression4

p(W) (12)

4Murphy 2012, Ch 7.
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Linear Regression4

p(W) (13)

Belief about model before seeing data
• Prior
• What do I know about the regression parameters

p(W) = N (0, σ2I) (14)

• Swear word of the day: “Empirical Bayes”

4Murphy 2012, Ch 7.
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Linear Regression4
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Linear Regression4

p(yi |W,xi) (16)

How well does my model predict the data
• Likelihood
• Think error function but also how different errors

p(yi |W,xi) = N (yi |Wxi , τ
2I) (17)

4Murphy 2012, Ch 7.
Ek KTH
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Linear Regression4

Structure
• Do the variables co-vary?
• Are there (in-)dependency structures that I can exploit?
• Remember Jens Lectures

p(Y|W,X) =
N∏
i

p(yi |W,xi) (18)

4Murphy 2012, Ch 7.
Ek KTH
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Linear Regression4

How do we put everything together?
• Want to reach the posterior

I distribution after all relevant information have been taken into
account

• Prediction should reflect my beliefs in the model and the
information in the observations

• We have a gigantic number of possible solutions that are
allowed by our data and belief

• How about a weighted combination?

4Murphy 2012, Ch 7.
Ek KTH
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Linear Regression4

p(W|D) = p(D|W)p(W)

p(D)
(19)

p(D) =
∫

p(D|W)p(W)dW (20)

Evidence
• The denominator shows where the model spreads it probability

mass over the data-space (evidence of the model)
• The denominator does not change with W

4Murphy 2012, Ch 7.
Ek KTH
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Linear Regression4

p(W|D) = p(D|W)p(W)

p(D)
(21)

p(D) =
∫

p(D|W)p(W)dW (22)

p(W|Y,X) ∝ p(Y|W,X)p(W) (23)

Evidence
• The denominator shows where the model spreads it probability

mass over the data-space (evidence of the model)
• The denominator does not change with W

4Murphy 2012, Ch 7.
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Linear Regression5

4

4Murphy 2012, p. 5.3.1
5Murphy 2012, Ch 7.
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Linear Regression cont.

Toolbox
1. Formulate prediction error by likelihood
2. Formulate belief of model in prior
3. Choose model based on evidence pM(D) (Assignment)

Ek KTH
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p(W)

6

6Murphy 2012, p. 7.6.1
Ek KTH
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Assignment
You should now be able to do the linear part of Task 2.1 and Task
2.2 of the assignment.

Ek KTH
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Toolbox
1. Formulate prediction error by likelihood
2. Formulate belief of model in prior
3. Marginalise irrelevant variables
4. Choose model based on evidence pM(D) (Assignment)

Ek KTH
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Marginalisation

p(W) =

∫
p(W|θ)p(θ)dθ (24)

• Average according to belief and how well the model fits the
observations

• “Pushes” belief through model

Ek KTH
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Marginalisation

Nature laughs at the difficulties of integration

Ek KTH
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Choosing Distributions

p(X|Y) = p(Y|X)p(X)
p(Y)

(26)

Conjugate Distributions
• The posterior and the prior are in the same family
• Relationship with all three terms

7

7Wikipedia

Ek KTH

DD2434 - Advanced Machine Learning

http://en.wikipedia.org/wiki/Conjugate_prior


Introduction Regression Kernel Methods References

Choosing Distributions

p(X|Y) = p(Y|X)p(X)
p(Y)

(27)

Conjugate Distributions
• The posterior and the prior are in the same family
• Relationship with all three terms

Carls intuition
“combining belief in parameters through model should not change
the family of the distribution over the parameters”

7
7Wikipedia

Ek KTH
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Choosing Distributions

p(X|Y) = p(Y|X)p(X)
p(Y)

(28)

Remainder of this part
• In this part of the course we will only look at Gaussians
• Gaussians are self-conjugate

I Gaussian likelihood + Gaussian prior⇒ Gaussian posterior

• On practical 4 I will show you approximate ways to compute an
integral

• Hedvig will look at Dirichlet priors where you will see other
combinations which are conjugate

Ek KTH
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Choosing Distributions

p(X|Y) = p(Y|X)p(X)
p(Y)

(30)

Remainder of this part
• In this part of the course we will only look at Gaussians
• Gaussians are self-conjugate

I Gaussian likelihood + Gaussian prior⇒ Gaussian posterior

• On practical 4 I will show you approximate ways to compute an
integral

• Hedvig will look at Dirichlet priors where you will see other
combinations which are conjugate
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Reflection
• That was ALL of Machine Learning
• Everything else is just details

I how to choose model
I what is the right prior
I how to integrate

• You will have to approximate and use heuristics but always
relate to this

• This is the beauty of being Bayesian

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Reflection
• That was ALL of Machine Learning
• Everything else is just details

I how to choose model
I what is the right prior
I how to integrate

• You will have to approximate and use heuristics but always
relate to this

• This is the beauty of being Bayesian

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Reflection
• That was ALL of Machine Learning
• Everything else is just details

I how to choose model
I what is the right prior
I how to integrate

• You will have to approximate and use heuristics but always
relate to this

• This is the beauty of being Bayesian

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Reflection
• That was ALL of Machine Learning
• Everything else is just details

I how to choose model
I what is the right prior
I how to integrate

• You will have to approximate and use heuristics but always
relate to this

• This is the beauty of being Bayesian

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Reflection
• That was ALL of Machine Learning
• Everything else is just details

I how to choose model
I what is the right prior
I how to integrate

• You will have to approximate and use heuristics but always
relate to this

• This is the beauty of being Bayesian

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Reflection
• That was ALL of Machine Learning
• Everything else is just details

I how to choose model
I what is the right prior
I how to integrate

• You will have to approximate and use heuristics but always
relate to this

• This is the beauty of being Bayesian

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Reflection
• That was ALL of Machine Learning
• Everything else is just details

I how to choose model
I what is the right prior
I how to integrate

• You will have to approximate and use heuristics but always
relate to this

• This is the beauty of being Bayesian

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Regression Kernel Methods References

Example: Image restoration7

←

7Lecture1/imageExample.py
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Example: Image restoration7

p(Y|X, θ) = N (WX, σ2I) (31)

yi =
1
3
(xr

i + xg
i + xb

i ) (32)

7Lecture1/imageExample.py
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Example: Image restoration7

←

p(Y|X, θ) = N (WX, σ2I) (33)

yi =
1
3
(xr

i + xg
i + xb

i ) (34)

p(X|Y, θ) ∝ p(Y|X, θ)p(X) (35)
7Lecture1/imageExample.py
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Dual Linear Regression8

p(W|Y,X) = p(Y|W,X)p(W)

p(Y)
(36)

p(Y|W,X) =
N∏
i

p(yi |W,X) =
N∏
i

N (yi |·, σ2I) (37)

p(W) = N (0, τ2I) (38)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

p(W|Y,X) = p(Y|W,X)p(W)

p(Y)
(39)

p(Y|W,X) =
N∏
i

p(yi |W,X) =
N∏
i

N (yi |·, σ2I) (40)

p(W) = N (0, τ2I) (41)
p(W|Y,X) ∝ p(Y|W,X)p(W) (42)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

• Lets look at a simple 1D problem

y ∈ R1×N (43)

x ∈ R1×N (44)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

p(w|y,X) ∝
N∏
i

1√
2πσ2

e−
1

2σ2 (w
Txi−yi )

T(wTxi−yi ) 1√
2πτ2

e−
1

2τ2 (w
Tw)

(45)

=
1√

2πσ2
e−

1
2σ2 (w

TX−y)T(wTX−y) 1√
2πτ2

e−
1

2τ2 (w
Tw) (46)

Objective
• Want to find the parameters that maximises the above
• Logarithm is monotonic
• Minimise negative logarithm of p(w|y,X)

8Murphy 2012, p. 14.4.3.
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e−
1
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Txi−yi )

T(wTxi−yi ) 1√
2πτ2

e−
1

2τ2 (w
Tw)

(47)

=
1√

2πσ2
e−

1
2σ2 (w

TX−y)T(wTX−y) 1√
2πτ2

e−
1

2τ2 (w
Tw) (48)

Objective
• Want to find the parameters that maximises the above
• Logarithm is monotonic
• Minimise negative logarithm of p(w|y,X)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

J(w) =
1
2
(wTX− y)T(wTX− y) +

λ

2
wTw (49)

Objective
• Want to find the parameters that maximises the above
• Logarithm is monotonic
• Minimise negative logarithm of p(w|y,X)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

J(w) =
1
2
(wTX− y)T(wTX− y) +

λ

2
wTw (50)

δ

δw
J(w) =

1
2

2XT(wTX− y) +
λ

2
2w (51)

Optimisation
• Lets make a point-estimate
• Pick w that minimises J(w)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

J(w) =
1
2
(wTX− y)T(wTX− y) +

λ

2
wTw (52)

δ

δw
J(w) =

1
2

2XT(wTX− y) +
λ

2
2w (53)

w = −1
λ

XT(wTX− y) = (54)

Optimisation
• Lets make a point-estimate
• Pick w that minimises J(w)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

J(w) =
1
2
(wTX− y)T(wTX− y) +

λ

2
wTw (55)

δ

δw
J(w) =

1
2

2XT(wTX− y) +
λ

2
2w (56)

w = −1
λ

XT(wTX− y) = XTa =
N∑
n

αnxn (57)

Optimisation
• Lets make a point-estimate
• Pick w that minimises J(w)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

J(w) =
1
2
(wTX− y)T(wTX− y) +

λ

2
wTw (58)

w = XTa (59)

Formulate Dual

J(a) =
1
2

aTXXTXXTa− aTXXTy +
1
2

yTy +
λ

2
aTXXTa (60)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

[K]ij = xT
i xj (61)

J(a) =
1
2

aTKKa− aKy +
1
2

yTy +
λ

2
aTKa (62)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

[K]ij = xT
i xj (63)

J(a) =
1
2

aTKKa− aKy +
1
2

yTy +
λ

2
aTKa (64)

αi = −
1
λ
(wTxi − yi) (65)

w =
N∑
i

αixi (66)

⇒ a = (K + λI)−1y (67)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

[K]ij = xT
i xj (68)

J(a) =
1
2

aTKKa− aKy +
1
2

yTy +
λ

2
aTKa (69)

a = (K + λI)−1y (70)

y(x∗) = wTx∗ = aTXx∗ = aTk(X,x∗) = (71)

= ((K + λI)−1y)Tk(X,x∗) = k(x∗,X)(K + λI)−1y (72)

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

Linear Regression

1. See data (xi , y)
N
i

2. Encode relationship in parameter W
3. Throw training away data
4. Make predictions using W

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

Linear Regression

1. See data (xi , y)
N
i

2. Encode relationship in parameter W
3. Throw training away data
4. Make predictions using W

Dual
• Do NOT throw away data
• Make predictions using relationship to training data
• Model complexity depends on data (i.e. it adapts)
• Non parametric regression

8Murphy 2012, p. 14.4.3.
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Dual Linear Regression8

Linear Regression

1. See data (xi , y)
N
i

2. Encode relationship in parameter W
3. Throw training away data
4. Make predictions using W

Dual
• Do NOT throw away data
• Make predictions using relationship to training data
• Model complexity depends on data (i.e. it adapts)
• Non parametric regression
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Kernels

• Dual linear regression allows us to write everything in terms of
inner products
I we do not need representation xi

• What if we map data prior to regression?

φ : xi → fi (73)

• In dual case we do not need to know φ(·) only φ(·)Tφ(·)

Ek KTH
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φ : xi → fi (74)
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Kernels

k(xi ,xj) = φ(xi)
Tφ(xj) = ||φ(xi)||||φ(xj)||cos(θ) (75)

Kernel Functions
• A function that describes an inner product
• Sub-class of functions

I think triangle in-equality

• If we have k(·, ·) we never have to know the mapping

Ek KTH
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Kernels

x ∈ R2 (76)

(xT
i xj)

2 = (xi1xj1 + xi2xj2)
2 = (77)

= x2
i1x2

j1 + 2xi1xj1xi2xj2 + x2
i2x2

j2 = (78)

= (x2
i1,
√

2xi1xi2, x2
i2)(x

2
j1,
√

2xj1xj2, x2
j2)

T = (79)

= φ(xi)
Tφ(xj) (80)

Ek KTH
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Kernels

x ∈ R2 (81)

(xT
i xj)

2 = (xi1xj1 + xi2xj2)
2 = (82)

= x2
i1x2

j1 + 2xi1xj1xi2xj2 + x2
i2x2

j2 = (83)

= (x2
i1,
√

2xi1xi2, x2
i2)(x

2
j1,
√

2xj1xj2, x2
j2)

T = (84)

= φ(xi)
Tφ(xj) (85)

So k(xi ,xj) = (xT
i xj)

2 is a kernel of the mapping
φ(x) = ((eT

1x)2,
√

2eT
1xeT

2x, (eT
2x)2)

9
9Murphy 2012, p. 14.2.3
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The benefits of Kernels

• Kernels allows for implicit feature mappings
I We do NOT need to know the feature space
I The space can have infinite dimensionality
I The mapping can be non-linear but the problem is still linear!
I Allows for putting weird things like, strings (DNA) in a vector space
I More next lecture, these things are very powerful
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Next Time

Lecture 2
• November 25th 8-10 E2
• Continue with Kernels

I relation to co-variance
• Non-parametric Regression

I Gaussian Processes

• Start Assignment
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Next Time

Practical Session 1
• November 21st, 15-17 in Q31
• My best friend the Gaussian

I Multiplication
I Marginalisation
I Recap: Matrix derivatives

• Things that you will need for
Assignment 1

Ek KTH
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e.o.f.
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