DD2434 - Advanced Machine Learning Regression

Carl Henrik Ek {chek}@csc.kth.se

Royal Institute of Technology

November 19, 2014

Kernel Methods

References

What have you seen up till now?

- (In)-dependency structures
- Language of Graphical Models
- Mixture Models
- Sequential models

PREVIOUSLY

References

Whats the focus of this part of the course

My plan

- My view on Machine Learning
- Look at each part of a probabilistic model in detail
 - how do they interact
 - what do they provide
- Different models
 - parametric
 - non-parameteric
 - hierarchical
- You should translate what you have seen in Jens part to this
 - Really simple data: "as there is no free lunch lets avoid eating"

Whats the focus of this part of the course

My plan

- My view on Machine Learning
- Look at each part of a probabilistic model in detail
 - how do they interact
 - what do they provide
- Different models
 - parametric
 - non-parameteric
 - hierarchical
- You should translate what you have seen in Jens part to this
- Really simple data: "as there is no free lunch lets avoid eating"

Whats the focus of this part of the course

Theme

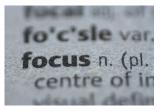
"How I can incorporate my knowledge/belief with observations such that when I see data it reduces my uncertainty according to the evidence provided in the observations."

References

Whats the focus of this part of the course

Structure

- 4 Lectures
- 2 Practical sessions
- 1 Assignment
 - Deadline December 3rd
 - Review December 4th and 5th



Three parts aligned with lectures

Part 1 (Lecture 6 & 7)

- Task: probabilistic regression
- Aim: understand probabilistic objects
- Part 2 (Lecture 7 & 8)
 - Task: probabilistic representation learning
 - Aim: understand probabilistic methodology
- Part 3 (Self study)
 - Task: probabilistic model selection
 - Aim: show that you can extend your knowledge from 1 and 2

Three parts aligned with lectures

- Part 1 (Lecture 6 & 7)
 - Task: probabilistic regression
 - Aim: understand probabilistic objects

Part 2 (Lecture 7 & 8)

- Task: probabilistic representation learning
- Aim: understand probabilistic methodology
- Part 3 (Self study)
 - Task: probabilistic model selection
 - Aim: show that you can extend your knowledge from 1 and 2

Three parts aligned with lectures

- Part 1 (Lecture 6 & 7)
 - Task: probabilistic regression
 - Aim: understand probabilistic objects
- Part 2 (Lecture 7 & 8)
 - Task: probabilistic representation learning
 - Aim: understand probabilistic methodology
- Part 3 (Self study)
 - Task: probabilistic model selection
 - Aim: show that you can extend your knowledge from 1 and 2

Three parts aligned with lectures

- Part 1 (Lecture 6 & 7)
 - Task: probabilistic regression
 - Aim: understand probabilistic objects
- Part 2 (Lecture 7 & 8)
 - Task: probabilistic representation learning
 - Aim: understand probabilistic methodology
- Part 3 (Self study)
 - Task: probabilistic model selection
 - Aim: show that you can extend your knowledge from 1 and 2

An intelligence which at a given instant knew all the forces acting in nature and the position of every object in the universe

¹URL

Ek

1

An intelligence which at a given instant knew all the forces acting in nature and the position of every object in the universe - if endowed with a brain sufficiently vast to make all necessary calculations

¹URL

1

An intelligence which at a given instant knew all the forces acting in nature and the position of every object in the universe - if endowed with a brain sufficiently vast to make all necessary calculations - could describe with a single formula the motions of the largest astronomical bodies and those of the smallest atoms.

¹URL

1

An intelligence which at a given instant knew all the forces acting in nature and the position of every object in the universe - if endowed with a brain sufficiently vast to make all necessary calculations - could describe with a single formula the motions of the largest astronomical bodies and those of the smallest atoms. To such an intelligence, nothing would be uncertain; the future, like the past, would be an open book.

¹URL

1

The theory of probabilities is at bottom nothing but common sense reduced to calculus; it enables us to appreciate with exactness that which accurate minds feel with a sort of instinct for which of times they are unable to account.

1

¹URL

It is remarkable that a science which began with the consideration of games of chance should have become the most important object of human knowledge.

1

¹URL

Introduction

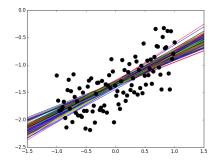
Regression

Kernel Methods

Kernel Methods

Regression

- Two variates
 - ▶ Input data $\mathbf{x}_i \in \mathbb{R}^q$
 - Output data $\mathbf{y}_i \in \mathbb{R}^D$
- Relationship: $f : \mathbf{X} \to \mathbf{Y}$



Regression

Uncertainty

- We are uncertain in our data
- This means we cannot trust
 - our observations
 - the mapping that we learn
 - the predictions that we make under the mapping
- This part of the course is about making this principled!

Regression

Uncertainty

- We are uncertain in our data
- This means we cannot trust
 - our observations
 - the mapping that we learn
 - the predictions that we make under the mapping

• This part of the course is about making this principled!

Outline

- Re-cap of Probability basics
- Re-cap Central Limit Theorem
- Probabilistic formulation
- Dual Formulation

Expected Value

$$\mathbb{E}[\mathbf{x}] = \mu(\mathbf{x}) = \int \mathbf{x} \rho(\mathbf{x}) d\mathbf{x}$$
(1)

- Shows the "center of gravity" of a distribution
- Sampled expected value (mean)

$$\overline{\mathbf{x}} = \frac{1}{N} \sum_{i}^{N} \mathbf{x}_{i}$$

²Murphy 2012, p. 2.2.7.

Ek

DD2434 - Advanced Machine Learning

(2)

Variance

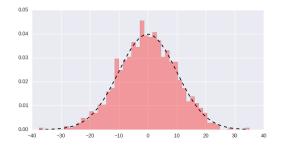
$$\sigma^{2}(\mathbf{x}) = \operatorname{var}[\mathbf{x}] = \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{2}]$$
(3)

- Shows the "spread" of a distribution
- Sample variance

$$\overline{\sigma^2(\mathbf{x})} = \frac{1}{N-1} \sum_{i}^{N} (\mathbf{x}_i - \mu(\mathbf{x}_i))^2$$
(4)

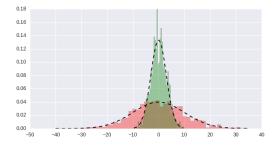
²Murphy 2012, p. 2.2.7.

Ek



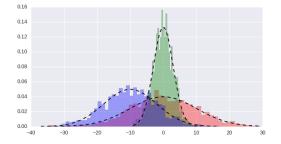
2

²Matplotlib3D,/Lecture1/probBasics.py ³Murphy 2012, p. 2.2.7.



2

²Matplotlib3D,/Lecture1/probBasics.py ³Murphy 2012, p. 2.2.7.



2

²Matplotlib3D,/Lecture1/probBasics.py ³Murphy 2012, p. 2.2.7.

Covariance

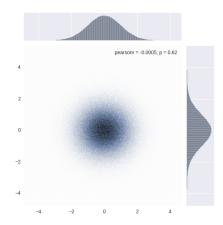
$$\sigma(\mathbf{x}, \mathbf{y}) = \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])]$$
(5)
$$[\sigma(\mathbf{X}, \mathbf{Y})]_{ij} = \sigma(\mathbf{x}_i, \mathbf{y}_j) = k(\mathbf{x}_i, \mathbf{y}_j)$$
(6)

- · Shows how the "spread" of how to variables vary together
- Sample co-variance

$$\overline{\sigma(\mathbf{x},\mathbf{y})} = \frac{1}{N-1} \sum_{i}^{N} (\mathbf{x}_{i} - \mu(\mathbf{x}_{i})) (\mathbf{y}_{i} - \mu(\mathbf{y}))$$
(7)

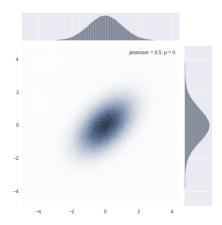
²Murphy 2012, p. 2.2.7.

Ek



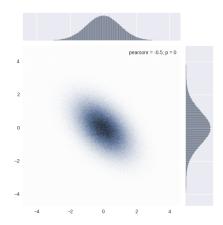
²Murphy 2012, p. 2.2.7.

Ek



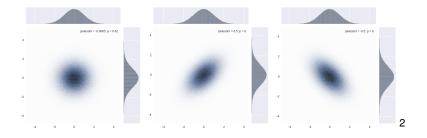
²Murphy 2012, p. 2.2.7.

Ek



²Murphy 2012, p. 2.2.7.

Ek



²Matplotlib3D, /Lecture1/probBasics.py ³Murphy 2012, p. 2.2.7.

Ek

Linear Regression⁴

$$\mathbf{y}_i = \mathbf{W}\mathbf{x}_i \tag{8}$$

Uncertainty

- Lets assume the relationship is linear
- Uncertainty in outputs y_i
 - Addative noise $\mathbf{y}_i = \mathbf{W}\mathbf{x}_i + \epsilon$
 - What form does the noise have $\epsilon \propto$
 - What do we know about the generating process?

⁴Murphy 2012, Ch 7.

Linear Regression⁴

$$\mathbf{y}_i = \mathbf{W}\mathbf{x}_i + \epsilon \tag{9}$$

Uncertainty

- Lets assume the relationship is linear
- Uncertainty in outputs y_i
 - Addative noise $\mathbf{y}_i = \mathbf{W}\mathbf{x}_i + \epsilon$
 - What form does the noise have $\epsilon \propto$
 - What do we know about the generating process?

⁴Murphy 2012, Ch 7.

Linear Regression⁴

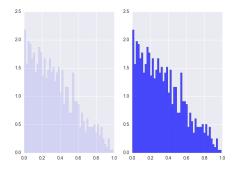
Why always Gaussians?

- Central Limit Theorem^a
- The central limit theorem states that the distribution of the sum (or average) of a large number of independent, identically distributed variables will be approximately normal, regardless of the underlying distribution.

^aMurphy 2012, Sec. 2.6.3

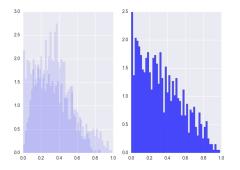
⁴Murphy 2012, Ch 7.

Linear Regression⁵



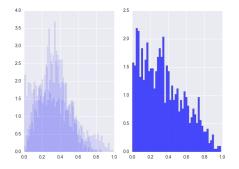
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



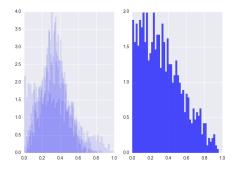
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



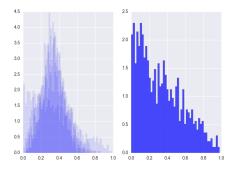
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



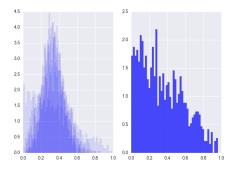
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



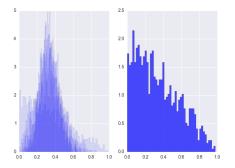
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



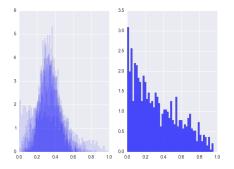
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



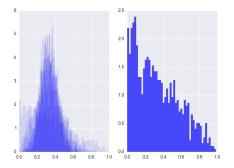
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



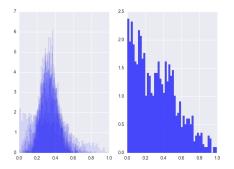
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



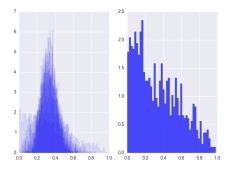
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



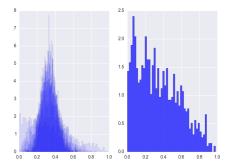
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



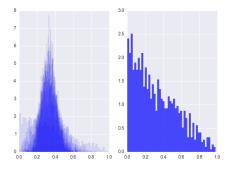
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



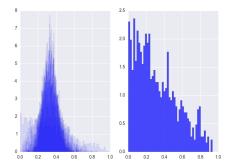
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



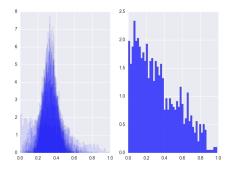
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



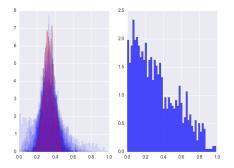
4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.



4

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.

Linear Regression⁵

URL

⁴/Lecture1/centralLimit.py ⁵Murphy 2012, Ch 7.

Ek

4

$\rho(\mathbf{W}|\mathbf{Y},\mathbf{X}) \tag{10}$

Uncertainty in Model

- Posterior
 - conditional distribution
 - after the relevant information has been taken into account
- What is relevant
 - our belief
 - the observations

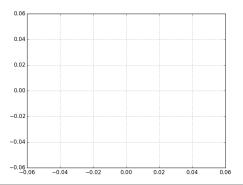
Belief about model before seeing data

- Prior
- What do I know about the regression parameters
- Swear word of the day: "Empirical Bayes"

⁴Murphy 2012, Ch 7.

 $p(\mathbf{W})$

(12)



$$p(\mathbf{W}) \tag{13}$$

Belief about model before seeing data

- Prior
- What do I know about the regression parameters

$$\boldsymbol{p}(\mathbf{W}) = \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \tag{14}$$

Swear word of the day: "Empirical Bayes"

$$p(\mathbf{W})$$

(15)

Belief about model before seeing data

- Prior
- What do I know about the regression parameters
- Swear word of the day: "Empirical Bayes"

⁴Murphy 2012, Ch 7.

$$\rho(\mathbf{y}_i|\mathbf{W},\mathbf{x}_i) \tag{16}$$

How well does my model predict the data

- Likelihood
- Think error function but also how different errors

$$\boldsymbol{p}(\mathbf{y}_i|\mathbf{W},\mathbf{x}_i) = \mathcal{N}(\mathbf{y}_i|\mathbf{W}\mathbf{x}_i,\tau^2\mathbf{I})$$
(17)

⁴Murphy 2012, Ch 7.

Ek

DD2434 - Advanced Machine Learning

Structure

- Do the variables co-vary?
- Are there (in-)dependency structures that I can exploit?
- Remember Jens Lectures

$$p(\mathbf{Y}|\mathbf{W},\mathbf{X}) = \prod_{i}^{N} p(\mathbf{y}_{i}|\mathbf{W},\mathbf{x}_{i})$$
(18)

⁴Murphy 2012, Ch 7.

Ek

DD2434 - Advanced Machine Learning

How do we put everything together?

• Want to reach the posterior

- distribution after all relevant information have been taken into account
- Prediction should reflect my beliefs in the model **and** the information in the observations
- We have a gigantic number of possible solutions that are allowed by our data and belief
- How about a weighted combination?

⁴Murphy 2012, Ch 7.

How do we put everything together?

- Want to reach the posterior
 - distribution after all relevant information have been taken into account
- Prediction should reflect my beliefs in the model **and** the information in the observations
- We have a gigantic number of possible solutions that are allowed by our data and belief
- How about a weighted combination?

How do we put everything together?

- Want to reach the posterior
 - distribution after all relevant information have been taken into account
- Prediction should reflect my beliefs in the model **and** the information in the observations
- We have a gigantic number of possible solutions that are allowed by our data and belief
- How about a weighted combination?

How do we put everything together?

- Want to reach the posterior
 - distribution after all relevant information have been taken into account
- Prediction should reflect my beliefs in the model **and** the information in the observations
- We have a gigantic number of possible solutions that are allowed by our data and belief
- How about a weighted combination?

How do we put everything together?

- Want to reach the posterior
 - distribution after all relevant information have been taken into account
- Prediction should reflect my beliefs in the model **and** the information in the observations
- We have a gigantic number of possible solutions that are allowed by our data and belief
- How about a weighted combination?

$$p(\mathbf{W}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{W})p(\mathbf{W})}{p(\mathcal{D})}$$
(19)
$$p(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{W})p(\mathbf{W})d\mathbf{W}$$
(20)

Evidence

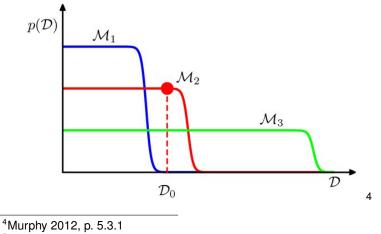
- The denominator shows where the model spreads it probability mass over the data-space (evidence of the model)
- The denominator does not change with W

$$p(\mathbf{W}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{W})p(\mathbf{W})}{p(\mathcal{D})}$$
(21)
$$p(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{W})p(\mathbf{W})d\mathbf{W}$$
(22)
$$p(\mathbf{W}|\mathbf{Y}, \mathbf{X}) \propto p(\mathbf{Y}|\mathbf{W}, \mathbf{X})p(\mathbf{W})$$
(23)

Evidence

- The denominator shows where the model spreads it probability mass over the data-space (evidence of the model)
- The denominator does not change with W

р



⁵Murphy 2012, Ch 7.

Linear Regression cont.

Toolbox

1. Formulate prediction error by likelihood

Formulate belief of model in prior

3. Choose model based on *evidence* $p_{\mathcal{M}}(\mathcal{D})$ (Assignment)

References

Linear Regression cont.

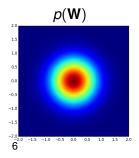
Toolbox

- 1. Formulate prediction error by likelihood
- 2. Formulate belief of model in prior
- 3. Choose model based on *evidence* $p_{\mathcal{M}}(\mathcal{D})$ (Assignment)

Linear Regression cont.

Toolbox

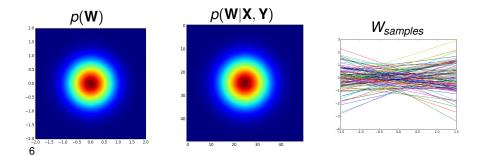
- 1. Formulate prediction error by likelihood
- Formulate belief of model in prior
- 3. Choose model based on *evidence* $p_{\mathcal{M}}(\mathcal{D})$ (Assignment)



⁶Murphy 2012, p. 7.6.1

Ek

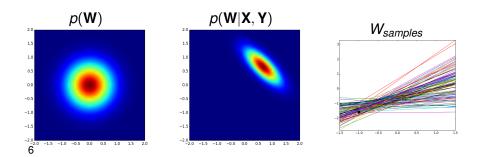
DD2434 - Advanced Machine Learning



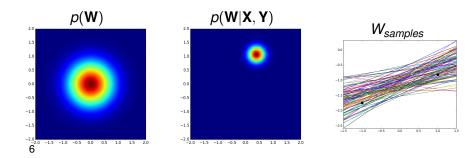
⁶Murphy 2012, p. 7.6.1

Ek

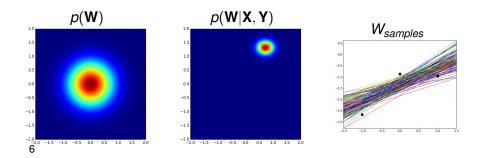
DD2434 - Advanced Machine Learning



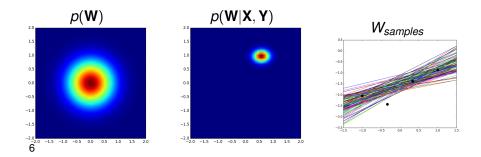
Ek



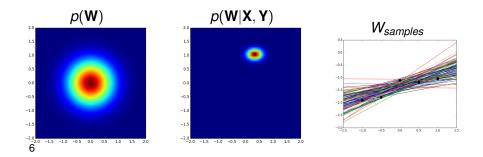
Ek



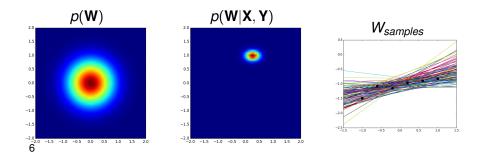
Ek



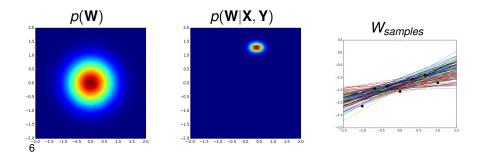
Ek



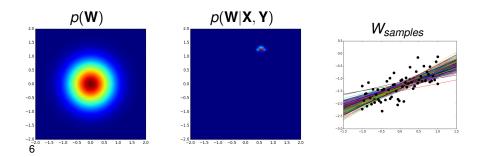
Ek



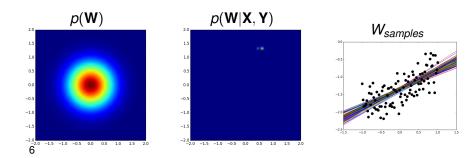
Ek



Ek



Ek



Ek

Assignment

You should now be able to do the linear part of Task 2.1 and Task 2.2 of the assignment.

1. Formulate prediction error by likelihood

- 2. Formulate belief of model in prior
- Marginalise irrelevant variables
- 4. Choose model based on *evidence* $p_{\mathcal{M}}(\mathcal{D})$ (Assignment)

- 1. Formulate prediction error by likelihood
- 2. Formulate belief of model in prior
- Marginalise irrelevant variables
- 4. Choose model based on *evidence* $p_{\mathcal{M}}(\mathcal{D})$ (Assignment)

- 1. Formulate prediction error by likelihood
- 2. Formulate belief of model in prior
- 3. Marginalise irrelevant variables
- 4. Choose model based on *evidence* $p_{\mathcal{M}}(\mathcal{D})$ (Assignment)

- 1. Formulate prediction error by likelihood
- 2. Formulate belief of model in prior
- 3. Marginalise irrelevant variables
- 4. Choose model based on evidence $p_{\mathcal{M}}(\mathcal{D})$ (Assignment)

Marginalisation

$$\boldsymbol{\rho}(\mathbf{W}) = \int \boldsymbol{\rho}(\mathbf{W}|\theta) \boldsymbol{\rho}(\theta) \mathrm{d}\theta \qquad (24)$$

Average according to belief and how well the model fits the observations

"Pushes" belief through model

Marginalisation

$$\boldsymbol{p}(\mathbf{W}) = \int \boldsymbol{p}(\mathbf{W}|\theta) \boldsymbol{p}(\theta) \mathrm{d}\theta$$
 (25)

- Average according to belief and how well the model fits the observations
- "Pushes" belief through model

Marginalisation

Nature laughs at the difficulties of integration

Choosing Distributions

$$\rho(\mathbf{X}|\mathbf{Y}) = \frac{\rho(\mathbf{Y}|\mathbf{X})\rho(\mathbf{X})}{\rho(\mathbf{Y})}$$
(26)

Conjugate Distributions

- The posterior and the prior are in the same family
- Relationship with all three terms

7

⁷Wikipedia

(27

Choosing Distributions

$$p(\mathbf{X}|\mathbf{Y}) = rac{p(\mathbf{Y}|\mathbf{X})p(\mathbf{X})}{p(\mathbf{Y})}$$

Conjugate Distributions

- The posterior and the prior are in the same family
- Relationship with all three terms

Carls intuition

"combining belief in parameters through model should not change the family of the distribution over the parameters"

7

⁷Wikipedia

(28)

Choosing Distributions

$$p(\mathbf{X}|\mathbf{Y}) = rac{p(\mathbf{Y}|\mathbf{X})p(\mathbf{X})}{p(\mathbf{Y})}$$

Remainder of this part

- In this part of the course we will only look at Gaussians
- Gaussians are self-conjugate
 - ► Gaussian likelihood + Gaussian prior ⇒ Gaussian posterior
- On practical 4 I will show you approximate ways to compute an integral
- Hedvig will look at Dirichlet priors where you will see other combinations which are conjugate

(29)

Choosing Distributions

$$p(\mathbf{X}|\mathbf{Y}) = rac{p(\mathbf{Y}|\mathbf{X})p(\mathbf{X})}{p(\mathbf{Y})}$$

Remainder of this part

- In this part of the course we will only look at Gaussians
- Gaussians are self-conjugate
 - ► Gaussian likelihood + Gaussian prior ⇒ Gaussian posterior
- On practical 4 I will show you approximate ways to compute an integral
- Hedvig will look at Dirichlet priors where you will see other combinations which are conjugate

Choosing Distributions

$$\rho(\mathbf{X}|\mathbf{Y}) = \frac{\rho(\mathbf{Y}|\mathbf{X})\rho(\mathbf{X})}{\rho(\mathbf{Y})}$$
(30)

Remainder of this part

- In this part of the course we will only look at Gaussians
- Gaussians are self-conjugate
 - ► Gaussian likelihood + Gaussian prior ⇒ Gaussian posterior
- On practical 4 I will show you approximate ways to compute an integral
- Hedvig will look at Dirichlet priors where you will see other combinations which are conjugate

- That was ALL of Machine Learning
- Everything else is just details
 - how to choose model
 - what is the right prior
 - how to integrate
- You will have to approximate and use heuristics but always relate to this
- This is the beauty of being Bayesian

- That was ALL of Machine Learning
- Everything else is just details
 - how to choose model
 - what is the right prior
 - how to integrate
- You will have to approximate and use heuristics but always relate to this
- This is the beauty of being Bayesian

- That was ALL of Machine Learning
- Everything else is just details
 - how to choose model
 - what is the right prior
 - how to integrate
- You will have to approximate and use heuristics but always relate to this
- This is the beauty of being Bayesian

- That was ALL of Machine Learning
- Everything else is just details
 - how to choose model
 - what is the right prior
 - how to integrate
- You will have to approximate and use heuristics but always relate to this
- This is the beauty of being Bayesian

- That was ALL of Machine Learning
- Everything else is just details
 - how to choose model
 - what is the right prior
 - how to integrate
- You will have to approximate and use heuristics but always relate to this
- This is the beauty of being Bayesian

- That was ALL of Machine Learning
- Everything else is just details
 - how to choose model
 - what is the right prior
 - how to integrate
- You will have to approximate and use heuristics but always relate to this
- This is the beauty of being Bayesian

- That was ALL of Machine Learning
- Everything else is just details
 - how to choose model
 - what is the right prior
 - how to integrate
- You will have to approximate and use heuristics but always relate to this
- This is the beauty of being Bayesian

Kernel Methods

References

Example: Image restoration⁷

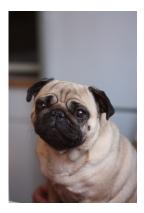
⁷Lecture1/imageExample.py

Ek

Kernel Methods

References

Example: Image restoration⁷



⁷Lecture1/imageExample.py

Ek

Regression

Kernel Methods

References

Example: Image restoration⁷

$$p(\mathbf{Y}|\mathbf{X},\theta) = \mathcal{N}(\mathbf{W}\mathbf{X},\sigma^{2}\mathbf{I})$$
(31)
$$\mathbf{y}_{i} = \frac{1}{3}(\mathbf{x}_{i}^{r} + \mathbf{x}_{i}^{g} + \mathbf{x}_{i}^{b})$$
(32)

⁷Lecture1/imageExample.py

Kernel Methods

References

Example: Image restoration⁷

⁷Lecture1/imageExample.py

Kernel Methods

References

Example: Image restoration⁷

$$\boldsymbol{\rho}(\mathbf{Y}|\mathbf{X},\theta) = \mathcal{N}(\mathbf{W}\mathbf{X},\sigma^{2}\mathbf{I})$$
(33)

$$\mathbf{y}_i = \frac{1}{3} (\mathbf{x}_i^r + \mathbf{x}_i^g + \mathbf{x}_i^b)$$
(34)

$$p(\mathbf{X}|\mathbf{Y},\theta) \propto p(\mathbf{Y}|\mathbf{X},\theta)p(\mathbf{X})$$
 (35)

⁷Lecture1/imageExample.py

Ek

Introduction

Regression

Kernel Methods

Kernel Methods

References

Dual Linear Regression⁸

$$p(\mathbf{W}|\mathbf{Y}, \mathbf{X}) = \frac{p(\mathbf{Y}|\mathbf{W}, \mathbf{X})p(\mathbf{W})}{p(\mathbf{Y})}$$
(36)
$$p(\mathbf{Y}|\mathbf{W}, \mathbf{X}) = \prod_{i}^{N} p(\mathbf{y}_{i}|\mathbf{W}, \mathbf{X}) = \prod_{i}^{N} \mathcal{N}(\mathbf{y}_{i}|\cdot, \sigma^{2}\mathbf{I})$$
(37)
$$p(\mathbf{W}) = \mathcal{N}(\mathbf{0}, \tau^{2}\mathbf{I})$$
(38)

⁸Murphy 2012, p. 14.4.3.

Ek

References

Dual Linear Regression⁸

$$p(\mathbf{W}|\mathbf{Y}, \mathbf{X}) = \frac{p(\mathbf{Y}|\mathbf{W}, \mathbf{X})p(\mathbf{W})}{p(\mathbf{Y})}$$
(39)
$$p(\mathbf{Y}|\mathbf{W}, \mathbf{X}) = \prod_{i}^{N} p(\mathbf{y}_{i}|\mathbf{W}, \mathbf{X}) = \prod_{i}^{N} \mathcal{N}(\mathbf{y}_{i}|\cdot, \sigma^{2}\mathbf{I})$$
(40)
$$p(\mathbf{W}) = \mathcal{N}(\mathbf{0}, \tau^{2}\mathbf{I})$$
(41)

 $p(\mathbf{W}|\mathbf{Y},\mathbf{X}) \propto p(\mathbf{Y}|\mathbf{W},\mathbf{X})p(\mathbf{W})$ (42)

⁸Murphy 2012, p. 14.4.3.

Ek

Kernel Methods

References

Dual Linear Regression⁸

• Lets look at a simple 1D problem

⁸Murphy 2012, p. 14.4.3.

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) \propto \prod_{i}^{N} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\sigma^{2}} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} - y_{i})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} - y_{i})} \frac{1}{\sqrt{2\pi\tau^{2}}} e^{-\frac{1}{2\tau^{2}} (\mathbf{w}^{\mathrm{T}} \mathbf{w})}$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\sigma^{2}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})} \frac{1}{\sqrt{2\pi\tau^{2}}} e^{-\frac{1}{2\tau^{2}} (\mathbf{w}^{\mathrm{T}} \mathbf{w})}$$

$$(45)$$

Objective

- Want to find the parameters that maximises the above
- Logarithm is monotonic
- Minimise negative logarithm of p(w|y, X)

$$\rho(\mathbf{w}|\mathbf{y},\mathbf{X}) \propto \prod_{i}^{N} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\sigma^{2}} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} - y_{i})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} - y_{i})} \frac{1}{\sqrt{2\pi\tau^{2}}} e^{-\frac{1}{2\tau^{2}} (\mathbf{w}^{\mathrm{T}} \mathbf{w})}$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\sigma^{2}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})} \frac{1}{\sqrt{2\pi\tau^{2}}} e^{-\frac{1}{2\tau^{2}} (\mathbf{w}^{\mathrm{T}} \mathbf{w})}$$

$$(47)$$

$$(48)$$

Objective

- Want to find the parameters that maximises the above
- Logarithm is monotonic
- Minimise negative logarithm of p(w|y, X)

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
(49)

Objective

- Want to find the parameters that maximises the above
- Logarithm is monotonic
- Minimise negative logarithm of p(w|y, X)

⁸Murphy 2012, p. 14.4.3.

Ek

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
(50)
$$\frac{\delta}{\delta \mathbf{w}} J(\mathbf{w}) = \frac{1}{2} 2 \mathbf{X}^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) + \frac{\lambda}{2} 2 \mathbf{w}$$
(51)

Optimisation

- Lets make a point-estimate
- Pick w that minimises J(w)

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
(52)

$$\frac{\delta}{\delta \mathbf{w}} J(\mathbf{w}) = \frac{1}{2} 2 \mathbf{X}^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) + \frac{\lambda}{2} 2 \mathbf{w}$$
(53)

$$\mathbf{w} = -\frac{1}{\lambda} \mathbf{X}^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) =$$
(54)

Optimisation

- Lets make a point-estimate
- Pick **w** that minimises $J(\mathbf{w})$

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
(55)

$$\frac{\delta}{\delta \mathbf{w}} J(\mathbf{w}) = \frac{1}{2} 2 \mathbf{X}^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) + \frac{\lambda}{2} 2 \mathbf{w}$$
(56)

$$\mathbf{w} = -\frac{1}{\lambda} \mathbf{X}^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) = \mathbf{X}^{\mathrm{T}} \mathbf{a} = \sum_{n}^{N} \alpha_{n} \mathbf{x}_{n}$$
(57)

. .

Optimisation

- Lets make a point-estimate
- Pick w that minimises J(w)

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y})^{\mathrm{T}} (\mathbf{w}^{\mathrm{T}} \mathbf{X} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
(58)
$$\mathbf{w} = \mathbf{X}^{\mathrm{T}} \mathbf{a}$$
(59)

Formulate Dual

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{a} - \mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{y} + \frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{y} + \frac{\lambda}{2}\mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{a}$$
(60)

⁸Murphy 2012, p. 14.4.3.

Ek

Kernel Methods

References

Dual Linear Regression⁸

$$[\mathbf{K}]_{ij} = \mathbf{x}_i^{\mathrm{T}} \mathbf{x}_j$$
(61)
$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a} \mathbf{K} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{a}$$
(62)

⁸Murphy 2012, p. 14.4.3.

Ek

$$[\mathbf{K}]_{ij} = \mathbf{x}_i^{\mathrm{T}} \mathbf{x}_j$$
(63)
$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a} \mathbf{K} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{a}$$
(64)

$$\alpha_i = -\frac{1}{\lambda} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_i - \mathbf{y}_i)$$
(65)

$$\mathbf{w} = \sum_{i}^{N} \alpha_i \mathbf{x}_i \tag{66}$$

$$\Rightarrow \mathbf{a} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$
 (67)

⁸Murphy 2012, p. 14.4.3.

Ek

$$[\mathbf{K}]_{ij} = \mathbf{x}_i^{\mathrm{T}} \mathbf{x}_j \tag{68}$$

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a} \mathbf{K} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{a}$$
(69)
$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$
(70)

$$\mathbf{y}(\mathbf{x}_*) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_* = \mathbf{a}^{\mathrm{T}} \mathbf{X} \mathbf{x}_* = \mathbf{a}^{\mathrm{T}} k(\mathbf{X}, \mathbf{x}_*) =$$
(71)

$$= ((\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y})^{\mathrm{T}} k(\mathbf{X}, \mathbf{x}_{*}) = k(\mathbf{x}_{*}, \mathbf{X}) (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$
(72)

⁸Murphy 2012, p. 14.4.3.

Ek

Kernel Methods

Dual Linear Regression⁸

Linear Regression

- 1. See data $(\mathbf{x}_i, y)_i^N$
- 2. Encode relationship in parameter W
- 3. Throw training away data
- 4. Make predictions using W

Linear Regression

- 1. See data $(\mathbf{x}_i, y)_i^N$
- 2. Encode relationship in parameter W
- 3. Throw training away data
- 4. Make predictions using W

Dual

- Do NOT throw away data
- Make predictions using relationship to training data
- Model complexity depends on data (i.e. it adapts)
- Non parametric regression

Linear Regression

- 1. See data $(\mathbf{x}_i, y)_i^N$
- 2. Encode relationship in parameter W
- 3. Throw training away data
- 4. Make predictions using W

Dual

- Do NOT throw away data
- Make predictions using relationship to training data
- Model complexity depends on data (i.e. it adapts)
- Non parametric regression

- Dual linear regression allows us to write everything in terms of inner products
 - we do not need representation x_i
- What if we map data prior to regression?

$$\phi: \mathbf{x}_i \to \mathbf{f}_i \tag{73}$$

• In dual case we do not need to know $\phi(\cdot)$ only $\phi(\cdot)^T \phi(\cdot)$

- Dual linear regression allows us to write everything in terms of inner products
 - we do not need representation x_i
- What if we map data prior to regression?

$$\phi: \mathbf{X}_i \to \mathbf{f}_i \tag{74}$$

• In dual case we do not need to know $\phi(\cdot)$ only $\phi(\cdot)^T \phi(\cdot)$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j) = ||\phi(\mathbf{x}_i)|| ||\phi(\mathbf{x}_j)|| \cos(\theta)$$
(75)

Kernel Functions

- A function that describes an inner product
- Sub-class of functions
 - think triangle in-equality
- If we have $k(\cdot, \cdot)$ we *never* have to know the mapping

$$\mathbf{x} \in \mathbb{R}^2$$
 (76)

$$(\mathbf{x}_{i}^{\mathrm{T}}\mathbf{x}_{j})^{2} = (x_{i1}x_{j1} + x_{i2}x_{j2})^{2} =$$
(77)

$$= x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 =$$
(78)

$$= (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2)(x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2)^{\mathrm{T}} = (79)$$

$$=\phi(\mathbf{x}_i)^{\mathrm{T}}\phi(\mathbf{x}_j) \tag{80}$$

$$\mathbf{x} \in \mathbb{R}^2$$
 (81)

$$(\mathbf{x}_{i}^{\mathrm{T}}\mathbf{x}_{j})^{2} = (x_{i1}x_{j1} + x_{i2}x_{j2})^{2} =$$
(82)

$$= x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 =$$
(83)

$$= (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2)(x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2)^{\mathrm{T}} = (84)$$

$$=\phi(\mathbf{x}_i)^{\mathrm{T}}\phi(\mathbf{x}_j) \tag{85}$$

So
$$k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j)^2$$
 is a kernel of the mapping
 $\phi(\mathbf{x}) = ((\mathbf{e}_1^T \mathbf{x})^2, \sqrt{2}\mathbf{e}_1^T \mathbf{x} \mathbf{e}_2^T \mathbf{x}, (\mathbf{e}_2^T \mathbf{x})^2)$

9

⁹Murphy 2012, p. 14.2.3

Ek

Kernels allows for *implicit* feature mappings

- We do NOT need to know the feature space
- The space can have infinite dimensionality
- The mapping can be non-linear but the problem is still linear!
- Allows for putting weird things like, strings (DNA) in a vector space
- More next lecture, these things are very powerful

Kernels allows for *implicit* feature mappings

- We do NOT need to know the feature space
- The space can have infinite dimensionality
- The mapping can be non-linear but the problem is still linear!
- Allows for putting weird things like, strings (DNA) in a vector space
- More next lecture, these things are very powerful

Kernels allows for *implicit* feature mappings

- We do NOT need to know the feature space
- The space can have infinite dimensionality
- The mapping can be non-linear but the problem is still linear!
- Allows for putting weird things like, strings (DNA) in a vector space
- More next lecture, these things are very powerful

- Kernels allows for *implicit* feature mappings
 - We do NOT need to know the feature space
 - The space can have infinite dimensionality
 - The mapping can be non-linear but the problem is still linear!
 - Allows for putting weird things like, strings (DNA) in a vector space
 - More next lecture, these things are very powerful

- Kernels allows for *implicit* feature mappings
 - We do NOT need to know the feature space
 - The space can have infinite dimensionality
 - The mapping can be non-linear but the problem is still linear!
 - Allows for putting weird things like, strings (DNA) in a vector space
 - More next lecture, these things are very powerful

Next Time

Lecture 2

- November 25th 8-10 E2
- Continue with Kernels
 - relation to co-variance
- Non-parametric Regression
 - Gaussian Processes
- Start Assignment

Next Time

Lecture 2

- November 25th 8-10 E2
- Continue with Kernels
 - relation to co-variance
- Non-parametric Regression
 - Gaussian Processes
- Start Assignment

Next Time

Practical Session 1

- November 21st, 15-17 in Q31
- My best friend the Gaussian
 - Multiplication
 - Marginalisation
 - Recap: Matrix derivatives
- Things that you will need for Assignment 1

e.o.f.

References I

Kevin P Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN: 0262018020, 9780262018029.