Sufficient Statistics, Multivariate Gaussian Distribution
Course: Foundations in Digital Communications

Tobias Oechtering
presented by: Ragnar Thobaben

Royal Institute of Technology (KTH),
School of EE and ACCESS Center,
Communication Theory Lab
Stockholm, Sweden

5th lecture
Recapitulation

What did we do last lecture?
Outline - Motivation

- In practical systems we want/have to process our received data. What processing of the observed data does not reduce the possible detection performance?
 - Sufficient Statistics (chap 22)

- The most important multivariate distribution in Digital Communication:
 - Multivariate Gaussian Distribution (chap 23)
Introduction

“a sufficient statistic for guessing M based on the observation Y is a random variable or a collection of random variables that contains all the information in Y that is relevant for guessing M”

- The idea of **sufficient statistics** ...
 - is a very deep concept with a strong impact;
 - provides fundamental intuition;
 - classifies processing which does not degrade performance;
 - is defined for $\{f_{Y|M}(\cdot|m)\}_{m \in M}$ and is unrelated to a prior.

- **Example**: In the 2-dimensional Gaussian 8-PSK detection problem, the decision is only based on the Euclidean distance between the observation and the symbols.
 - The scalar RV describing the distance is a sufficient statistic.
 ⇒ It summarizes the information needed for guessing M optimally.
Definition and Main Consequences

- Roughly, $T(\cdot)$ is a sufficient statistic if there exists a black box that produces $\{\mathbb{P} \left[M = m | Y = y_{obs} \right] \}$ when fed with $T(y_{obs})$ and any $\{\pi_m\}$.

Definition

A measurable mapping $T : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ forms a **sufficient statistic** for $\{f_{Y|M}(\cdot|m)\}_{m \in M}$ if there exist measurable functions $\psi_m : \mathbb{R}^{d'} \rightarrow [0, 1]$, $m \in M$, such that for every prior $\{\pi_m\}$ and almost all $y_{obs} \in \mathbb{R}^d$ where $\sum_m \pi_m f_{Y|M}(y_{obs}|m) > 0$ we have

$$\psi_m(\{\pi_m\}, T(y_{obs})) = \mathbb{P} \left[M = m | Y = y_{obs} \right], \quad \forall m \in M.$$

- If $T(\cdot)$ is a sufficient statistic for $\{f_{Y|M}(\cdot|m)\}_{m \in M}$, then there exists an optimal decision rule based on $T(Y)$.
 - Note that $T(\cdot)$ does not have to be reversible.
Equivalent Conditions: Factorization Theorem

- Roughly, $T(\cdot)$ is a sufficient statistic if all densities can be written as a product of functions where
 - one does not depend on the message but possibly y
 - the other one depends on the message and $T(\cdot)$ only
- Useful in identifying sufficient statistics

Factorization Theorem

$T(\cdot)$ denotes a sufficient statistic for $\{f_{Y|M}(\cdot|m)\}_{m \in M}$ iff there exist measurable functions $g_m : \mathbb{R}^{d'} \rightarrow [0, \infty)$, $m \in M$, and $h : \mathbb{R}^d \rightarrow [0, \infty)$ such that for almost all $y \in \mathbb{R}^d$ we have

$$f_{Y|M}(y|m) = g_m(T(y))h(y), \quad \forall m \in M.$$

Proof idea:

$\psi_m(\{\pi_m\}, T(y_{obs})) = \mathbb{P} \left[M = m | Y = y_{obs} \right] = \frac{\pi_m f_{Y|M}(y_{obs}|m)}{f_Y(y_{obs})}$.

"⇒" Identify the functions as $g_m(T(y)) = \frac{\psi_m(\{\pi_m\}, T(y_{obs}))}{\pi_m}$ and $h(y) = f_Y(y)$. "⇐" Use $f_{Y|M}(\cdot|m) = g_m(T(\cdot))h(\cdot)$, $f_Y(\cdot) = \sum_m \pi_m f_{Y|M}(\cdot|m)$.
Markov Condition

- Tobias’ favorite:

Markov condition

A measurable function \(T : \mathbb{R}^d \to \mathbb{R}^{d'} \) forms a sufficient condition for \(\{f_{Y|M}(\cdot|m)\}_{m \in M} \) iff for any prior \(\{\pi_m\}_m \) we have

\[
M - T(Y) - Y
\]

- \(M - T(Y) - Y \) means
 - \(M \) and \(Y \) are conditionally independent given \(T(Y) \)
 - equalities \(P_{M|T(Y)Y} = P_{M|T(Y)} \) and \(P_{Y|T(Y)M} = P_{Y|T(Y)} \)
- Since \(P_{M|Y} = P_{M|T(Y)Y} \) (\(T(Y) \) fct of \(Y \)), the last implies \(P_{M|Y} = P_{M|T(Y)} \).
 - The conditional distribution of \(M \) given \(Y \) follows from the conditional distribution of \(M \) given \(T(Y) \).
Pairwise Sufficiency and Simulating Observables

Pairwise Sufficiency

Consider \(\{f_{Y|M}(\cdot|m)\}_{m \in M} \), assume \(T(\cdot) \) forms a sufficient statistic for every pair \(f_{Y|M}(\cdot|m) \) and \(f_{Y|M}(\cdot|m') \) where \(m \neq m' \). Then \(T(\cdot) \) is a sufficient statistic for \(\{f_{Y|M}(\cdot|m)\}_{m \in M} \).

Simulating Observables (roughly statement)

Since sufficient statistic \(T(Y) \) contains all information about \(M \) which are in \(Y \), i.e., \(p_{M|T(Y)} = p_{M|Y} \), it is possible to generate a RV \(\tilde{Y} \) using \(T(Y) \) that appears statistically like \(Y \) given \(M \), i.e., \(p_{\tilde{Y}|M} \overset{\text{L}}{=} p_{Y|M} \). The opposite direction is also true, if such a function \(T(Y) \) exists, then it forms a sufficient statistic.

- This requires a local random number generator \(\Theta \).
- Anything learned about \(M \) from \(Y \) can be learned from \(\tilde{Y} \).
Identify Sufficient Statistics

- A not helpful result in terms of “summarizing” but still relevant:

5-minute exercise

Show that any reversible transformation $T(\cdot)$ forms a sufficient statistic.
Identify Sufficient Statistics

- A not helpful result in terms of “summarizing” but still relevant:

5-minute exercise

Show that any reversible transformation $T(\cdot)$ forms a sufficient statistic.

Computable from the Statistic

Let $T : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ form a sufficient statistic for $\{f_{Y|M}(\cdot|m)\}_{m \in M}$. If $T(\cdot)$ can be written as $\phi \circ S$ with $\phi : \mathbb{R}^{d''} \rightarrow \mathbb{R}^{d'}$, then $S : \mathbb{R}^d \rightarrow \mathbb{R}^{d''}$ also forms a sufficient statistic.

- If $T(Y)$ is computable from $S(Y)$, then $S(Y)$ has to contain all information about M which are also in $T(Y)$, i.e.,

$$\mathbb{P} \left[M = m | Y = y_{obs} \right]$$

is computable from $S(Y)$ as well.
Identify Sufficient Statistics

Two-step approach

If \(T : \mathbb{R}^d \to \mathbb{R}^{d'} \) forms a sufficient statistic for \(\{f_{Y|M}(\cdot|m)\}_{m \in M} \) and if \(S : \mathbb{R}^{d'} \to \mathbb{R}^{d''} \) forms a sufficient statistic for the corresponding densities of \(T(Y) \), then the composition \(S \circ T \) forms a sufficient statistic for \(\{f_{Y|M}(\cdot|m)\}_{m \in M} \).

Proof: \(P_{M|S(T(Y))} = P_{M|T(Y)} = P_{M|Y} \)

Conditionally Independent Observations

Let \(T_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d'_i} \) form sufficient statistics for \(\{f_{Y_i|M}(\cdot|m)\}_{m \in M}, i = 1, 2 \) and \(Y_1 \) and \(Y_2 \) are conditionally independent given \(M \), then \((T_1(Y_1), T_2(Y_2)) \) forms a sufficient statistic for \(\{f_{Y_1Y_2|M}(\cdot|m)\}_{m \in M} \).

Proof: Factorization theorem: \(f_{Y_1Y_2|M} = f_{Y_1|M}f_{Y_2|M} = g_m^{(1)}h^{(1)}g_m^{(2)}h^{(2)} \)
Irrelevant Data

- Roughly, the “part” of the observation which is not part in a sufficient statistic is *irrelevant* for the purpose of detection.

Definition

R is said to be *irrelevant* for guessing *M* given *Y* if *Y* forms a sufficient statistic based on (*Y*, *R*), i.e., *M* − *Y* − (*Y*, *R*).

- A RV can be irrelevant, but still depend on the RV we wish to guess.

\[R \perp M \land Y - M - R \implies R \text{ is irrelevant for guessing } M \text{ given } Y \]

Proof: Factorization theorem

\[f_{YR|M}(y, r|m) = f_{Y|M}(y|m) f_{R|M}(r|m) = f_{Y|M}(y|m) f_R(r) = g_m(y) h(y, r) \]

\[\square \]
Let’s take a break!
Some Results on Matrices

- Matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if $UU^T = I_n$ ($\Leftrightarrow U^T U = I_n$)
- Matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$
- If $A \in \mathbb{R}^{n \times n}$ is symmetric, then A has n real eigenvalues with eigenvectors ϕ_v which satisfy $\phi_v^T \phi_{v'} = I \{v = v', 1 \leq v \leq n\}$.
 \[\Rightarrow \text{Spectral Theorem: } A = U \Sigma U^T, \text{ with orthogonal } U \text{ whose } v\text{-th column is an eigenvector and diagonal matrix } \Sigma \text{ with the } v\text{-th eigenvalues on the } v\text{-th position on the diagonal.} \]
- A symmetric matrix $K \in \mathbb{R}^{n \times n}$ is called positive semidefinite or non-negative definite ($K \succeq 0$) if $\alpha^T K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^n$ and is called positive definite ($K \succ 0$) if $\alpha^T K \alpha > 0$ for all $\alpha \in \mathbb{R}^n \setminus \{0\}$.
 - $K \succeq 0$ ($K \succ 0$)
 $\Leftrightarrow \exists$ (non-singular) $S \in \mathbb{R}^{n \times n}$: $K = S^T S$
 $\Leftrightarrow K$ symmetric and all eigenvalues are non-negative (positive)
 $\Leftrightarrow \exists$ orthogonal $U \in \mathbb{R}^{n \times n}$ and diagonal matrix $\Sigma \in \mathbb{R}^{n \times n}$ with non-negative (positive) diagonal entries: $K = U \Sigma U^T$.

KTH course: Foundations in Digital Communications ©Tobias Oechtering
Random Vectors

- n-dimensional random vector X defined over (Σ, \mathcal{F}, P)
 - mapping from experiment outcome Σ to \mathbb{R}^n
 - density is the joint density of the components

Expectation: $\mathbb{E} [X] = (\mathbb{E} [X_1], \ldots, \mathbb{E} [X_n])^T$
 - $\mathbb{E} [AX] = A\mathbb{E} [X], A \in \mathbb{R}^{m \times n}$, and $\mathbb{E} [XB] = \mathbb{E} [X]B, B \in \mathbb{R}^{n \times m}$.

Covariance matrix:

$$K_{XX} = \mathbb{E} [(X - \mathbb{E} [X])(X - \mathbb{E} [X])^T]$$

- Let $Y = AX$, then $K_{YY} = AK_{XX}A^T$.
- Covariance matrix is non-negative definite, i.e., $K_{XX} \succeq 0$.
Multivariate Gaussian Distribution

- Most important multi-variate distribution in Digital Communications
- Straightforward extension from univariate Gaussian

Definition: Gaussian distribution

1. For a **standard Gaussian** RV $W \in \mathbb{R}^n$ the components $\{W_i\}$ are independent and $\mathcal{N}(0, 1)$ distributed.

 \[
 f_W(w) = \prod_{\ell=1}^{n} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{w_\ell^2}{2} \right) = \frac{1}{\sqrt{(2\pi)^n}} \exp \left(-\frac{||w||^2}{2} \right)
 \]

2. Then a RV $X \overset{\mathcal{L}}{=} AW$ with matrix $A \in \mathbb{R}^{n \times m}$ is said to be **centered Gaussian**

3. Additionally with $\mu \in \mathbb{R}^n$, the RV $X \overset{\mathcal{L}}{=} AW + \mu$ is **Gaussian**.
Properties Gaussian Random Vectors

- \(X \sim L A W + \mu \) and \(W \) standard \(\Rightarrow (E[X] = \mu \) and \(K_{XX} = AA^T) \)
- If the components of a Gaussian RV \(X \) are uncorrelated, the covariance matrix \(K_{XX} \) is diagonal and the components of \(X \) are independent.
- If the components of a Gaussian RV are pairwise independent, then they are independent.
- If \(W \) is standard Gaussian, and \(U \) is orthogonal matrix, then \(UW \) is also standard Gaussian RV.
- **Canonical Representation** of a centered Gaussian RV \(X \) with \(K_{XX} = U\Sigma U^T \), then \(X \sim L U\sigma^{1/2}W \) with \(W \) standard Gaussian.
 - From Gaussian to standard Gaussian: \(\Sigma^{1/2}U^T(X - \mu) \sim N(0, I_n) \).
Canonical Representation of a Centered Gaussian

Contour plot of centered Gaussian distributions

\[X_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} W \quad X_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} W \quad X_2 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} W \quad X_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \sqrt{2} \\ -\frac{1}{\sqrt{2}} & \sqrt{2} \end{bmatrix} W \]
Jointly Gaussian Vectors

- Two RV X and Y are **jointly Gaussian** if the stacked vector $(X^T, Y^T)^T$ is Gaussian.

We have the following amazing results:

1. Independent Gaussian vectors are jointly Gaussian.
2. If two jointly Gaussian vectors are uncorrelated, then they are independent.
3. Let X and Y centered and jointly Gaussian with covariance matrices K_{XX} and $K_{YY} > 0$. Then the conditional distribution of X given $Y = y$ is a multivariate Gaussian with
 - mean $\mathbb{E}[XY^T]K_{YY}^{-1}y$
 - covariance $K_{XX} - \mathbb{E}[XY^T]K_{YY}^{-1}\mathbb{E}[Yx^T]$
Outlook - Assignment

- Sufficient Statistics
- Multivariate Gaussian Distributions

Next lecture

Complex Gaussian and Circular Symmetry, Continuous-Time Stochastic Processes

- Reading Assignment: Chap 24-25
- Homework: (please check with the official assignment on the webpage)
 - Problems in textbook: Exercise 22.2, 22.4, 22.5, 22.7, 22.9, 23.8, 23.11, and 23.14
 - Deadline: Dec 7