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Last Lecture
• General Probabilistic

Modelling
I Probabilistic objects
I Marginalisation

• Kernels
I Dual linear regression
I Implications for modelling
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Regression

• Two variates
I Input data xi ∈ Rq

I Output data yi ∈ RD

• Relationship: f : X→ Y
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Regression

Uncertainty
• We are uncertain in our data
• This means we cannot trust

I our observations
I the mapping that we learn
I the predictions that we make under the mapping
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Regression

Uncertainty
• Uncertainty in outputs yi

I Addative noise yi = Wxi + ε
I Gaussian distributed noise ε ∝ N (0, σ2)

• Likelihood
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Regression

Uncertainty in prediction
• Posterior

I conditional distribution
I after the relevant information has been taken into account

• What is relevant
I our belief: prior p(W)
I the observations: likelihood p(Y|W,X)
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Regression

p(Y|W,X) =
N∏
i

p(yi |W,xi) (1)

Structure
• Do the variables co-vary?
• Are there (in-)dependency structures that I can exploit?

Ek KTH
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Toolbox
1. Formulate prediction error likelihood

I Does the likelihood have structure?
2. Formulate belief of model in prior

I Does the prior have structure

3. Reach the posterior by combining likelihood and prior
4. Choose model based on evidence p(D|M)
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p(W)
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p(W) p(W|X,Y)
Wsamples
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Conditional1

p(X|Y) =
p(Y|X)p(X)

p(Y)
(2)

Conjugate Distributions
• The posterior and the prior are in the same family
• Relationship with all three terms

1Wikipedia
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Marginal

p(Y|X) =

∫
p(Y|W,X)p(W)dW (3)

• Average according to belief and how well the model fits the
observations

• “Pushes” uncertain belief in parameters (in this case) through
to the observations

• Gaussian marginal is Gaussian
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Dual Linear Regression2

[K]ij = xT
i xj (4)

J(a) =
1
2

aTKKa− aKy +
1
2

yTy +
λ

2
aTKa (5)

a = (K + λI)−1y (6)

2Murphy 2012, p. 14.4.3.
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Dual Linear Regression2

[K]ij = xT
i xj (7)

J(a) =
1
2

aTKKa− aKy +
1
2

yTy +
λ

2
aTKa (8)

a = (K + λI)−1y (9)

y(xi) = wxi = aTXxi = k(xi ,X)T(K + λI)−1y (10)

2Murphy 2012, p. 14.4.3.
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Kernels

Kernel Functions
• A function such that

k(xi ,xj) = φ(xi)
Tφ(xj) = (11)

= ||φ(xi)||||φ(xj)||cos(θ) (12)

• If we have k(·, ·) we never have to know the mapping φ(·)

Ek KTH
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The benefits of Kernels

• Kernels allows for implicit feature mappings
I We do NOT need to know the feature space
I Example: The space can have infinite dimensionality
I The mapping can be non-linear but the problem is remains linear!
I Allows for putting weird things like, strings (DNA) in a vector space
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This Lecture
• Kernel Methods

I Implicit feature spaces
I Building kernels

• Gaussian Processes
I Priors over the space of

functions
I Learning parameters of

kernels

Ek KTH
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Kernels

σ(X,Y) = E
[
(X− E[X])T(Y− E[Y])

]
=

= E[XTY]− E[X]TE[Y] = {E[X] = E[Y] = 0} =

= E[XTY] (13)

Ek KTH
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Kernels
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Kernels

σ(X,Y) =

[
x11 x21 x31
x12 x22 x32

] y11 y12
y21 y22
y31 y32

 = (14)

=

[
x11y11 + x21y21 + x31y31 x11y12 + x21y22 + x31y32
x12y11 + x22y21 + x32y31 x12y12 + x22y22 + x32y32

]

Ek KTH
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Kernels

σ(X,Y) =

[
x11 x21 x31
x12 x22 x32

] y11 y12
y21 y22
y31 y32

 = (15)

=

[
x11y11 + x21y21 + x31y31 x11y12 + x21y22 + x31y32
x12y11 + x22y21 + x32y31 x12y12 + x22y22 + x32y32

]

σ(XT,YT) =

 x11 x12
x21 x22
x31 x32

[ y11 y21 y31
y12 y22 y32

]
= (16)

=

 x11y11 + x12y12 x11y21 + x12y22 x11y31 + x12y32
x21y11 + x22y12 x21y21 + x22y22 x21y31 + x22y32
x31y11 + x32y12 x31y21 + x32y22 x31y31 + x32y32
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Kernels

Kernels and covariances
• Covariance between rows: XTY (data-dimensions)
• Covariance between columns: XYT (data-points)
• Kernels: k(x,y) = φ(x)Tφ(y)

I Kernel functions are covariances between data-points

• A kernel function describes the co-variance of the data points
• Specific class of functions
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Kernels

k(xi ,xj) = σ2e−
1

2`2 (xi−xj )
T(xi−xj ) (17)

Squared Exponential
• How does the data vary along the dimensions spanned by the

data
• RBF, Squared Exponential, Exponentiated Quadratic
• Co-variance smoothly decays with distance

Ek KTH
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Building Kernels
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Building Kernels

Expression Conditions
k(x , z) = c k1(x , z) c - any non negative real constant.
k(x , z) = f (x)k1(x , z)f (z) f - any real-valued function.
k(x , z) = q(k1(x , z)) q - any polynomial with non-negative coefficients.
k(x , z) = exp(k1(x , z))

k(x , z) = k1(x , z) + k2(x , z)

k(x , z) = k1(x , z)k2(x , z)

k(x , z) = k3(�(x),�(z)) k3 - valid kernel in the space mapped by �.
k(x , z) = hAx , zi = hx , Azi A - symmetric psd matrix.
k(x , z) = ka(xa, za) + kb(xb, zb) xa and xb - non-necessarily disjoint partitions of x ;
k(x , z) = ka(xa, za)kb(xb, zb) ka and kb - valid kernels on their respective spaces.

Ek KTH
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Summary
• Defines inner products in

some space
• We don’t need to know the

space, its implicitly defined by
the kernel function

• Defines co-variance between
data-points

• Lecture 8 we will look at
image of data
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What have you seen up till now?

• Probabilistic modelling
I likelihood, prior, posterior
I marginalisation

• Implicit feature spaces
I kernel functions

• We have assumed the form of
the mapping without
uncertainty
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Outline
• General Regression
• Introduce uncertainty in

mapping
• prior over the space of

functions
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Regression

Regression model,

yi = f (xi) + ε (18)

ε ∼ N (0, σ2I) (19)

Introduce fi as instansiation of function,

fi = f (xi), (20)

as a new random variable.

Ek KTH
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Regression

Model,

p(Y, f,X,θ) = p(Y|f)p(f|X,θ)p(X)p(θ) (21)

Want to “push” X through a mapping f of which we are uncertain,

p(f|X,θ), (22)

prior over instansiations of function.

Ek KTH
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Priors over functions3

3Lecture7/gp basics.py
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Gaussian Distribution

Join Distribution,[
x1
x2

]
∼ N

([
µ1
µ2

]
,

[
σ(x1, x1) σ(x1, x2)
σ(x2, x1) σ(x2, x2)

])
. (23)

Conditional Distribution,

x2|x1 ∼ N
(
µ2 + σ(x1, x2)σ(x1, x1)−1(x1 − µ1),

σ(x2, x2)− σ(x2, x1)σ(x1, x1)−1σ(x1, x2)
)

(24)

Ek KTH
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The Gaussian Conditional4

N
([

0
0

]
,

[
1 0.5

0.5 1

])
(25)

4Lecture7/conditional gaussian.py

Ek KTH
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The Gaussian Conditional4

N
([

0
0

]
,

[
1 0.99

0.99 1

])
(30)

4Lecture7/conditional gaussian.py
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The Gaussian Conditional4

N
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0 1
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If all instansiations of the function is jointly Gaussian such that the
co-variance structure depends on how much information an
observation provides for the other we will get the curve above.

Ek KTH
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Row space
• Co-variance between each point!
• Co-variance function is a kernel!
• We can do all this in induced space, i.e. allow for any function!
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Gaussian Processes5

p(f|X,θ) ∼ GP(µ(X), k(X,X)) (40)

Defenition
A Gaussian Process is an infinite collection of random variables
who any subset is jointly gaussian. The process is specified by a
mean function µ(·) and a co-variance function k(·, ·)

f ∼ GP(µ(·), k(·, ·)) (41)

5Murphy 2012, p. 15.2
Ek KTH
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Gaussian Processes5

p(f|X,θ) ∼ GP(µ(X), k(X,X)) (42)
yi = fi + ε (43)

ε ∼ N (0, σ2I) (44)

p(Y|X,θ) =

∫
p(Y|f)p(f|X,θ)df (45)

Connection to Distribution
GP is infinite, but we only observe finite amount of data. This
means conditioning on a subset of the data, the GP is a just a
Gaussian distribution, which is self-conjugate.

5Murphy 2012, p. 15.2
Ek KTH
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Gaussian Processes5

The mean function
• Function of only the input location
• What do I expect the function value to be only accounting for

the input location
• We will assume this to be constant

The co-variance function
• Function of two input locations
• How should the information from other locations with known

function value observations effect my estimate
• Encodes the behavior of the function

5Murphy 2012, p. 15.2
Ek KTH
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Gaussian Processes5

The Prior

p(f |X,θ) = GP(µ(x), k(x,x′)) (46)
µ(x) = 0 (47)

k(xi ,xj) = σ2e−
1

2`2 (xi−xj )
T(xi−xj ) (48)

5Murphy 2012, p. 15.2
Ek KTH
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Gaussian Processes5

The (predictive) Posterior[
f
f∗

]
∼ N

([
0
0

]
,

[
k(X,X) k(X,x∗)
k(x∗,X) k(x∗,x∗)

])
(49)

p(f∗|x∗,X, f,θ) = N (k(x∗,X)TK (X,X)−1f,

k(x∗,x∗)− k(x∗,X)TK (X,X)−1K (X,x∗)) (50)
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Gaussian Processes5

k(x∗,X)TK (X,X)−1f (51)
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Gaussian Processes5

k(x∗,x∗)− k(x∗,X)TK (X,X)−1K (X,x∗) (52)
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k(x∗,x∗)− k(x∗,X)TK (X,X)−1K (X,x∗) (53)
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k(x∗,x∗)− k(x∗,X)TK (X,X)−1K (X,x∗) (54)

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

5Murphy 2012, p. 15.2
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Gaussian Processes5

Summary
• GP is a prior over function realisations
• Introduce new random variable as the output of the mapping
• Joint distribution of any observations Gaussian
• Posterior (predictive) distribution is conditional Gaussian
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Co-variances in practice

[
y
f∗

]
∼ N

([
0
0

]
,

[
k(X,X) + σ2I k(X,x∗)

k(x∗,X) k(x∗,x∗)

])
(55)

• The conditional distribution passes exactly through the data
I noise-free observations

• Construct covariance functions by rules for building kernels
I k(xi ,xj ) = λ1kSE(xi ,xj ) + λ2klin(xi ,xj ) + λ3kwhite(xi ,xj )

Ek KTH
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Co-variances in practice

Periodic kernel,

k(xi ,xj) = σ2e
− 2

`2 sin2
(
π
|xi−xj |

p

)
(56)

Periodic functions
• ` lengthscale
• p period of function

Ek KTH
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Co-variances in practice

klin(xi ,xj) = (xT
i xj) (57)

k(xi ,xj) =
2
π

sin−1

 2xT
i Σxj√

(1 + 2xT
i Σxi)(1 + 2xT

j Σxj)

 (58)

xi = [1, x1i , . . . , xqi ]
T (59)

“Computation with Infinite Neural Networks”, Williams

Non-stationary functions
• Non-stationary co-variance
• Functions that have different behaviour in different parts of

domain

Ek KTH
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Co-variances in practice

6

[K]ij = k(xi ,xj) (60)

6/Lecture7/covariance.py
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Co-variances in practice

Summary
• Covariance functions encodes your preference in function

behavior
• Choosing the right co-variance is very important
• Ask yourself what do you know about the variations in the data

Ek KTH
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Assignment
You should now be able to do Task 2.2 of the Assignment

Ek KTH
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Learning in Gaussian Processes6

Hyper-parameters
• Prior has parameters

I referred to as hyper-parameters
I SE have lengthscale and variance

• Learning in GPs implies inferring hyper-parameters from the
model

6Murphy 2012, p. 15.2.4
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Learning in Gaussian Processes6

p(Y|X,θ) =

∫
p(Y|f)p(f|X,θ)df (61)

Marginal Likelihood
• We are not interested in f directly
• Marginalise out f!
• Gaussian marginal is gaussian
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6Murphy 2012, p. 15.2.4
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Kernels Gaussian Processes References

Learning in Gaussian Processes6

p(Y|X,θ) =

∫
p(Y|f)p(f|X,θ)df (63)

Marginal Likelihood
• We are not interested in f directly
• Marginalise out f!
• Gaussian marginal is gaussian
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Learning in Gaussian Processes6

Learning
• Type-II Maximum Likelihood

θ̂ = argmaxθp(Y|X,θ) (64)

• How is this different to a normal ML estimate?
• Lots of exponentials in objective implies working in log-space

I Logarithm monotonic function⇒ does not alter the location of
extreme points of a function

I Minimisation of negative log() rather than maximisation of log()
purely practical

6Murphy 2012, p. 15.2.4
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Learning
• Type-II Maximum Likelihood

θ̂ = argmaxθp(Y|X,θ) (68)

• How is this different to a normal ML estimate?
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Learning in Gaussian Processes6

argmaxθp(Y|X,θ) = argminθ − log (p(Y|X,θ)) = argminθL(θ) (69)

L(θ) =
1
2

yTK−1y +
1
2

log|K|+ N
2

log(2π) (70)

• Can be minimised using gradient based methods
• Data-fit: 1

2yTK−1y

• Complexity: 1
2 log|K|
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Learning in Gaussian Processes6

argmaxθp(Y|X,θ) = argminθ − log (p(Y|X,θ)) = argminθL(θ) (71)

L(θ) =
1
2

yTK−1y +
1
2

log|K|+ N
2

log(2π) (72)

• Can be minimised using gradient based methods
• Data-fit: 1

2yTK−1y

• Complexity: 1
2 log|K|
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Learning in Gaussian Processes6

argmaxθp(Y|X,θ) = argminθ − log (p(Y|X,θ)) = argminθL(θ) (73)

L(θ) =
1
2

yTK−1y +
1
2

log|K|+ N
2

log(2π) (74)

• Can be minimised using gradient based methods
• Data-fit: 1
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• Complexity: 1
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Summary
• Kernels are covariance functions of data-points
• Gaussian processes are priors over functions
• GP ’s allows us to average over all possible functions
• Nothing different compared to Lecture 6, just a different prior!
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Next Time

Lecture 8
• November 27th 13-15 E2
• Learning Representations

I regression with unknown input

• Image of kernel induced
representations

• Complete assignment Task
2.1 and 2.2

Ek KTH
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e.o.f.
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