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Last Lecture
• Representation Learning

I Same story as before
I Priors even more important
I PPCA
I GP-LVM

• Quickly: Multidimensional
Scaling
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Sensory Data

What we are doing
• Sensory representation

I Capturing process
I Pixels, Waveforms

• Degrees of freedom and
dimensionality
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Image data
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Image data

• Parametrisation
• Degrees of Freedom
• Generating parameters
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Motivation
• Want to re-parametrise data
• Computational efficiency
• Discover “data-driven” degrees of freedom

I Unravel data-manifold

• Interpretability
• Generalisation
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Latent Variable Models1

p(X) (1)

• We have observed some data X
• Lets assume that X ∈ RN×d have been generated from

Z ∈ RN×q

• Z - latent variable
• f - generative mapping

1Murphy 2012, p. 12.
Ek KTH
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Latent Variable Models1

p(X|f ,Z) (2)
f : Z→ X (3)

• We have observed some data X
• Lets assume that X ∈ RN×d have been generated from

Z ∈ RN×q

• Z - latent variable
• f - generative mapping

1Murphy 2012, p. 12.
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Hierarchical Models Summary References

Latent Variable Models1

p(X|f ,Z) (4)
f : Z→ X (5)

• We have observed some data X
• Lets assume that X ∈ RN×d have been generated from

Z ∈ RN×q

• Z - latent variable
• f - generative mapping

1Murphy 2012, p. 12.
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Hierarchical Models Summary References

Latent Variable Models1

p(X|f ,Z) (6)
f : Z→ X (7)

• We have observed some data X
• Lets assume that X ∈ RN×d have been generated from

Z ∈ RN×q

• Z - latent variable
• f - generative mapping
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WTF?

The strength of Priors
• Encodes prior belief
• This can also be seen as a preference

I Given several perfectly valid solutions which one do i prefer
I Regularises solution space

• Latent variable models what do we prefer?
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Factor Analysis2

xi = Wzi + ε (8)
ε ∼ N (0,Ψ) (9)

• Assume the generating mapping to be linear
• For regression we assumed that we knew the inputs Z
• Now we do not

2Murphy 2012, p. 12.1.1.
Ek KTH
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Factor Analysis2

xi = Wzi + ε (12)
p(X|Z,θ) = N (WZ,Ψ)) (13)

p(Z) = N (µ0,Σ0) (14)

• Assume the generating mapping to be linear
• For regression we assumed that we knew the inputs Z
• Now we do not⇒ specify a prior

2Murphy 2012, p. 12.1.1.
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Factor Analysis2

p(X|θ) =

∫
p(X|Z,θ)p(Z)dZ = (15)

= N (Wµ0 + µ,Ψ + WΣ0WT) (16)

• Z and W are related
• Integrate out Z

I pick µ0 = 0, Σ0 = I
• Low dimensional density model of X

I O(QD) compared to O(D2)

2Murphy 2012, p. 12.1.1.
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Factor Analysis2

p(X|θ) =

∫
p(X|Z,θ)p(Z)dZ = (17)

= N (Wµ0 + µ,Ψ + WΣ0WT) (18)

= N (µ,Ψ + WWT) (19)

• Z and W are related
• Integrate out Z

I pick µ0 = 0, Σ0 = I
• Low dimensional density model of X

I O(QD) compared to O(D2)
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Factor Analysis2

W̃ = WR (23)

p(X|θ) = N (µ,Ψ + WRRTWT) (24)

= N (µ,Ψ + WWT) (25)
(26)

Identifiability
• The marginal likelihood is invariant to a rotation

I no unique solution
I model is the same but interpretation tricky

2Murphy 2012, p. 12.1.1.
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Factor Analysis2

WML = argmaxWp(X|θ) (27)

ε ∼ N (0, σ2I) (28)

Probabilistic PCA
• Dimensions of X independent given Z

I W orthogonal matrix

• Closed form solution Murphy 2012, p. 12.2.2

2Murphy 2012, p. 12.1.1.
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Factor Analysis2

WML = argmaxWp(X|θ) (29)

ε ∼ N (0, σ2I) (30)

WML = Uq(Λ− σ2I)
1
2 (31)

S = UΛUT (32)

Probabilistic PCA
• Dimensions of X independent given Z

I W orthogonal matrix

• Closed form solution Murphy 2012, p. 12.2.2
2Murphy 2012, p. 12.1.1.
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Factor Analysis2

Summary
• Factor Analysis is a linear continous latent variable model
• Solution not unique
• PCA is Factor Analysis with two assumptions

I factor loadings orthogonal WTW = I
I noise free case ε = limσ2→0σ

2I

• PCA is incredibly useful but its important to know what you are
assuming, the probabilistic formulation allows you to do just that

2Murphy 2012, p. 12.1.1.
Ek KTH
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Gaussian Process Latent Variable Models

History repeats itself
• In PPCA we assumed no uncertainty in the mapping
• We can use GPs over mapping
• Gaussian Process Latent Variable Model [Lawrence 2005]
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History repeats itself
• In PPCA we assumed no uncertainty in the mapping
• We can use GPs over mapping
• Gaussian Process Latent Variable Model [Lawrence 2005]
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Gaussian Process Latent Variable Models

p(X|f,Z, θ) (33)

• In PPCA we marginalised out Z and optimised for W
• Not possible for a general GP

Ek KTH
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Gaussian Process Latent Variable Models

GP-LVM
• General co-variance function

(Ex. SE)
• Z appears non-linearly in

relation to X
• Marginalisation of Z

intractable
X

f

Z

θ

Ek KTH
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Gaussian Process Latent Variable Models

argmaxZ,θp(X|Z, θ)p(Z) (34)

p(X|Z, θ) =

∫
p(X|f)p(f|Z, θ)df (35)

p(Z) = N (0, I) (36)

• GP-prior sufficiently regularises objective
• Need to set dimensionality of Z

Ek KTH
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Gaussian Process Latent Variable Models

• You can add different priors on latent representations
I Topological
I Dynamic GP and a GP
I Classification

• Any preference you can formulate as a prior

Ek KTH
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Gaussian Process Latent Variable Models

zt+1 = g(zt ) + εz (37)
g ∼ GP(0, k(zi , zj)) (38)

• You can add different priors on latent representations
I Topological
I Dynamic GP and a GP
I Classification

• Any preference you can formulate as a prior
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• You can add different priors on latent representations
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Multidimensional Scaling

• N entities with proximity relations δij

• Must be metric
• Find embedding Y = [y1, . . . ,yN ]T to minimize

EMDS = ||D−∆||F{
Dij = ||yi − yj ||L2
∆ij = δij

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Hierarchical Models Summary References

||A||F =
√

trace
(
AAT

)
=

√√√√
N∑

i=1

λ2
i

||D−∆||F =

{
∆ = VΛVT ⇒ ∆ =

N∑

i=1

λivivT
i

}
=

= ||D−
N∑

i=1

λivivT
i ||F = ||

d∑

i=1

qivivT
i −

N∑

i=1

λivivT
i ||F =

= ||
d∑

i=1

(qi − λi)vivT
i −

N∑

i=d+1

λivivT
i ||F

Choose D = A→d ⇒ EMDS =
√∑N

i=d+1 λ
2
i
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Multidimensional Scaling

Generate geometrical configuration Y that could generate D

1. Convert distance matrix D to Gram matrix G = YYT

Proof

2. Diagonalise Gram matrix G

G = YYT = VΛVT =
(

VΛ
1
2

)(
Λ

1
2 VT

)
=

=
(

VΛ
1
2

)(
V
(

Λ
1
2

)T
)T

=
(

VΛ
1
2

)(
VΛ

1
2

)T

3. Chose Y = VΛ
1
2

4. Dimension of Y: rank(YYT ) = rank(G) = rank(D) = d

PCA Equivalence

Ek KTH
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Non linearities

Manifold
• Generalisation of low

dimensional object embedded
in high dimensional space

• Similarity?
• Local similarity
• Extend local similarity to

global

Ek KTH
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Non linearities

Definition
“In mathematics, a manifold is a topological space that near each
point resembles Euclidean space”a

ahttp://en.wikipedia.org/wiki/Manifold
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Non linearities

Ek KTH
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Proximity Graph

1. Identify neighbors of each data point xi ∈ N(xj)

2. Build graph P =



 X︸︷︷︸

vertexset

, W︸︷︷︸
edgeset





I Put edges between vertices’s in neighborhood
I Assume P connected (and in most cases symmetric)

3. Objective: Complete P to make it fully connected
4. Different algorithms have different strategies

I What are the edge weights?
I How to complete P

Ek KTH
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Maximum Variance Unfolding

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2321

Any “fold” of the manifold between two points will decrease the
Euclidean distance between the points while the Manifold distance
remains constant

Ek KTH
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Maximum Variance Unfolding
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optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
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As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
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strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
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space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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If manifold is maximally stretched between two points the Eu-
clidean distance will equal the Manifold distance

Ek KTH
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Maximum Variance Unfolding

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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Maximise all pairwise distance outside local neighborhood (upper
bound)

max
N∑

i=1

N∑

j=1

||yi − yj ||2L2

⇒ max(trace(K))

Proof

Ek KTH
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Maximum Variance Unfolding: Example3
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Maximum Variance Unfolding: Example3
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Outline
• Hierarchical Models

I motivation
I history
I neural networks
I deep models
I Why is this exciting?

• Summary of my part
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f :X→ Y (39)

Problem set-up
• Some data X (input)
• Some task Y (output)
• Estimate mapping from data
• Using a hierarchy
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f :X→ Y (40)
X→ H1 → H2 → . . .→ Y (41)

Problem set-up
• Some data X (input)
• Some task Y (output)
• Estimate mapping from data
• Using a hierarchy

Ek KTH
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Standing on the shoulders of giants

Deep Learning and Neural Networks

Ek KTH
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Hierarchical Models

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Hierarchical Models Summary References

Hierarchical Models

History 1940-1990
• Artificial Neuron McCulloch and Pitts 1943 Rosenblatt 1958
• Only linear functions Minsky and Papert 1969
• Multi-layered Perceptron Rumelhart et al. 1986
• Back-propagation

Ek KTH
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Hierarchical Models

yi = ρ




N∑

j=0

wijxj


 (42)

ρ(t) =
1

1 + e−t (43)

Artificial Neuron
• xj signal j into neuron i
• wi j weight of signal from j
• ρ activation function

Ek KTH
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Hierarchical Models
Layer-wise Pre-training [Hinton et al., 2006]

Finally, fine-tune labeled objective P(y |x) by Backpropagation

x1 x2 x3

h1 h2 h3

h01 h02 h03

y

Predict f(x)

Adjust weights

12/45

Ek KTH
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Hierarchical Models
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Hierarchical Models

History 2004-2010
• Vanishing Gradients
• Restricted Boltzman Machine
• Layer-wise training Hinton et al. 2006

I “If you want to do Computer Vision first learn Computer Graphics”

• Allows for unlabled data

Ek KTH
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Hierarchical ModelsLayer-wise Pre-training [Hinton et al., 2006]

First, train one layer at a time, optimizing data-likelihood objective P(x)

x1 x2 x3

h1 h2 h3

h01 h02 h03

y

Train Layer2

Keep Layer1 fixed

11/45
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Hierarchical Models

History 2010-
• Heuristic structures

I Convolutional Neural Networks

• Big-Data
• Infrastructural changes

I GPUs
I Distributed computations

Ek KTH
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Hierarchical Models
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Hierarchical Models
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Hierarchical Models
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Hierarchical Models
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How to proceed
• Very active field of research
• Very impressive results

I on some tasks

• Some science and lots of engineering
• I’ll try to give you a flavour of the field
• ... and my opinions
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• Very impressive results

I on some tasks

• Some science and lots of engineering
• I’ll try to give you a flavour of the field
• ... and my opinions
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Revival of NN
• Back-prop does not handle

depth
• Depth requires more data
• Restricted Boltzmann

Machine
• Layer-wise training

Layer-wise Pre-training [Hinton et al., 2006]

Finally, fine-tune labeled objective P(y |x) by Backpropagation

x1 x2 x3

h1 h2 h3

h01 h02 h03

y

Predict f(x)

Adjust weights

12/45
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Restricted Boltzmann Machine4

p(x,h|θ) =
1

Z (θ)

R∏

r

K∏

k

ψrk (xr ,hk ) (44)

• Product of Experts vs. Mixtures of Experts
I Allows for “sharp” distributions

• Z (θ) forces normalisation
• Hidden units binary

4Murphy 2012, p. 27.7.
Ek KTH
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Restricted Boltzmann Machine4

Restricted Boltzmann Machine (RBM)

RBM is a simple energy-based model: p(x , h) = 1
Z✓

exp (�E✓(x , h))

I with only h-x interactions: E✓(x , h) = �xTWh � bT x � dTh
I here, we assume hj and xi are binary variables
I normalizer: Z✓ =

P
(x,h) exp(�E✓(x , h)) is called partition function

x1 x2 x3

h1 h2 h3

Example:
I Let weights (h1, x1), (h1, x3) be positive, others be zero, b = d = 0.
I Then this RBM defines a distribution over [x1, x2, x3, h1, h2, h3] where

p(x1 = 1, x2 = 0, x3 = 1, h1 = 1, h2 = 0, h3 = 0) has high probability

16/45

4Murphy 2012, p. 27.7.
Ek KTH
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Restricted Boltzmann Machine4

p(h|x, θ) =
∏

k

p(hk |x, θ) (45)

p(x|h, θ) =
∏

r

p(xr |h, θ) (46)

• Variables are conditionally independent
• Learn θ using gradient based means

4Murphy 2012, p. 27.7.
Ek KTH
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Restricted Boltzmann Machine4

Binary RBM

p(x,h|θ) =
1

Z (θ)
e−E(x,h;θ) (47)

E(x,h; θ) = −
R∑

r

K∑

k

xr hkW̃rk −
R∑

r

xr br −
K∑

k

hkck (48)

p(h|x, θ) =
K∏

k

p(hk |x, θ) =
K∏

k

Ber(hk |sigm(w:,kx)) (49)

E[h|x, θ] = sigm(WTx) (50)
E[x|h, θ] = sigm(Wh) (51)

4Murphy 2012, p. 27.7.
Ek KTH
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Deep Belief Networks5

• Stack several RBMs
• Layer-wise independence
• Each RBM works as a prior

for the next level
• “If you want to do Computer

Vision first learn Computer
Graphics”

Deep Belief Nets (DBN) = Stacked RBM

x1 x2 x3

h1 h2 h3

h01 h02 h03

h001 h002 h003

Layer1 RBM

Layer2 RBM

Layer3 RBM
DBN defines a probabilistic
generative model p(x) =P

h,h0,h00 p(x |h)p(h|h0)p(h0, h00)
(top 2 layers is interpreted as a
RBM; lower layers are directed
sigmoids)

Stacked RBMs can also be used
to initialize a Deep Neural
Network (DNN)

23/45

5Murphy 2012, p. 28.2.3.
Ek KTH
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Auto-encoders6
Auto-Encoders: simpler alternatives to RBMs

x1 x2 x3

h1 h2

x 01 x 02 x 03

Encoder: h = �(Wx + b)

Decoder: x 0 = �(W 0h + d)

Encourage h to give small reconstruction error:

e.g. Loss =
P

m ||x (m) � DECODER(ENCODER(x (m)))||2
Reconstruction: x 0 = �(W 0�(Wx + b) + d)

This can be trained with the same Backpropagation algorithm for
2-layer nets, with x (m) as both input and output

27/45

6Vincent et al. 2010.
Ek KTH
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Auto-encoders6Denoising Auto-Encoders

x̃1 x̃2 x̃3

h1 h2

x 01 x 02 x 03

x̃ = x+ noise

Encoder: h = �(Wx̃ + b)

Decoder: x 0 = �(W 0h + d)

1 Perturb input data x to x̃ using invariance from domain knowledge.

2 Train weights to reduce reconstruction error with respect to original
input: ||x � x 0||

31/45

6Vincent et al. 2010.
Ek KTH
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Auto-encoders6Stacked Auto-Encoders (SAE)

The encoder/decoder gives same form p(h|x), p(x |h) as RBMs, so
can be stacked in the same way to form Deep Architectures

x1 x2 x3 x4

h1 h2 h3

h01 h02

y

Layer1 Encoder

Layer2 Encoder

Layer3 Encoder

Unlike RBMs, Auto-encoders are deterministic.
I h = �(Wx + b), not p(h = {0, 1}) = �(Wx + b)
I Disadvantage: Can’t form deep generative model
I Advantage: Fast to train, and useful still for Deep Neural Nets

28/45

6Vincent et al. 2010.
Ek KTH
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Convolutional Neural Networks7

Very structured architecture allows for non-layerwise training

7Berkely Caffe

Ek KTH

DD2434 - Advanced Machine Learning

http://caffe.berkeleyvision.org
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Why8

The Promise of Deep Architectures

Understanding in AI requires
high-level abstractions, modeled
by highly non-linear functions

These abstractions must
disentangle factors of variation
in data (e.g. 3D pose, lighting)

Deep Architecture is one way to
achieve this: each intermediate
layer is a successively higher
level abstraction

(*Example from [Bengio, 2009])

4/45

8Bengio et al. 2013.
Ek KTH
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Why8

8Bengio et al. 2013.
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Why8

“It’s true there’s been a lot of work on trying to apply
statistical models to various linguistic problems. I think there
have been some successes, but a lot of failures. There is a
notion of success which I think is novel in the history of
science. It interprets success as approximating unanalyzed
data.”

[Noam Chomsky]

8Bengio et al. 2013.
Ek KTH
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Why8

Carls Rant
• These things clearly works
• The science is not to make them work but Why they work
• Quickest short-term progress is often not reached by principles
• We run the risk of disapointing a lot of people by getting lost

8Bengio et al. 2013.
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Deep Gaussian Processes9

• Why does a probabilistic model work?
• A good model has sensible priors
• Samples from priors tells us what we prefer to model
• What are hierarchical priors?

9Duvenaud et al. 2014.
Ek KTH
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Deep Gaussian Processes9

f (x) =
1
K

K∑

i

wihi(x) = wTh(x) (52)

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

f (x) =
1
K

K∑

i

wihi(x) = wTh(x) (53)

= wTh(2)(h(1)(x)) (54)

k1(xi ,xj) = h(xi)
Th(xj) (55)

k2(xi ,xj) = [h(2)(h(1)(xi))]Th(2)(h(1)(xj)) (56)

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

f (x) =
1
K

K∑

i

wihi(x) = wTh(x) (57)

= wTh(2)(h(1)(x)) (58)

k1(xi ,xj) = h(xi)
Th(xj) (59)

k2(xi ,xj) = [h(2)(h(1)(xi))]Th(2)(h(1)(xj)) (60)

k(xi ,xj) has closed form for SE kernel

kL+1(xi ,xj) = ekL(xi ,xj )−1 (61)

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

Deep GPs as infinitely wide parametric nets

x1

x2

x3

h(1)
1

h(1)
2

h(1)
1

h(2)
1

h(2)
2

h(2)
1

h(3)
1

h(3)
2

h(3)
1

f (1)
1

f (1)
2

f (1)
3

f (2)
1

f (2)
2

f (2)
3

f (3)
1

f (3)
2

f (3)
3

Inputs

x

Fixed

f(1)(x)

Random
Fixed

f(1:2)(x)

Random
Fixed

Random

y

...
...

...

I Infinitely-wide fixed feature maps alternating with finite
linear information bottlenecks:

h(`)(x) = �
�
b(`) +

⇥
V(`)W(`�1)⇤ h(`�1)(x)

�

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−2

−1.5

−1

−0.5

0

0.5

1
Layer 1 Compostion

x

1 Layer

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−1.5

−1

−0.5

0
Layer 2 Compostion

x

2 Layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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9Duvenaud et al. 2014.
Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Hierarchical Models Summary References

Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
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−0.11

−0.1
Layer 9 Compostion

x

9 Layers
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Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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0
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x

6 Layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
0.2

0.4

0.6

0.8

1
Layer 7 Compostion

x

7 Layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−1.8

−1.7

−1.6

−1.5

−1.4

−1.3
Layer 8 Compostion

x

8 Layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

A simple fix

I Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)

Input-connected architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)
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Layer 1 Compostion

x

1 layer
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
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2 layers
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)
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3 layers
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
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0

1

2

3
Layer 4 Compostion

x

4 layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−4

−2

0

2

4
Layer 5 Compostion

x

5 layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−3

−2

−1

0

1
Layer 6 Compostion

x

6 layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
Layer 7 Compostion

x

7 layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−2

−1

0

1

2

3
Layer 8 Compostion

x

8 layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
Layer 9 Compostion

x

9 layers

9Duvenaud et al. 2014.
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Deep Gaussian Processes9

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−2

−1

0

1

2
Layer 10 Compostion

x

10 layers

Greater variety of derivatives.
9Duvenaud et al. 2014.
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Deep Gaussian Processes9

• Priors allows us to analyse design before seeing data
• Deep GPs shows what depth provides

I non-stationary functions

• Allows for deep models on small data-sets
• Shed light on some current design heuristics

9Duvenaud et al. 2014.
Ek KTH
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Future

• If we have enough data we do not need priors (Laplace)
• which interesting problems do we have that for?
• no priors (or not formulated priors) makes us headless chickens
• when we need a lot of data to solve a simple problem you

should be worried
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Future
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Introduction

Recap

Hierarchical Models

Summary

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Hierarchical Models Summary References

End of Part 2
• Bayesian modelling

I specify likelihood and prior
I inference through posterior

• Strength of priors
• Sensible assumptions and approximations (MAP, ML,

Variational)
• We have been very abstract on purpose to focus on

understanding learning [Chomsky]
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What do you need to do?
• Translate to your own problems/data
• How have you solved problems before, thing of the

assumptions you made
• What are sensible priors/likelihoods/structures
• What assumptions do I need to make?
• Don’t be afraid of being abstract, when you get too close to the

problem you often make assumptions that you are not aware of
• Get your hands dirty, i.e. develop your own priors for developing

models

Ek KTH
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Take home message
• Machine learning is really simple, it should be as even Carl

have learnt quite a few things in life
• Formulating learning so that it can be externalised might be

very hard and really involved but that is just labour
• Make assumptions, lots of them, that is the basis of learning,

but be aware of them
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e.o.f.
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My Research

Motivation Introduction Supervised Factorised Representation Learning Experiments References

Non-parametric IBFA3

X

f (1) f (2)

Y(1) Y(2)

✓(1) ✓(2)

⌃(1) ⌃(2)

W (1) W (2)

3Damianou et al. 2012.
Ek KTH

Feature Selection in GPLVM’s

Ek KTH

DD2434 - Advanced Machine Learning



Introduction Recap Hierarchical Models Summary References

References I

Kevin P Murphy. Machine Learning: A Probabilistic
Perspective. The MIT Press, 2012. ISBN: 0262018020,
9780262018029.

Neil D Lawrence. “Probabilistic non-linear principal
component analysis with Gaussian process latent variable
models”. In: The Journal of Machine Learning Research 6
(2005), pp. 1783–1816. URL:
http://dl.acm.org/citation.cfm?id=1194904.

Ek KTH

DD2434 - Advanced Machine Learning

http://dl.acm.org/citation.cfm?id=1194904


Introduction Recap Hierarchical Models Summary References

References II

Warren S McCulloch and Walter Pitts. “A logical calculus of
the ideas immanent in nervous activity”. English. In: The
Bulletin of Mathematical Biophysics 5.4 (Dec. 1943),
pp. 115–133. DOI: 10.1007/BF02478259. URL:
http://link.springer.com/10.1007/BF02478259.

F Rosenblatt. “The perceptron: a probabilistic model for
information storage and organization in the brain”. In:
Psychology Review (Nov. 1958), pp. 386–408. URL:
http://www.ncbi.nlm.nih.gov/pubmed/13602029.

Ek KTH

DD2434 - Advanced Machine Learning

http://dx.doi.org/10.1007/BF02478259
http://link.springer.com/10.1007/BF02478259
http://www.ncbi.nlm.nih.gov/pubmed/13602029


Introduction Recap Hierarchical Models Summary References

References III

Marvin Minsky and Seymour Papert. “Perceptrons. An
Introduction to Computational Geometry. ” English. In:
Science 165.3895 (Aug. 1969), pp. 780–782. DOI:
10.1126/science.165.3895.780. URL:
http://www.sciencemag.org/cgi/doi/10.1126/
science.165.3895.780.

D E Rumelhart et al. “Learning representations by
back-propagating errors”. In: Nature 323.9 (Oct. 1986),
pp. 533–536. URL: http://www.iro.umontreal.ca/
˜pift6266/A06/refs/backprop_old.pdf.

Ek KTH

DD2434 - Advanced Machine Learning

http://dx.doi.org/10.1126/science.165.3895.780
http://www.sciencemag.org/cgi/doi/10.1126/science.165.3895.780
http://www.sciencemag.org/cgi/doi/10.1126/science.165.3895.780
http://www.iro.umontreal.ca/~pift6266/A06/refs/backprop_old.pdf
http://www.iro.umontreal.ca/~pift6266/A06/refs/backprop_old.pdf


Introduction Recap Hierarchical Models Summary References

References IV

Geoffrey E Hinton et al. “A Fast Learning Algorithm for Deep
Belief Nets”. English. In: Neural Computation 18.7 (July
2006), pp. 1527–1554. DOI:
10.1162/jmlr.2003.4.7-8.1235. URL:
http://www.mitpressjournals.org/doi/abs/10.
1162/neco.2006.18.7.1527.

Pascal Vincent et al. “Stacked Denoising Autoencoders:
Learning Useful Representations in a Deep Network with a
Local Denoising Criterion”. In: The Journal of Machine
Learning Research 11 (Mar. 2010), pp. 3371–3408. URL:
http://dl.acm.org/citation.cfm?id=1756006.
1953039.

Ek KTH

DD2434 - Advanced Machine Learning

http://dx.doi.org/10.1162/jmlr.2003.4.7-8.1235
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2006.18.7.1527
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2006.18.7.1527
http://dl.acm.org/citation.cfm?id=1756006.1953039
http://dl.acm.org/citation.cfm?id=1756006.1953039


Introduction Recap Hierarchical Models Summary References

References V

Yoshua Bengio et al. “Representation learning: A review and
new perspectives”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 35 (Aug. 2013),
pp. 1798–1828. ISSN: 0162-8828. URL:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=6472238.

David Duvenaud et al. Avoiding pathologies in very deep
networks. 2014. URL: http://jmlr.org/
proceedings/papers/v33/duvenaud14.pdf.

Ek KTH

DD2434 - Advanced Machine Learning

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472238
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472238
http://jmlr.org/proceedings/papers/v33/duvenaud14.pdf
http://jmlr.org/proceedings/papers/v33/duvenaud14.pdf


Appendix

Appendix

Ek KTH

DD2434 - Advanced Machine Learning



Appendix

Similar Matrices: Self-Similarity

A = IAI−1 = I−1AI

Return
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Similar Matrices: Symmetry

A ∼ B⇒ B = P−1AP
detB = det

(
P−1AP

)
= det(P−1)det(A)det(P) =

= det(A)det(P−1)det(P) = det(A)
1

det(P)
det(P) =

det(B)

Return
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Similar Matrices: Trace

A ∼ B⇒ B = P−1AP
trace(B) = trace(P−1AP) = {trace(AB) = trace(AB)} =

= trace
((

PP−1
)

A
)

= trace(A)

Return
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Similar Matrices: Power

A ∼ B⇒ B = P−1AP

B2 =
(

P−1AP
)2

=
(

P−1AP
)(

P−1AP
)

=

=
(

P−1A
)

PP−1
︸ ︷︷ ︸

=I


 (AP) =

= P−1AAP = P−1A2P

Prove further powers by induction over exponent

Return
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Similar Matrices: Invertability

A ∼ B⇒ B = P−1AP
⇒ det(A) = det(B)

A−1 Exists if det(A) 6= 0

det(B) 6= 0 ⇐⇒ det(A) 6= 0

Return
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Aij =
N∑

k=1

VikDkk

(
VT
)

kj
=

N∑

k=1

(vk )i λk (vk )j

=
N∑

k=1

(
λkvkvT

k

)
ij

Return
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Rank Approximation

||A− B||F = ||
N∑

i=1

λivivT
i −

N∑

i=1

qivivT
i ||F =

= ||
N∑

i=1

(λi − qi)vivT
i || =

=



((λi − qi)vi vT

i )vi︸ ︷︷ ︸
=1

= (λi − qi)vi



 =

=

√√√√
N∑

i=1

(λi − qi)2 Return
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Multidimensional Scaling

Define:

d2
ij =

d∑

k=1

(xki − xkj)
2 = xT

i xi + xT
j xj − 2xixj

gij =
d∑

k=1

xkixkj = xT
i xj

⇒ d2
ij = gii + gjj − 2gij

Centering:
N∑

i=1

gij =
N∑

i=1

xT
i xj = (

N∑

i=1

xT
i )

︸ ︷︷ ︸
=0

xj = 0
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Multidimensional Scaling

Want to Express G in terms of D

gij =
1
2

(gii + gjj − d2
ij )

1
N

N∑

i=1

d2
ij = gjj +

1
N

N∑

i=1

gii

1
N2

N∑

i=1

N∑

j=1

d2
ij =

2
N

N∑

i=1

gii

⇒ gij =
1
2


 1

N




N∑

k=1

d2
kj +

N∑

k=1

d2
ik −

1
N

N∑

k=1

N∑

p=1
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PCA MDS Equivalence
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PCA MDS Equvalence

Enforce orthogonality
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PCA MDS Equivalence
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Maximum Variance Unfolding: Objective
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Maximum Variance Unfolding: Objective
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Maximum Variance Unfolding: Centering
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Maximum Variance Unfolding: Centering
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Spectral Theorem
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Spectral Theorem
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Maximum Variance Unfolding: Objective
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Maximum Variance Unfolding: Centering
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Maximum Variance Unfolding: Centering
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