DD2434 - Advanced Machine Learning

 Hierarchical ModelsCarl Henrik Ek
\{chek\}@csc.kth.se
Royal Institute of Technology

December 1st, 2014

Last Lecture

- Representation Learning
- Same story as before
- Priors even more important
- PPCA
- GP-LVM
- Quickly: Multidimensional Scaling

Sensory Data

What we are doing

- Sensory representation
- Capturing process
- Pixels, Waveforms

Degrenes of frendom and dimensionality

Sensory Data

What we are doing

- Sensory representation
- Capturing process
- Pixels, Waveforms

Degrees of freedom and
dimensionality

Sensory Data

What we are doing

- Sensory representation
- Capturing process
- Pixels, Waveforms
- Degrees of freedom and dimensionality

Image data

Image data

Image data

Image data

Image data

Image data

- Parametrisation
- Degrees of Freedom
- Generating parameters

Motivation

- Want to re-parametrise data
- Computational efficiency
- Discover "data-driven" degrees of freedom
- Unravel data-manifold
- Interpretability
- Generalisation

Latent Variable Models ${ }^{1}$

$$
p(\mathbf{X})
$$

- We have observed some data \mathbf{X}
${ }^{1}$ Murphy 2012, p. 12.

Latent Variable Models ${ }^{1}$

$$
\begin{array}{r}
p(\mathbf{X} \mid f, \mathbf{Z}) \\
\mathbf{f}: \mathbf{Z} \rightarrow \mathbf{X} \tag{3}
\end{array}
$$

- We have observed some data \mathbf{X}
- Lets assume that $\mathbf{X} \in \mathbb{R}^{N \times d}$ have been generated from $\mathbf{Z} \in \mathbb{R}^{N \times q}$
latent variable
generative mapping
${ }^{1}$ Murphy 2012, p. 12.

Latent Variable Models ${ }^{1}$

$$
\begin{array}{r}
p(\mathbf{X} \mid f, \mathbf{Z}) \\
\mathbf{f}: \mathbf{Z} \rightarrow \mathbf{X} \tag{5}
\end{array}
$$

- We have observed some data \mathbf{X}
- Lets assume that $\mathbf{X} \in \mathbb{R}^{N \times d}$ have been generated from $\mathbf{Z} \in \mathbb{R}^{N \times q}$
- \mathbf{Z} - latent variable
generative mapping
${ }^{1}$ Murphy 2012, p. 12.

Latent Variable Models ${ }^{1}$

$$
\begin{gather*}
p(\mathbf{X} \mid f, \mathbf{Z}) \tag{6}\\
\mathbf{f}: \mathbf{Z} \rightarrow \mathbf{X}
\end{gather*}
$$

- We have observed some data \mathbf{X}
- Lets assume that $\mathbf{X} \in \mathbb{R}^{N \times d}$ have been generated from $\mathbf{Z} \in \mathbb{R}^{N \times q}$
- Z - latent variable
- f-generative mapping
${ }^{1}$ Murphy 2012, p. 12.

WTF?

The strength of Priors

- Encodes prior belief
- This can also be seen as a preference
- Given several perfectly valid solutions which one do i prefer
- Regularises solution space
- Latent variable models what do we prefer?

Factor Analysis ${ }^{2}$

$$
\begin{align*}
\mathbf{x}_{i} & =\mathbf{W} \mathbf{z}_{i}+\epsilon \tag{8}\\
\epsilon & \sim \mathcal{N}(\mathbf{0}, \mathbf{\Psi}) \tag{9}
\end{align*}
$$

- Assume the generating mapping to be linear
- For regression we assumed that we knew the inputs \mathbf{Z} Now we do not

[^0]
Factor Analysis ${ }^{2}$

$$
\begin{align*}
\mathbf{x}_{i} & =\mathbf{W} \mathbf{z}_{i}+\epsilon \tag{10}\\
\epsilon & \sim \mathcal{N}(\mathbf{0}, \Psi) \tag{11}
\end{align*}
$$

- Assume the generating mapping to be linear
- For regression we assumed that we knew the inputs \mathbf{Z}
- Now we do not

[^1]
Factor Analysis ${ }^{2}$

$$
\begin{align*}
\mathbf{x}_{i} & =\mathbf{W} \mathbf{z}_{i}+\epsilon \tag{12}\\
p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\theta}) & =\mathcal{N}(\mathbf{W Z}, \mathbf{\Psi})) \tag{13}\\
p(\mathbf{Z}) & =\mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{0}}, \boldsymbol{\Sigma}_{\mathbf{0}}\right) \tag{14}
\end{align*}
$$

- Assume the generating mapping to be linear
- For regression we assumed that we knew the inputs \mathbf{Z}
- Now we do not \Rightarrow specify a prior

[^2]
Factor Analysis ${ }^{2}$

$$
\begin{align*}
p(\mathbf{X} \mid \boldsymbol{\theta}) & =\int p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\theta}) p(\mathbf{Z}) \mathrm{d} \mathbf{Z}= \tag{15}\\
& =\mathcal{N}\left(\mathbf{W} \mu_{0}+\boldsymbol{\mu}, \mathbf{\Psi}+\mathbf{W} \boldsymbol{\Sigma}_{0} \mathbf{W}^{\mathrm{T}}\right) \tag{16}
\end{align*}
$$

- Z and \mathbf{W} are related
- Integrate out Z

> Low dimensional density model of \mathbf{X} $-\mathcal{O}(Q D)$ compared to $\mathcal{O}\left(D^{2}\right)$

[^3]
Factor Analysis ${ }^{2}$

$$
\begin{align*}
p(\mathbf{X} \mid \boldsymbol{\theta}) & =\int p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\theta}) p(\mathbf{Z}) \mathrm{d} \mathbf{Z}= \tag{17}\\
& =\mathcal{N}\left(\mathbf{W} \mu_{0}+\boldsymbol{\mu}, \mathbf{\Psi}+\mathbf{W} \boldsymbol{\Sigma}_{0} \mathbf{W}^{\mathrm{T}}\right) \tag{18}\\
& =\mathcal{N}\left(\boldsymbol{\mu}, \mathbf{\Psi}+\mathbf{W} \mathbf{W}^{\mathrm{T}}\right) \tag{19}
\end{align*}
$$

- Z and \mathbf{W} are related
- Integrate out Z
- pick $\mu_{0}=0, \boldsymbol{\Sigma}_{0}=\mathbf{I}$

${ }^{2}$ Murphy 2012, p. 12.1.1.

Factor Analysis ${ }^{2}$

$$
\begin{align*}
p(\mathbf{X} \mid \boldsymbol{\theta}) & =\int p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\theta}) p(\mathbf{Z}) \mathrm{d} \mathbf{Z}= \tag{20}\\
& =\mathcal{N}\left(\mathbf{W} \boldsymbol{\mu}_{0}+\boldsymbol{\mu}, \mathbf{\Psi}+\mathbf{W} \boldsymbol{\Sigma}_{0} \mathbf{W}^{\mathrm{T}}\right) \tag{21}\\
& =\mathcal{N}\left(\boldsymbol{\mu}, \mathbf{\Psi}+\mathbf{W} \mathbf{W}^{\mathrm{T}}\right) \tag{22}
\end{align*}
$$

- Z and \mathbf{W} are related
- Integrate out Z
- pick $\mu_{0}=0, \Sigma_{0}=\mathbf{I}$
- Low dimensional density model of \mathbf{X}
- $\mathcal{O}(Q D)$ compared to $\mathcal{O}\left(D^{2}\right)$

[^4]
Factor Analysis ${ }^{2}$

$$
\begin{aligned}
\tilde{\mathbf{W}} & =\mathbf{W} \mathbf{R} \\
p(\mathbf{X} \mid \boldsymbol{\theta}) & =\mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Psi}+\mathbf{W R R}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}}\right) \\
& =\mathcal{N}\left(\boldsymbol{\mu}, \mathbf{\Psi}+\mathbf{W W}^{\mathrm{T}}\right)
\end{aligned}
$$

Identifiability

- The marginal likelihood is invariant to a rotation
- no unique solution
- model is the same but interpretation tricky

[^5]
Factor Analysis²

$$
\begin{align*}
\mathbf{W}_{M L} & =\operatorname{argmax}_{\mathbf{w}} p(\mathbf{X} \mid \theta) \tag{27}\\
\epsilon & \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) \tag{28}
\end{align*}
$$

Probabilistic PCA

- Dimensions of \mathbf{X} independent given \mathbf{Z}
- W orthogonal matrix

Closed form solution Murphy 2012, p. 12.2.2
${ }^{2}$ Murphy 2012, p. 12.1.1.

Factor Analysis ${ }^{2}$

$$
\begin{align*}
\mathbf{W}_{M L} & =\operatorname{argmax}_{\mathbf{W}} p(\mathbf{X} \mid \boldsymbol{\theta}) \tag{29}\\
\boldsymbol{\epsilon} & \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) \\
\mathbf{W}_{M L} & =\mathbf{U}_{q}\left(\Lambda-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}} \\
\mathbf{S} & =\mathbf{U} \wedge \mathbf{U}^{\mathrm{T}}
\end{align*}
$$

Probabilistic PCA

- Dimensions of \mathbf{X} independent given \mathbf{Z}
- W orthogonal matrix
- Closed form solution Murphy 2012, p. 12.2.2
${ }^{2}$ Murphy 2012, p. 12.1.1.

Factor Analysis ${ }^{2}$

Summary

- Factor Analysis is a linear continous latent variable model
- Solution not unique
- PCA is Factor Analysis with two assumptions
- factor loadings orthogonal $\mathbf{W}^{\mathrm{T}} \mathbf{W}=\mathbf{I}$
- noise free case $\epsilon=\lim _{\sigma^{2} \rightarrow 0} \sigma^{2} \mathbf{I}$
- PCA is incredibly useful but its important to know what you are assuming, the probabilistic formulation allows you to do just that

[^6]
Factor Analysis²

Summary

- Factor Analysis is a linear continous latent variable model
- Solution not unique
- PCA is Factor Analysis with two assumptions
- factor loadings orthogonal $\mathbf{W}^{\mathrm{T}} \mathbf{W}=\mathbf{I}$
- noise free case $\epsilon=\lim _{\sigma^{2} \rightarrow 0} \sigma^{2}$ I
- PCA is incredibly useful but its important to know what you are assuming, the probabilistic formulation allows you to do just that

[^7]
Gaussian Process Latent Variable Models

History repeats itself

- In PPCA we assumed no uncertainty in the mapping
- We can use $\mathcal{G P}$ s over mapping

Gaussian Process Latent Variable Models

History repeats itself

- In PPCA we assumed no uncertainty in the mapping
- We can use $\mathcal{G P}$ s over mapping
- Gaussian Process Latent Variable Model [Lawrence 2005]

Gaussian Process Latent Variable Models

$$
\begin{equation*}
p(\mathbf{X} \mid \mathbf{f}, \mathbf{Z}, \theta) \tag{33}
\end{equation*}
$$

- In PPCA we marginalised out \mathbf{Z} and optimised for \mathbf{W}
- Not possible for a general $\mathcal{G P}$

Gaussian Process Latent Variable Models

GP-LVM

- General co-variance function (Ex. SE)
- Z appears non-linearly in relation to \mathbf{X}
- Marginalisation of \mathbf{Z} intractable

Gaussian Process Latent Variable Models

$$
\begin{align*}
& \operatorname{argmax}_{\mathbf{Z}, \theta} p(\mathbf{X} \mid \mathbf{Z}, \theta) p(\mathbf{Z}) \tag{3}\\
& p(\mathbf{X} \mid \mathbf{Z}, \theta)=\int p(\mathbf{X} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{Z}, \theta) \mathrm{d} \mathbf{f} \tag{35}\\
& p(\mathbf{Z})=\mathcal{N}(\mathbf{0}, \mathbf{I})
\end{align*}
$$

(36)

- GP-prior sufficiently regularises objective
- Need to set dimensionality of \mathbf{Z}

Gaussian Process Latent Variable Models

- You can add different priors on latent representations
- Topological
- Dynamic GP and a GP
- Classification

Any preference you can formulate as a prior

Gaussian Process Latent Variable Models

$$
\begin{align*}
\mathbf{z}_{t+1} & =g\left(\mathbf{z}_{t}\right)+\epsilon_{z} \tag{37}\\
g & \sim \mathcal{G P}\left(\mathbf{0}, k\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right)\right) \tag{38}
\end{align*}
$$

- You can add different priors on latent representations
- Topological
- Dynamic GP and a GP

Any preference you can formulate as a prior

Gaussian Process Latent Variable Models

- You can add different priors on latent representations
- Topological
- Dynamic GP and a GP
- Classification

Any preference you can formulate as a prior

Gaussian Process Latent Variable Models

- You can add different priors on latent representations
- Topological
- Dynamic GP and a GP
- Classification
- Any preference you can formulate as a prior

Multidimensional Scaling

- N entities with proximity relations $\delta_{i j}$
- Must be metric
- Find embedding $\mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}\right]^{T}$ to minimize

$$
\begin{aligned}
E_{M D S}= & \|\mathbf{D}-\Delta\|_{F} \\
& \left\{\begin{array}{l}
\mathbf{D}_{i j}=\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{L 2} \\
\Delta_{i j}=\delta_{i j}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \|\mathbf{A}\|_{F}=\sqrt{\operatorname{trace}\left(\mathbf{A} \mathbf{A}^{T}\right)}=\sqrt{\sum_{i=1}^{N} \lambda_{i}^{2}} \\
& \|\mathbf{D}-\Delta\|_{F}=\left\{\Delta=\mathbf{V} \wedge \mathbf{V}^{T} \Rightarrow \Delta=\sum_{i=1}^{N} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right\}= \\
= & \left\|\mathbf{D}-\sum_{i=1}^{N} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right\|_{F}=\left\|\sum_{i=1}^{d} q_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}-\sum_{i=1}^{N} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right\|_{F}= \\
= & \left\|\sum_{i=1}^{d}\left(q_{i}-\lambda_{i}\right) \mathbf{v}_{i} \mathbf{v}_{i}^{T}-\sum_{i=d+1}^{N} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right\|_{F}
\end{aligned}
$$

Choose D $=\mathbf{A}_{\rightarrow d} \Rightarrow E_{M D S}=\sqrt{\sum_{i=d+1}^{N} \lambda_{i}^{2}}$

Multidimensional Scaling

Generate geometrical configuration \mathbf{Y} that could generate \mathbf{D}

1. Convert distance matrix D to Gram matrix $\mathbf{G}=\mathbf{Y} \mathbf{Y}^{T}$

Proof

2. Diagonalise Gram matrix G

$$
\begin{aligned}
\mathbf{G} & =\mathbf{Y} \mathbf{Y}^{T}=\mathbf{V} \wedge \mathbf{V}^{T}=\left(\mathbf{V} \Lambda^{\frac{1}{2}}\right)\left(\Lambda^{\frac{1}{2}} \mathbf{V}^{T}\right)= \\
& =\left(\mathbf{V} \Lambda^{\frac{1}{2}}\right)\left(\mathbf{V}\left(\Lambda^{\frac{1}{2}}\right)^{T}\right)^{T}=\left(\mathbf{V} \Lambda^{\frac{1}{2}}\right)\left(\mathbf{V} \Lambda^{\frac{1}{2}}\right)^{T}
\end{aligned}
$$

3. Chose $\mathbf{Y}=\mathbf{V} \wedge^{\frac{1}{2}}$
4. Dimension of $\mathbf{Y}: \operatorname{rank}\left(\mathbf{Y} \mathbf{Y}^{T}\right)=\operatorname{rank}(\mathbf{G})=\operatorname{rank}(\mathbf{D})=d$

Non linearities

Manifold

- Generalisation of low dimensional object embedded in high dimensional space

- Similarity?

- Local similarity
- Extend local simillarity to global

Non linearities

Definition

"In mathematics, a manifold is a topological space that near each point resembles Euclidean space"a

${ }^{\text {a h http://en.wikipedia.org/wiki/Manifold }}$

Non linearities

Definition

"In mathematics, a manifold is a topological space that near each point resembles Euclidean space"a
${ }^{\text {a h http://en.wikipedia.org/wiki/Manifold }}$

Non linearities

Definition

"In mathematics, a manifold is a topological space that near each point resembles Euclidean space"a

[^8]
Non linearities

Definition

"In mathematics, a manifold is a topological space that near each point resembles Euclidean space"a

[^9]
Non linearities

Definition

"In mathematics, a manifold is a topological space that near each point resembles Euclidean space"a

[^10]
Non linearities

Definition

"In mathematics, a manifold is a topological space that near each point resembles Euclidean space"a

[^11]
Non linearities

Manifold
 Generalisation of Iow
 dimensional object embedded in high dimensional space

- Similarity?

Local similarity

- Extend local similarity to
global

Non linearities

Manifold

- Generalisation of Iow
dimensional object embedded in high dimensional space
- Similarity?
- Local similarity

- Extend local similarity to global

Non linearities

Manifold
 - Generalisation of low
 dimensional object embedded in high dimensional space

- Similarity?
- Local similarity

Non linearities

Manifold
 Generalisation of low
 dimensional object embedded in high dimensional space

- Similarity?
- Local similarity
- Extend local similarity to global

Non linearities

Proximity Graph

1. Identify neighbors of each data point $\mathbf{x}_{i} \in N\left(\mathbf{x}_{\mathbf{j}}\right)$
2. Build graph $\mathbf{P}=\{\underbrace{\mathbf{X}}_{\text {vertexset }}, \underbrace{\mathbf{W}}_{\text {edgeset }}\}$

- Put edges between vertices's in neighborhood
- Assume \mathbf{P} connected (and in most cases symmetric)

3. Objective: Complete \mathbf{P} to make it fully connected
4. Different algorithms have different strategies

- What are the edge weights?
- How to complete \mathbf{P}

Maximum Variance Unfolding

Any "fold" of the manifold between two points will decrease the Euclidean distance between the points while the Manifold distance remains constant

Maximum Variance Unfolding

If manifold is maximally stretched between two points the Euclidean distance will equal the Manifold distance

Maximum Variance Unfolding

Maximise all pairwise distance outside local neighborhood (upper bound)

$$
\begin{aligned}
& \max \sum_{i=1}^{N} \sum_{j=1}^{N}\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{L 2}^{2} \\
\Rightarrow & \max (\operatorname{trace}(\mathbf{K}))
\end{aligned}
$$

Maximum Variance Unfolding: Example ${ }^{3}$

³/algos/mvu_embed.m

Maximum Variance Unfolding: Example ${ }^{3}$

[^12]
Maximum Variance Unfolding: Example ${ }^{3}$

³/algos/mvu_embed.m

Maximum Variance Unfolding: Example ${ }^{3}$

[^13]
Maximum Variance Unfolding: Example ${ }^{3}$

[^14]DD2434 - Advanced Machine Learning

Maximum Variance Unfolding: Example ${ }^{3}$

³/algos/mvu_embed.m

Maximum Variance Unfolding: Example ${ }^{3}$

³/algos/mvu_embed.m

Maximum Variance Unfolding: Example ${ }^{3}$

[^15]DD2434 - Advanced Machine Learning

Introduction

Recap

Hierarchical Models

Summary

Outline

- Hierarchical Models
- motivation
- history
- neural networks
- deep models
-Why is this exciting?
- Summary of my part

$$
f: \mathbf{X} \rightarrow \mathbf{Y}
$$

Problem set-up

- Some data X (input)
- Some task Y (output)
- Estimate mapping from data

- Using a hierarchy

$$
\begin{align*}
f & : \mathbf{X} \\
& \rightarrow \mathbf{Y} \tag{4}\\
\mathbf{X} & \rightarrow \mathbf{H}_{1} \rightarrow \mathbf{H}_{2} \rightarrow \ldots \rightarrow \mathbf{Y}
\end{align*}
$$

Problem set-up

- Some data X (input)
- Some task Y (output)
- Estimate mapping from data
- Using a hierarchy

Standing on the shoulders of giants

Deep Learning and Neural Networks

Hierarchical Models

Hierarchical Models

History 1940-1990

- Artificial Neuron McCulloch and Pitts 1943 Rosenblatt 1958
- Only linear functions Minsky and Papert 1969
- Multi-layered Perceptron Rumelhart et al. 1986
- Back-propagation

Hierarchical Models

$$
\begin{align*}
y_{i} & =\rho\left(\sum_{j=0}^{N} w_{i j} x_{j}\right) \tag{42}\\
\rho(t) & =\frac{1}{1+e^{-t}} \tag{43}
\end{align*}
$$

Artificial Neuron

- x_{j} signal j into neuron i
- $w_{i} j$ weight of signal from j
- ρ activation function

Hierarchical Models

Hierarchical Models

Hierarchical Models

History 2004-2010

- Vanishing Gradients
- Restricted Boltzman Machine
- Layer-wise training Hinton et al. 2006
- "If you want to do Computer Vision first learn Computer Graphics"
- Allows for unlabled data

Hierarchical Models

Hierarchical Models

History 2010-

- Heuristic structures
- Convolutional Neural Networks
- Big-Data
- Infrastructural changes
- GPUs
- Distributed computations

Hierarchical Models

Human: "A group of men playing Frisbee in the park."
Computer model: "A group of young people playing a game of Frisbee."

Hierarchical Models

Human: "A young hockey player playing in the ice rink."
Computer model: "Two hockey players are fighting over the puck."

Hierarchical Models

Human: "Three different types of pizza on top of a stove."
Computer model: "A pizza sitting on top of a pan on top of a stove."

Hierarchical Models

Google computer works out how to spot cats

A Google research team has trained a network of 1,000 computers wired up like a brain to recognise cats.

The team built a neural network, which mimics the working of a biological brain, that worked out how to spot pictures of cats in just three days.

The cat-spotting computer was created as part of a larger project to investigate machine learning.

Millions of images were used to train the neural network

How to proceed

- Very active field of research
- Very impressive results
- on some tasks
- Some science and lots of engineering
- I'll try to aive you a flavour of the field
- ... and my opinions

How to proceed

- Very active field of research
- Very impressive results
- on some tasks
- Some science and lots of engineering - I'll try to give you a flavour of the field - ... and my opinions

How to proceed

- Very active field of research
- Very impressive results
- on some tasks
- Some science and lots of engineering
- I'll try to give you a flavour of the field and my opinions

How to proceed

- Very active field of research
- Very impressive results
- on some tasks
- Some science and lots of engineering
- I'll try to give you a flavour of the field and my opinions

How to proceed

- Very active field of research
- Very impressive results
- on some tasks
- Some science and lots of engineering
- I'll try to give you a flavour of the field
- ... and my opinions

Revival of NN

- Back-prop does not handle depth
- Depth requires more data
- Restricted Boltzmann Machine
- Layer-wise training

Restricted Boltzmann Machine ${ }^{4}$

$$
\begin{equation*}
p(\mathbf{x}, \mathbf{h} \mid \theta)=\frac{1}{Z(\theta)} \prod_{r}^{R} \prod_{k}^{K} \psi_{r k}\left(x_{r}, h_{k}\right) \tag{44}
\end{equation*}
$$

- Product of Experts vs. Mixtures of Experts
- Allows for "sharp" distributions
- $Z(\theta)$ forces normalisation
- Hidden units binary

[^16]
Restricted Boltzmann Machine ${ }^{4}$

${ }^{4}$ Murphy 2012, p. 27.7.

Restricted Boltzmann Machine ${ }^{4}$

$$
\begin{align*}
& p(\mathbf{h} \mid \mathbf{x}, \theta)=\prod_{k} p\left(h_{k} \mid \mathbf{x}, \theta\right) \tag{45}\\
& p(\mathbf{x} \mid \mathbf{h}, \theta)=\prod_{r} p\left(x_{r} \mid \mathbf{h}, \theta\right) \tag{46}
\end{align*}
$$

- Variables are conditionally independent
- Learn θ using gradient based means
${ }^{4}$ Murphy 2012, p. 27.7.

Restricted Boltzmann Machine ${ }^{4}$

Binary RBM

$$
\begin{align*}
p(\mathbf{x}, \mathbf{h} \mid \theta) & =\frac{1}{Z(\theta)} e^{-E(\mathbf{x}, \mathbf{h} ; \theta)} \tag{47}\\
E(\mathbf{x}, \mathbf{h} ; \theta) & =-\sum_{r}^{R} \sum_{k}^{K} x_{r} h_{k} \tilde{W}_{r k}-\sum_{r}^{R} x_{r} b_{r}-\sum_{k}^{K} h_{k} c_{k} \tag{48}\\
p(\mathbf{h} \mid \mathbf{x}, \theta) & =\prod_{k}^{K} p\left(h_{k} \mid \mathbf{x}, \theta\right)=\prod_{k}^{K} \operatorname{Ber}\left(h_{k} \mid \operatorname{sigm}\left(\mathbf{w}_{:, k} \mathbf{x}\right)\right) \tag{49}\\
\mathbb{E}[\mathbf{h} \mid \mathbf{x}, \theta] & =\operatorname{sigm}\left(\mathbf{W}^{\mathrm{T}} \mathbf{x}\right) \tag{50}\\
\mathbb{E}[\mathbf{x} \mid \mathbf{h}, \theta] & =\operatorname{sigm}(\mathbf{W h}) \tag{51}
\end{align*}
$$

[^17]
Deep Belief Networks ${ }^{5}$

- Stack several RBMs
- Layer-wise independence
- Each RBM works as a prior for the next level
- "If you want to do Computer Vision first learn Computer Graphics"

${ }^{5}$ Murphy 2012, p. 28.2.3.

Auto-encoders ${ }^{6}$

${ }^{6}$ Vincent et al. 2010.

Auto-encoders ${ }^{6}$

${ }^{6}$ Vincent et al. 2010.

Auto-encoders ${ }^{6}$

${ }^{6}$ Vincent et al. 2010.

Convolutional Neural Networks ${ }^{7}$

Very structured architecture allows for non-layerwise training

$$
{ }^{7} \text { Berkely Caffe }
$$

Why ${ }^{8}$

very high level representation:

slightly higher level representation
\uparrow
raw input vector representation:

${ }^{8}$ Bengio et al. 2013.

Why ${ }^{8}$

${ }^{8}$ Bengio et al. 2013.
Ek
DD2434 - Advanced Machine Learning

Why ${ }^{8}$

"It's true there's been a lot of work on trying to apply statistical models to various linguistic problems. I think there have been some successes, but a lot of failures. There is a notion of success which I think is novel in the history of science. It interprets success as approximating unanalyzed data."
[Noam Chomsky]
${ }^{8}$ Bengio et al. 2013.

Why ${ }^{8}$

Carls Rant

- These things clearly works
- The science is not to make them work but Why they work
- Quickest short-term progress is often not reached by principles
- We run the risk of disapointing a lot of people by getting lost

[^18]

Deep Gaussian Processes ${ }^{9}$

- Why does a probabilistic model work?
- A good model has sensible priors
- Samples from priors tells us what we prefer to model

What are hierarchical priors?
${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

-Why does a probabilistic model work?

- A good model has sensible priors
- Samples from priors tells us what we prefer to model

What are hierarchical priors?

[^19]
Deep Gaussian Processes ${ }^{9}$

-Why does a probabilistic model work?

- A good model has sensible priors
- Samples from priors tells us what we prefer to model What are hierarchical priors?
${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

- Why does a probabilistic model work?
- A good model has sensible priors
- Samples from priors tells us what we prefer to model
- What are hierarchical priors?

[^20]
Deep Gaussian Processes ${ }^{9}$

$$
\begin{equation*}
f(\mathbf{x})=\frac{1}{K} \sum_{i}^{K} w_{i} h_{i}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \mathbf{h}(\mathbf{x}) \tag{52}
\end{equation*}
$$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

$$
\begin{align*}
f(\mathbf{x}) & =\frac{1}{K} \sum_{i}^{K} w_{i} h_{i}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \mathbf{h}(\mathbf{x}) \tag{53}\\
& =\mathbf{w}^{\mathrm{T}} \mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}(\mathbf{x})\right) \tag{54}\\
k_{1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\mathbf{h}\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \mathbf{h}\left(\mathbf{x}_{j}\right) \tag{55}\\
k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\left[\mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}\left(\mathbf{x}_{i}\right)\right)\right]^{\mathrm{T}} \mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}\left(\mathbf{x}_{j}\right)\right) \tag{56}
\end{align*}
$$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

$$
\begin{align*}
f(\mathbf{x}) & =\frac{1}{K} \sum_{i}^{K} w_{i} h_{i}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \mathbf{h}(\mathbf{x}) \tag{57}\\
& =\mathbf{w}^{\mathrm{T}} \mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}(\mathbf{x})\right) \tag{58}\\
k_{1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\mathbf{h}\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \mathbf{h}\left(\mathbf{x}_{j}\right) \tag{59}\\
k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\left[\mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}\left(\mathbf{x}_{i}\right)\right)\right]^{\mathrm{T}} \mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}\left(\mathbf{x}_{j}\right)\right) \tag{60}
\end{align*}
$$

$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ has closed form for SE kernel

$$
\begin{equation*}
k_{L+1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{k_{L}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-1} \tag{61}
\end{equation*}
$$

[^21]
Deep Gaussian Processes ${ }^{9}$

[^22]
Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

Input-connected architecture:

[^23]
Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

${ }^{9}$ Duvenaud et al. 2014.

Deep Gaussian Processes ${ }^{9}$

- Priors allows us to analyse design before seeing data
- Deep GPs shows what depth provides
- non-stationary functions
- Allows for deep models on small data-sets
- Shed light on some current design heuristics

[^24]
Future

- If we have enough data we do not need priors (Laplace)
- which interesting problems do we have that for?
- no priors (or not formulated priors) makes us headless chickens
- when we need a lot of data to solve a simple problem you should be worried

Future

- If we have enough data we do not need priors (Laplace)
- which interesting problems do we have that for?
- no priors (or not formulated priors) makes us headless chickens when we need a lot of data to solve a simple problem you should be worried

Future

- If we have enough data we do not need priors (Laplace)
- which interesting problems do we have that for?
- no priors (or not formulated priors) makes us headless chickens when we need a lot of data to solve a simple problem you should be worried

Future

- If we have enough data we do not need priors (Laplace)
- which interesting problems do we have that for?
- no priors (or not formulated priors) makes us headless chickens
- when we need a lot of data to solve a simple problem you should be worried

Introduction

Recap

Hierarchical Models

Summary

End of Part 2

- Bayesian modelling
- specify likelihood and prior
- inference through posterior
- Strength of priors
- Sensible assumptions and approximations (MAP, ML, Variational)
- We have been very abstract on purpose to focus on understanding learning [Chomsky]

What do you need to do?

- Translate to your own problems/data
- How have you solved problems before, thing of the assumptions you made
- What are sensible priors/likelihoods/structures
- What assumptions do I need to make?
- Don't be afraid of being abstract, when you get too close to the problem you often make assumptions that you are not aware of
- Get your hands dirty, i.e. develop your own priors for developing models

What do you need to do?

- Translate to your own problems/data
- How have you solved problems before, thing of the assumptions you made
- What are sensible priors/likelihoods/structures
- What assumptions do I need to make?
- Don't be afraid of being abstract, when you get too close to the problem you often make assumptions that you are not aware of
- Get your hands dirty, i.e. develop your own priors for developing models

Take home message

- Machine learning is really simple, it should be as even Carl have learnt quite a few things in life
- Formulating learning so that it can be externalised might be very hard and really involved but that is just labour
- Make assumptions, lots of them, that is the basis of learning, but be aware of them

Take home message

- Machine learning is really simple, it should be as even Carl have learnt quite a few things in life
- Formulating learning so that it can be externalised might be very hard and really involved but that is just labour
- Make assumptions, lots of them, that is the basis of learning, but be aware of them

Take home message

- Machine learning is really simple, it should be as even Carl have learnt quite a few things in life
- Formulating learning so that it can be externalised might be very hard and really involved but that is just labour
- Make assumptions, lots of them, that is the basis of learning, but be aware of them

My Research

References I

回
Kevin P Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN: 0262018020, 9780262018029.
(目 Neil D Lawrence. "Probabilistic non-linear principal component analysis with Gaussian process latent variable models". In: The Journal of Machine Learning Research 6 (2005), pp. 1783-1816. URL:
http://dl.acm.org/citation.cfm?id=1194904.

References II

嘈
Warren S McCulloch and Walter Pitts. "A logical calculus of the ideas immanent in nervous activity". English. In: The Bulletin of Mathematical Biophysics 5.4 (Dec. 1943), pp. 115-133. DOI: 10.1007/BF02478259. URL: http://link.springer.com/10.1007/BF02478259.
: F Rosenblatt. "The perceptron: a probabilistic model for information storage and organization in the brain". In: Psychology Review (Nov. 1958), pp. 386-408. URL:
http://www.ncbi.nlm.nih.gov/pubmed/13602029.

References III

R
Marvin Minsky and Seymour Papert. "Perceptrons. An Introduction to Computational Geometry. " English. In: Science 165.3895 (Aug. 1969), pp. 780-782. DOI: 10.1126/science.165.3895.780. URL:
http://www.sciencemag.org/cgi/doi/10.1126/ science.165.3895.780.
围 D E Rumelhart et al. "Learning representations by back-propagating errors". In: Nature 323.9 (Oct. 1986), pp. 533-536. URL: http://www.iro.umontreal.ca/ ~pift6266/A06/refs/backprop_old.pdf.

References IV

(國 Geoffrey E Hinton et al. "A Fast Learning Algorithm for Deep Belief Nets". English. In: Neural Computation 18.7 (July 2006), pp. 1527-1554. DOI:
10.1162/jmlr.2003.4.7-8.1235. URL:
http://www.mitpressjournals.org/doi/abs/10. 1162/neco.2006.18.7.1527.

- Pascal Vincent et al. "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion". In: The Journal of Machine Learning Research 11 (Mar. 2010), pp. 3371-3408. URL: http://dl.acm.org/citation.cfm?id=1756006. 1953039.

References V

R
Yoshua Bengio et al. "Representation learning: A review and new perspectives". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (Aug. 2013), pp. 1798-1828. ISSN: 0162-8828. URL:
http://ieeexplore.ieee.org/xpls/abs_all.jsp? arnumber=6472238.
围 David Duvenaud et al. Avoiding pathologies in very deep networks. 2014. URL: http://jmlr.org/
proceedings/papers/v33/duvenaud14.pdf.

Appendix

Similar Matrices: Self-Similarity

$$
\mathbf{A}=\mathbf{I} \mathbf{A} \mathbf{I}^{-1}=\mathbf{I}^{-1} \mathbf{A} \mathbf{I}
$$

- Return

Similar Matrices: Symmetry

$$
\begin{aligned}
\mathbf{A} \quad \sim & \mathbf{B} \Rightarrow \mathbf{B}=\mathbf{P}^{-1} \mathbf{A P} \\
\operatorname{det} \mathbf{B} & =\operatorname{det}\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right)=\operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{P})= \\
& =\operatorname{det}(\mathbf{A}) \operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}(\mathbf{P})=\operatorname{det}(\mathbf{A}) \frac{1}{\operatorname{det}(\mathbf{P})} \operatorname{det}(\mathbf{P})= \\
& \operatorname{det}(\mathbf{B})
\end{aligned}
$$

Similar Matrices: Trace

$$
\begin{array}{cl}
\mathbf{A} \quad \mathbf{B} \Rightarrow \mathbf{B}=\mathbf{P}^{-1} \mathbf{A P} \\
\operatorname{trace}(\mathbf{B}) & =\operatorname{trace}\left(\mathbf{P}^{-1} \mathbf{A P}\right)=\{\operatorname{trace}(\mathbf{A B})=\operatorname{trace}(\mathbf{A B})\}= \\
& =\operatorname{trace}\left(\left(\mathbf{P P}^{-1}\right) \mathbf{A}\right)=\operatorname{trace}(\mathbf{A})
\end{array}
$$

Similar Matrices: Power

$$
\begin{aligned}
& \mathbf{A} \sim \mathbf{B} \Rightarrow \mathbf{B}=\mathbf{P}^{-1} \mathbf{A P} \\
& \mathbf{B}^{2}=\left(\mathbf{P}^{-1} \mathbf{A P}\right)^{2}=\left(\mathbf{P}^{-1} \mathbf{A P}\right)\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right)= \\
&=\left(\mathbf{P}^{-1} \mathbf{A}\right)(\underbrace{\mathbf{P P}^{-1}}_{=\mathbf{I}})(\mathbf{A P})= \\
&=\mathbf{P}^{-1} \mathbf{A} \mathbf{A P}=\mathbf{P}^{-1} \mathbf{A}^{2} \mathbf{P}
\end{aligned}
$$

Prove further powers by induction over exponent

Similar Matrices: Invertability

$$
\begin{aligned}
\mathbf{A} & \sim \mathbf{B} \Rightarrow \mathbf{B}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P} \\
& \Rightarrow \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})
\end{aligned}
$$

\mathbf{A}^{-1} Exists if $\operatorname{det}(\mathbf{A}) \neq 0$

$$
\operatorname{det}(\mathbf{B}) \neq 0 \Longleftrightarrow \operatorname{det}(\mathbf{A}) \neq 0
$$

$$
\begin{aligned}
\mathbf{A}_{i j} & =\sum_{k=1}^{N} \mathbf{V}_{i k} \mathbf{D}_{k k}\left(\mathbf{v}^{T}\right)_{k j}=\sum_{k=1}^{N}\left(\mathbf{v}_{k}\right)_{i} \lambda_{k}\left(\mathbf{v}_{k}\right)_{j} \\
& =\sum_{k=1}^{N}\left(\lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}\right)_{i j}
\end{aligned}
$$

Return

Rank Approximation

$$
\begin{aligned}
\|\mathbf{A}-\mathbf{B}\|_{F} & =\left\|\sum_{i=1}^{N} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}-\sum_{i=1}^{N} q_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right\|_{F}= \\
& =\left\|\sum_{i=1}^{N}\left(\lambda_{i}-q_{i}\right) \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right\|= \\
& =\{(\left(\lambda_{i}-q_{i}\right) \mathbf{v}_{i} \underbrace{\left.\mathbf{v}_{i}^{\top}\right) \mathbf{v}_{i}}_{=1}=\left(\lambda_{i}-q_{i}\right) \mathbf{v}_{i}\}= \\
& =\sqrt{\sum_{i=1}^{N}\left(\lambda_{i}-q_{i}\right)^{2}}
\end{aligned}
$$

Multidimensional Scaling

Define:

$$
\begin{aligned}
d_{i j}^{2}= & \sum_{k=1}^{d}\left(x_{k i}-x_{k j}\right)^{2}=\mathbf{x}_{i}^{T} \mathbf{x}_{i}+\mathbf{x}_{j}^{T} \mathbf{x}_{j}-2 \mathbf{x}_{i} \mathbf{x}_{j} \\
g_{i j}= & \sum_{k=1}^{d} x_{k i} x_{k j}=\mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
& \Rightarrow d_{i j}^{2}=g_{i i}+g_{j j}-2 g_{i j} \\
\text { ing: } \quad & \sum_{i=1}^{N} g_{i j}=\sum_{i=1}^{N} \mathbf{x}_{i}^{T} \mathbf{x}_{j}=\underbrace{\left(\sum_{i=1}^{N} \mathbf{x}_{i}^{T}\right)}_{=0} \mathbf{x}_{j}=0
\end{aligned}
$$

Centering:

Multidimensional Scaling

Want to Express \mathbf{G} in terms of \mathbf{D}

$$
\begin{aligned}
& g_{i j}=\frac{1}{2}\left(g_{i j}+g_{j j}-d_{i j}^{2}\right) \\
& \frac{1}{N} \sum_{i=1}^{N} d_{i j}^{2}=g_{j j}+\frac{1}{N} \sum_{i=1}^{N} g_{i i} \\
& \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j}^{2}=\frac{2}{N} \sum_{i=1}^{N} g_{i i} \\
& \Rightarrow g_{i j}=\frac{1}{2}\left(\frac{1}{N}\left(\sum_{k=1}^{N} d_{k j}^{2}+\sum_{k=1}^{N} d_{i k}^{2}-\frac{1}{N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}\right)-d_{i j}^{2}\right)
\end{aligned}
$$

PCA MDS Equivalence

$$
\begin{aligned}
\mathbf{G} & =\mathbf{X} \mathbf{X}^{\top}=\mathbf{V} \wedge \mathbf{V}^{\top} \\
& \Rightarrow\left(\mathbf{X X}^{T}\right) \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \\
& \Rightarrow \frac{1}{N-1} \mathbf{X}^{\top}\left(\mathbf{X X}^{T}\right) \mathbf{v}_{i}=\lambda_{i} \frac{1}{N-1} \mathbf{X}^{\top} \mathbf{v}_{i} \\
& \Rightarrow \underbrace{\frac{1}{N-1} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right) \mathbf{v}_{i}=\lambda_{i} \frac{1}{N-1} \mathbf{X}^{\top} \mathbf{v}_{i}}_{\mathbf{S}} \\
& \Rightarrow \mathbf{S} \underbrace{\left(\mathbf{X}^{\top} \mathbf{v}_{j}\right)}_{\text {eigenvectors? }}=\underbrace{\frac{\lambda_{i}}{N-1}}_{\text {eigenvalue? }} \underbrace{\left(\mathbf{X}^{\top} \mathbf{v}_{i}\right)}_{\text {eigenvector? }}
\end{aligned}
$$

PCA MDS Equvalence

Enforce orthogonality

$$
\begin{aligned}
& \left(\mathbf{X}^{T} \mathbf{v}_{i}\right)^{T}\left(\mathbf{X}^{T} \mathbf{v}_{i}\right)=\mathbf{v}_{i}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}_{i}=\lambda_{i} \\
\Rightarrow \quad & \frac{1}{\sqrt{\lambda_{i}}} \mathbf{v}_{i}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}_{i} \frac{1}{\sqrt{\lambda_{i}}}=\left(\frac{1}{\sqrt{\lambda_{i}}}\right)^{2} \lambda_{i}=1 \\
& \left.\left(\mathbf{X}^{T} \mathbf{v}_{i}\right) \frac{1}{\sqrt{\lambda_{i}}}\right)^{T}\left(\mathbf{X}^{T} \mathbf{v}_{i} \frac{1}{\sqrt{\lambda_{i}}}\right)=1
\end{aligned}
$$

PCA MDS Equivalence

$$
\begin{aligned}
\text { Define: } \mathbf{v}_{i}^{\mathrm{PCA}} & =\mathbf{X}^{\top} \mathbf{v}_{i} \frac{1}{\sqrt{\lambda_{i}}} \\
\mathbf{y}_{i}^{\mathrm{PCA}} & =\mathbf{X}_{i}^{\mathrm{PCA}}=\mathbf{X X}^{\top} \mathbf{v}_{i} \frac{1}{\sqrt{\lambda_{i}}}= \\
& =\lambda_{i} \mathbf{v}_{i} \frac{1}{\sqrt{\lambda_{i}}}=\sqrt{\lambda_{i}} \mathbf{v}_{i} \\
\mathbf{y}_{i}^{\mathrm{MDS}} & =\mathbf{v}_{i} \sqrt{\lambda_{i}}=\sqrt{\lambda_{i}} \mathbf{v}_{i} \\
& \Rightarrow \mathbf{y}_{i}^{\mathrm{PCA}}=\mathbf{y}_{i}^{\mathrm{MDS}}
\end{aligned}
$$

Maximum Variance Unfolding: Objective

$$
\begin{aligned}
\sum_{i=1}^{N} g_{i i} & =\sum_{i=1}^{N} \frac{1}{2}\left(\frac{1}{N}\left(\sum_{k=1}^{N} d_{k j}^{2}+\sum_{k=1}^{N} d_{i k}^{2}-\frac{1}{N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}\right)-d_{i i}^{2}\right)= \\
& =\underbrace{\frac{1}{2 N} \sum_{i=1}^{N} \sum_{k=1}^{N} d_{k i}^{2}+\frac{1}{2 N} \sum_{i=1}^{N} \sum_{k=1}^{N} d_{i k}^{2}}_{\text {symmetry }=\frac{1}{2 N} 2 \sum_{i=1}^{N} \sum_{k=1}^{N} d_{k i}^{2}}- \\
& -\frac{1}{2 N^{2}} N \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}-\frac{1}{2} \sum_{i}^{N} \underbrace{d_{i j}^{2}}_{=0}=
\end{aligned}
$$

Maximum Variance Unfolding: Objective

$$
\begin{aligned}
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{N} d_{k i}^{2}-\frac{1}{2 N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}= \\
& =\frac{1}{2 N} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j}^{2} \\
\operatorname{trace}(\mathbf{G}) & =\sum_{i=1}^{N} g_{i i}=\frac{1}{2 N} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j}^{2}= \\
& =\frac{1}{2 N} \sum_{i=1}^{N} \sum_{j=1}^{N}\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{L 2}^{2}
\end{aligned}
$$

Maximum Variance Unfolding: Centering

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{j=1}^{N} g_{i i} & =\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2}\left(\frac { 1 } { N } \left(\sum_{k=1}^{N} d_{k j}^{2}+\sum_{k=1}^{N} d_{i k}^{2}-\right.\right. \\
& \left.\left.-\frac{1}{N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}\right)-d_{i j}^{2}\right)
\end{aligned}=\begin{aligned}
& =\frac{1}{2 N} \sum_{i=1}^{\sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} d_{k j}^{2}}+\frac{1}{2 N} \sum_{i=1}^{\sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} d_{i k}^{2}}- \\
&
\end{aligned}
$$

Maximum Variance Unfolding: Centering

$$
\begin{aligned}
& -\underbrace{\frac{1}{2 N^{2}}} \underbrace{N}_{i=1} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k k}^{2}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N}= \\
& =\underbrace{\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)}_{=0} a_{i=1}^{N} \sum_{j=1}^{N} d_{i j}^{2}=0 \\
\left\|\sum_{i=1}^{N} \mathbf{y}_{i}\right\|_{L 2}^{2} & \Rightarrow \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{K}_{i j}=0
\end{aligned}
$$

Spectral Theorem

$$
\begin{aligned}
& \mathbf{x}^{T} \mathbf{A} \mathbf{A}=\mathbf{V} \Delta \mathbf{V}^{T},\|\mathbf{x}\|_{L 2}=1 \\
& \mathbf{x}= 1 \sum_{i=1}^{N} \alpha_{i} \mathbf{v}_{i} \\
&\|\alpha\|=1 \\
& \mathbf{x}^{T} \mathbf{A} \mathbf{x}=\left(\sum_{i=1}^{N} \alpha_{i} \mathbf{v}_{i}\right)^{T} \mathbf{A}\left(\sum_{i=1}^{N} \alpha_{i} \mathbf{v}_{i}\right)= \\
&=\left(\sum_{i=1}^{N} \alpha_{i} \mathbf{v}_{i}\right)^{T}\left(\sum_{i=1}^{N} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right)\left(\sum_{i=1}^{N} \alpha_{i} \mathbf{v}_{i}\right)=
\end{aligned}
$$

Spectral Theorem

$$
\begin{aligned}
& =\left(\sum_{i=1}^{N} \alpha_{i} \mathbf{v}_{i}\right)^{T}\left(\sum_{i=1}^{N} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right)\left(\sum_{i=1}^{N} \alpha_{i} \mathbf{v}_{i}\right)= \\
& =\left\{\mathbf{v}_{i}^{T} \mathbf{v}_{j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { otherwise }
\end{array}\right\}=\right. \\
& =\sum_{i=1}^{N} \alpha_{i}^{2} \lambda_{i} \underbrace{\mathbf{v}_{i}^{T}}_{=1} \underbrace{\mathbf{v}_{i}}_{=1} \underbrace{\mathbf{v}_{i}^{T} \mathbf{v}_{i}}_{i=1}= \\
& =\sum_{i=1}^{N} \alpha_{i}^{2} \lambda_{i}\left\{\begin{array}{lll}
\max & : & \mathbf{x}^{T} \mathbf{A} \mathbf{x}=\lambda_{1} \\
\min & : & \mathbf{x}^{T} \mathbf{A}=\mathbf{v}_{1}
\end{array}\right. \\
& \lambda_{N} \\
& \mathbf{x}=\mathbf{v}_{N}
\end{aligned}
$$

Maximum Variance Unfolding: Objective

$$
\begin{aligned}
\sum_{i=1}^{N} g_{i i} & =\sum_{i=1}^{N} \frac{1}{2}\left(\frac{1}{N}\left(\sum_{k=1}^{N} d_{k j}^{2}+\sum_{k=1}^{N} d_{i k}^{2}-\frac{1}{N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}\right)-d_{i i}^{2}\right)= \\
& =\underbrace{\frac{1}{2 N} \sum_{i=1}^{N} \sum_{k=1}^{N} d_{k i}^{2}+\frac{1}{2 N} \sum_{i=1}^{N} \sum_{k=1}^{N} d_{i k}^{2}}_{\text {symmetry }=\frac{1}{2 N} 2 \sum_{i=1}^{N} \sum_{k=1}^{N} d_{k i}^{2}}- \\
& -\frac{1}{2 N^{2}} N \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}-\frac{1}{2} \sum_{i}^{N} \underbrace{d_{i j}^{2}}_{=0}=
\end{aligned}
$$

Maximum Variance Unfolding: Objective

$$
\begin{aligned}
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{N} d_{k i}^{2}-\frac{1}{2 N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}= \\
& =\frac{1}{2 N} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j}^{2} \\
\operatorname{trace}(\mathbf{G}) & =\sum_{i=1}^{N} g_{i i}=\frac{1}{2 N} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j}^{2}= \\
& =\frac{1}{2 N} \sum_{i=1}^{N} \sum_{j=1}^{N}\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{L 2}^{2}
\end{aligned}
$$

Maximum Variance Unfolding: Centering

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{j=1}^{N} g_{i i} & =\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2}\left(\frac { 1 } { N } \left(\sum_{k=1}^{N} d_{k j}^{2}+\sum_{k=1}^{N} d_{i k}^{2}-\right.\right. \\
& \left.\left.-\frac{1}{N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k p}^{2}\right)-d_{i j}^{2}\right)
\end{aligned}=\begin{aligned}
& =\frac{1}{2 N} \sum_{i=1}^{\sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} d_{k j}^{2}}+\frac{1}{2 N} \sum_{i=1}^{\sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} d_{i k}^{2}}- \\
&
\end{aligned}
$$

Maximum Variance Unfolding: Centering

$$
\begin{aligned}
& -\underbrace{\frac{1}{2 N^{2}}} \underbrace{N}_{i=1} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{p=1}^{N} d_{k k}^{2}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N}= \\
& =\underbrace{\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)}_{=0} a_{i=1}^{N} \sum_{j=1}^{N} d_{i j}^{2}=0 \\
\left\|\sum_{i=1}^{N} \mathbf{y}_{i}\right\|_{L 2}^{2} & \Rightarrow \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{K}_{i j}=0
\end{aligned}
$$

[^0]: ${ }^{2}$ Murphy 2012, p. 12.1.1.

[^1]: ${ }^{2}$ Murphy 2012, p. 12.1.1.

[^2]: ${ }^{2}$ Murphy 2012, p. 12.1.1.

[^3]: ${ }^{2}$ Murphy 2012, p. 12.1.1.

[^4]: ${ }^{2}$ Murphy 2012, p. 12.1.1.

[^5]: ${ }^{2}$ Murphy 2012, p. 12.1.1.

[^6]: ${ }^{2}$ Murphy 2012, p. 12.1.1.

[^7]: ${ }^{2}$ Murphy 2012, p. 12.1.1.

[^8]: ${ }^{\text {a }}$ http://en.wikipedia.org/wiki/Manifold

[^9]: ${ }^{\text {ahhttp://en.wikipedia.org/wiki/Manifold }}$

[^10]: ${ }^{\text {ahhttp://en.wikipedia.org/wiki/Manifold }}$

[^11]: ${ }^{\text {ahhttp://en.wikipedia.org/wiki/Manifold }}$

[^12]: 3/algos/mvu_embed.m

[^13]: 3/algos/mvu_embed.m

[^14]: 3/algos/mvu_embed.m

[^15]: 3/algos/mvu_embed.m

[^16]: ${ }^{4}$ Murphy 2012, p. 27.7.

[^17]: ${ }^{4}$ Murphy 2012, p. 27.7.

[^18]: ${ }^{8}$ Bengio et al. 2013.

[^19]: ${ }^{9}$ Duvenaud et al. 2014.

[^20]: ${ }^{9}$ Duvenaud et al. 2014.

[^21]: ${ }^{9}$ Duvenaud et al. 2014.

[^22]: ${ }^{9}$ Duvenaud et al. 2014.

[^23]: ${ }^{9}$ Duvenaud et al. 2014.

[^24]: ${ }^{9}$ Duvenaud et al. 2014.

