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Complex functions 

Global analytical model    or     collection of local models 
 
Example: subspace of faces in the entire image state-space 

 High-dim 
 Non-linear 
 Singularities 

 
Representation Learning =                                                
model subspace as                                                      
efficiently as possible 
Ensemble and Sampled Learning = do not try                        
to model globally at all! 
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(Wang, CVIU 2007)  

Today   

Boosting (Murphy 16.1-16.4) 
 AdaBoost classification 
 Relations to Random Forests, Neural Networks 

 
Sampling (Murphy 23.1-23.4, 24.1, 24.3.7) 

 Monte Carlo / CDF sampling 
 Importance sampling 
 MCMC sampling 

 
k Nearest Neighbor (Murphy 1.4.2, Everson and Fieldsend 1) 

 Probabilistic classification framework 
 
Particle filtering (Murphy 23.5) 
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Put the 3 methods in a probabilistic context 

Boosting 



Adaptive Basis Function Model 

Kernel based methods (Lecture 7): 
 
 
 
 
Feature based methods (Adaptive Basis Function Models): 
 
 
 
 

 
where               are learned from data     

f(x) = w0 +
MX

m=1

wm�m(x)

f(x) = w

T�(x), �(x) = [(x, µ1), ...,(x, µN )]

�m(x)

Special cases: 
Random Forests (Bagging) 
Boosting 
Feedforward Neural Networks 
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Adaptive Basis Function Model 

Goal: Solve the optimization problem 
 
 
 
where                  is some loss function and           is an ABM  
                                   
 

   HARD! 
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min
f

NX

i=1

L(yi, f(xi))

L(y, y0) f(x)

Boosting 

A greedy approach:  
Define a weak learner, e.g., a linear classifier or regressor 
For each round     

 Train the weak learner on the dataset     , call the 
 trained learner      
 Give the data points that fit with         low weight, the 
 data points in conflict with        high weight 

The final learner is a weighted sum of all weak learners 
 
Convergence guaranteed – with enough iterations, the error 
will be 0    
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�m

m

�m
�m

�m

D

Boosting 

Boosting approach – use greedy approach, solve for         
term by term:  
 

Define 
 

           is some “good enough” baseline function 
 

Iterate: 
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f(x)

f0(x)

(�m, ⌫m) = argmin
�,⌫

NX

i=1

L(yi, fm�1(xi) + ��(xi, ⌫))

fm(x) = fm�1(x) + �m�(x, ⌫m)

�m(x) ⌘ �(x, ⌫m)



AdaBoost   

Popular algorithm for binary classification (                           ) 
with exponential loss (                                          ) 
 
Left for report, Task 3.3: 
Explain the derivation of Algorithm 16.2 (AdaBoost.M1) from 
the general boosting algorithm, given the particular labels and 
loss function. 
Implement Algorithm 16.2 
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L(y, y0) = exp(�yy0)
y 2 {�1,+1}
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AdaBoost Example 

AdaBoost Example 
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AdaBoost   

Discuss with your neighbor (5 min): 
What happens if the weak learners         give close to 
random results? 
What happens if the weak learners         give exactly  
random results? 
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Sampling 

The Monte Carlo Principle 

Start off with discrete state space  
 
Imagine that we can sample         from the pdf            but that 
we do not know its functional form 

Might want to estimate for example: 
 
                                       
          can be approximated by a histogram over        : 
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z(l) p(z)

E[z] =
X

z p(z)

p(z) z(l)

q̂(z) =
1

L

LX

l=1

�z(l)=z

z

Example: Dice Roll 

The probability of outcomes of dice rolls: 
 
Exact solution: 
 
 
 
 
Monte Carlo approximation: 
Roll a dice a number of times, might get   

p(z) =
1
6

What would 
happen if the 
dice was 
bad? 
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Example: Dice Roll 
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Monte Carlo Sampling –  
Inverse Probability Transform  

Cumulative distribution function     of distribution    (that we 
want to sample from) 
 
 A uniformly distributed random variable                         will 
render    
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F f

F�1(U) ⇠ F
U ⇠ U(0, 1)
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          does not have to be 
an analytic function, can also 
be a histogram like          ! q̂(z)

f(z)

Importance Sampling 

We very often (in particle filters for example) want to 
approximate integrals of the form 
 
 
 

Monte Carlo sampling approach is to draw samples       from      
          and approximating the integral with a sum 
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E[f ] =

Z
f(x)p(x)dx

p(x)
x

s

E[f ] =

Z
f(x)p(x)dx =

1

S

SX

s=1

f(xs)

Importance Sampling 

Discuss with your neighbor (5 min): 
But what if           and           look like this, what happens with 
the estimation? 
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f(x)
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Importance Sampling 

In these cases, a good idea is to introduce proposal            
to sample from: 
 
 
 
where 
 
Reasons: 
            is smoother / less spiky than     

        is of a nicer analytical form than  
In general, good to keep                           approximately 
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E[f ] =

Z
f(x)

p(x)

q(x)
q(x)dx ⇡ 1

S

SX

s=1

wsf(x
s)

ws ⌘
p(xs)

q(xs)

q(x) / p(x)

q(x)

q(x)
q(x)

p(x)
p(x)



Markov Chain Monte Carlo 

Standard MC and Importance sampling do not work well in 
high dimensions 
 

High dimensional space but actual model has lower (VC) 
dimension => exploit correlation! 
 

Instead of drawing independent samples       draw chains of 
correlated samples – perform random walk in the data where 
the number of visits to     is proportional to target density  
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x

s

x

MCMC algorithms: 
Gibbs Sampling (special case of) 
Metropolis Hastings 
Reversible Jump MCMC 

p(x)

k Nearest Neighbor  

kNN – a Non-Parametric Method 

Well known, not repeated here 
In Task 3.1 you will implement a binary kNN classifier 
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PNN – a Probabilistic Interpretation of kNN 
(Everson and Fieldsend Section 1) 

 
Probabilistic formulation of kNN: 
 

Problem in standard kNN: k unknown, depends on how 
correlated data points are “how smooth distribution” 
 

Discuss with your neighbor (5 min): 
What is the ideal k?   What is the ideal k? 
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p(y|x,D)

Need to give an ad hoc 
k value here as well 
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PNN – a Probabilistic Interpretation of kNN 
(Everson and Fieldsend Section 1) 

Learn k from data: Introduce another unknown correlation 
parameter    , let                       , integrate out: 
 
 
where 
 
 
 
 
Discuss with your neighbor (1 min): 
How do you (avoid to) solve this integral? 
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� ✓ = {k,�}
p(y|x,D) =

Z
p(y|x, ✓,D)p(✓|D)d✓

p(y|x, ✓,D) =

exp[�
Pk

xj⇠xi
u(d(xi,xj))�yiyj ]

PQ
q=1 exp[�

Pk
xj⇠xi

u(d(xi,xj))�qyj ]

PNN – a Probabilistic Interpretation of kNN 
(Everson and Fieldsend Section 1) 

Reversible Jump MCMC is used to draw samples        that 
approximate               : 
 
 
 
from the likelihood of data given parameters 
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p(D|✓) =
NY

i=1

exp[�
Pk

xj⇠xi
u(d(xi,xj))�yiyj ]

PQ
q=1 exp[�

Pk
xj⇠xi

u(d(xi,xj))�qyj ]

p(✓|D)
✓(t)

p(y|x,D) ⇡ 1

T

TX

t=1

p(y|x, ✓(t),D)

Particle Filtering 

Particle Filtering 

Task: Estimate density                     over state       given a 
sequence of observations  
 
Sequential formulation (simplest case) 
 
 
 
 
 
 
Discuss with your neighbor (1 min): 
How do you (avoid to) solve this integral? 
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p(zt|y1:t) zt
y1:t

p(zt|y1:t) / p(yt|zt)
Z

p(zt|zt�1)p(zt�1|y1:t�1)dzt�1

Posterior at t 

Likelihood at t 
Motion 

model at t 

Posterior at t-1 



Particle Filtering 

Correct! Represent the posterior distribution at time t with 
samples  
 

Basic sequential estimation algorithm: 
 Given set of particles  
 Propagate all particles through motion model 
             to get propagated particles  
 which represent the prior at t 
 Evaluate all particles with likelihood to get weighted 
 particle set                           which represent the 
 posterior at t 

 

Degeneracy problem – most particle weights will go to 0! 
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zst

{zst�1}Ss=1

p(zt|zt�1) {z̃st }Ss=1

{ws
t z̃

s
t }Ss=1

Particle filtering 

Resampling step – central invention of particle filtering 
 

Basic sequential estimation algorithm: 
 Given set of particles  
 Propagate all particles through motion model 
             to get propagated particles  
 which represent the prior at t 
 Evaluate all particles with likelihood to get weighted 
 particle set                           which represent the 
 posterior at t 
 Monte Carlo resampling of weighted particle set  
                          to get unweighted posterior set 
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{zst�1}Ss=1

p(zt|zt�1) {z̃st }Ss=1

{ws
t z̃

s
t }Ss=1

{ws
t z̃

s
t }Ss=1 {zst }Ss=1

Add a bit of noise 

Particle Filtering 
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Propagation 

{zst�1}Ss=1

{z̃st }Ss=1

{ws
t z̃

s
t }Ss=1

{zst }Ss=1

Observation 

Resampling 

Particle Filtering 

Task 3.5-3.6 of Assignment 3: Study the effect of different 
motion models 
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What is next? 

Assignment 3 – start with reading the recommended literature 
(slide 3) to this lecture! 

  
Project – papers will be assigned to groups tonight! 

  
Mon 15 Dec 10:15-12:00 Q31         
Exercise 5: Lecture 10 but in practice, topics of interest to 
you – post on the webpage what you would like to work on 
Hedvig Kjellström                                                        
 
Tue 16 Dec 08:15-10:00 Q31 
Lecture 11: Topic Models                                               
Hedvig Kjellström                                                        
Readings: Murphy Chapter 2.3.2, 2.5.4, 10.4.1, 27.1-27.3 
If necessary, repeat Murphy Chapter 10! 
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AdaBoost, tips for Task 3.3   

“Linear classifier” is the wrong name for the weak learners. 
Let us call them linear functions                                  .   
The linear functions          are just lines on the surface 
x=(X,Y), X in [-1,1] Y in [-1,1]. They give functions y=            ,   
                        . On one side of the line, y=+1 and on the 
other, y=-1. This is the classifier, no svm:s etc are needed. Do 
not do anything else than what is in Algorithm 16.2! 
Using spherical coordinates (which is nice), the parameters 
for        are                                                               .   
They are the ones that you should optimize over, when you fit      
        to the weighted data points.  
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AdaBoost, tips for Task 3.3   

Here is a visualization of          
 
The line itself is perpendicular                                                
to the blue vector of length r                                                   
going out to the line from the                                           
origin. 
 
The blue vector has angle α                                                
from the positive X axis as in                                                
the figure.  
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α 
r 

y=-1 
y=+1 


