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Today   

Quick recap of course  
 Variety of models that use different ways to constrain 
 mappings                  alt models                   – The No 
 Free Lunch Theorem (Murphy 1.4.9) 

 
Parametric vs Non-parametric (Murphy 1.4.1) 
 
Curse of dimensionality (Murphy 1.4.3) 
 
Occam’s razor and over-, underfitting (Murphy 1.4.7-1.4.8, 5.3) 
 
Project presentation, Group E 
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Quick Recap 

Supervised/Predictive Learning 

Data (training set): 
 
 
 
Task:   Learn mapping  
 
Functional approximation: 
 
Use        to learn an approximative function 
 

D = {(xi, yi)}Ni=1

features/attributes response variable 

x

y

Recap from Lecture 1 

unknown true function 

y = f(x)

ŷ = f̂(x)D



Supervised/Predictive Learning 

Classification:                                           is discrete and finite 
 
 
Probabilistic formulation: Model 
                                      ,                                       , etc… 
 
Best              most probable     :          

ŷ =

ˆf(x) = arg

C
max

c=1
p(y = c|x,D)

y 2 {1, . . . , C}

p(y = 1|x,D) p(y = 2|x,D)

y ⌘ y

Recap from Lecture 1 

Lecture 4: Hidden Markov Model (HMM) 

Markov assumption 
Chain of observations/feature sets      generate chain   
of target values    , infer     from       
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Lecture 5: Linear Regression 

Introduction Regression Kernel Methods References

Regression

• Two variates
I Input data xi 2 Rq

I Output data yi 2 RD

• Relationship: f : X ! Y

Ek KTH

DD2434 - Advanced Machine Learning
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Assumption that the function is linear is a constraint in the 
mapping from      to   

x

y
Handle nonlinearity 
by defining kernel                   

       which 
defines a space with 
(more) linear    

Lecture 7: Gaussian Processes (GP) 

Same kind of structural assumptions as HMM but for 
continuous data 
“Soft” version of Markov assumption – correlation decreases 
with distance in  
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Lecture 9: Hierarchical Models 
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f : x ! y
f : x ! H ! H ! y

Model is a sequence of nested functions – constraints in the 
analytical form of the hidden layers: 
                       standard functional mapping 
                                               hierarchical mapping 
 
Very flexible model – need much training                           
data, hard optimization problem, but very                      
expressive model 
Example: Deep Belief Network 

Lecture 10: k Nearest Neighbors (kNN), 
Probabilistic Nearest Neighbors (PNN) 

No constraining model – suitable for densely sampled and 
very non-linear spaces 
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Lecture 10: AdaBoost 

Models the target function as a mixture of linear classifier 
Related to e.g., feed forward neural networks, Random 
Forests etc. (not covered in this course)  

11 

Lecture 10: Particle Filtering 

Models distribution evolving over time 
Models distribution as a set of samples – particles 
Good for non-linear and non-Gaussian distributions 
 
(Kalman filter = same thing but                                             
with Gaussian assumption) 
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Unsupervised/Descriptive Learning 

Data (training set): 
 
Task:   discover patterns in 
 
Under-specified problem – what patterns? How measure 
error? 
 

D = {xi}Ni=1

D

Recap from Lecture 1 

Unsupervised/Descriptive Learning 

Probabilistic formulation: Density estimation 
Models of the form  
 
Use       to maximize the probability                     of seeing 
each         given the model  
 
New obstacles: Multivariate distributions  
 
Unsupervised learning is more similar to how humans 
and animals learn! 
Practical advantage: No labeling of data required! 

p(xi|✓)
D
xi ✓

p(xi|✓)

Recap from Lecture 1 

Lecture 2: k-Means Clustering 

Model: data generated from k different clusters 
Assumption: data points from the same cluster are closer 
than data points from different clusters 
 
(Generalization: EM) 
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Lectures 2-5: Graphical models 

Assumption: some dimensions in the statespace depend on 
other dimensions, either with a causal relationship or by 
being correlated. Other dimensions are uncorrelated  
Constraint: This is modeled as a graph. (Groups of) 
statespace dimensions are the nodes, directed edges mean 
causal relationship, undirected edges mean correlation 
 
Segmentation: remove edges in a Markov                         
Random Field 
Structure learning: add/remove edges as                 
correlations/uncorrelations are observed                                
in data 
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Lecture 7: Kernels 

Similarity measure that make the feature space (where data 
live) as nice as possible  
Nice = easy to do clustering, regression etc. 

Can learn from data or (more common) define by hand 
 
Do not need to know the space, all we need is a function   

     , the similarity between two points 
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K(xi, xj)

Lecture 8: Principal Component Analysis (PCA) 

Purpose: Get a latent lowdim representation 
Assumption: Data Gaussian distributed – linear method 
SVD – get eigenvectors, project down data on the largest few 
eigenvectors (captures most variation) 
 
(Extensions: Probabilistic PCA,                                             
Kernel PCA) 
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Lecture 8: Gaussian Process Latent 
Variable Models (GPLVM) 

In the spirit of PPCA, latent variable model 
Add-on to Gaussian Process, find a low-dim latent 
representation 
Can have different constraints on the latent space 
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Lecture 9: Hierarchical Models 

You can use hierarchical models for unsupervised learning 
tasks as well! 
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Lecture 11: Latent Dirichlet Allocation (LDA) 

A latent variable model designed for discrete data (free text) 
Assumption: Text is generated by drawing from the word 
distributions of one or more topics 
Constraint: Do not model text grammar or structure, just word 
frequencies 
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LDA as a graphical model

✓d Zd,n Wd,n
N

D K
�k

↵ η

• This joint defines a posterior.

• From a collection of documents, infer
• Per-word topic assignment z

d ,n

• Per-document topic proportions ✓
d

• Per-corpus topic distributions �
k

• Then use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, exploration, ...

Parametric vs Non-Parametric 

Basic concept:                                    
Parametric vs Non-Parametric 

Models               and  
 
Parametric: Number of parameters 
constant with more data 
E.g., linear classifier 
 
 
Non-parametric: Number of 
parameters grows with more data 
E.g., kNN classifier 
 
 

p(x) p(y|x)

Recap from Lecture 1 

Examples 

Parametric regression       vs     Non-parametric regression 

Standard    Gaussian processes 
 
Parametric classification       vs     Non-parametric classification 

AdaBoost    kNN 
 
Parametric sequential estimation  vs  Non-parametric sequential estimation 

HMM     Particle Filter 



Curse of dimensionality 

Basic concept:                                        
Curse of Dimensionality 

 
 
 
 
 
 
      2D                               3D                                  8D 
cube/sphere                          cube/sphere                                  cube/sphere 
 

 
Adressed by using parametric models (fewer parameters – 
more robust) 

=
⇡
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Recap from Lecture 1 

Examples 

Graph methods model (un-)correlations in data so that 
each node (with lower dim than entire data) can be 
processed separately 
 
Latent variable models try to find the inherent (VC) dimension 
of the data, mapping each datapoint to a lower dimensional 
space where the characteristics of data (pairwise similarity) 
are maintained 

Occam’s Razor and Under- and  
Overfitting 



Basic concept:                                         
Overfitting 

Model fits training data                                        
perfectly but not novel data 
 
Reasons: Too little data, to 
high dimension, too flexible 
model 
 
Met this problem in 
Assignment 3, e.g., for kNN 
with too sparse samples 
 
How to find out if a model is 
too flexible? 
 

Recap from Lecture 1 
Basic concept:                                        
Model Selection 

Overfitting and underfitting 
 
More complex model always 
have lower training data error 
 
Solution to question on last 
slide:  
Divide data into training set 
and validation set 
Evaluate each model, each 
parameter setting with the 
validation set  

Recap from Lecture 1 

Model Selection – Data Determines Model 
Complexity 
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Simple model needed for steering system Complex model needed for steering system 

Bayesian Occam’s Razor 

Experimental model selection: find optimal parameters     for 
each model m, comparing performance for different m 
 
More principled: Integrate out     – “average performance of m 
for all possible    ” 
Assume all models m equally likely – estimate marginal 
likelihood = evidence for model m given the data 
 
 
 
(Details on how to do that in Murphy Section 5.3.2) 
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✓̂

✓
✓

Requires that 
we know 
something 
about the 
data 
distribution, 
e.g., that it is 
Gaussian or 
multinomial 

Requires no 
knowledge 
about how 
data was 
generated 

p(D|m) =

Z
p(D|✓)p(✓|m)d✓



Bayesian Occam’s Razor 

Intuition: Models with more parameters fit wider range of 
possible data – less robust since the probability of each 
possible data value is lower: 
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Comparing Over-, Underfitting with 
Bayesian Occam’s Razor 
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“shooting 
flies with 
cannons” 

“shooting 
elephants 

with rubber 
bands” 

Over/underfitting: 
 
 
 

Bayesian Occam’s razor: 

What is next? 

Project – talk to your group and send your supervisor an 
email about what you plan to do 
 

Mon 19 Jan 9:00-12:00 V3         
Presentation of 14 projects – 10 min each 
12  9:00  7     9:50  3    11:00 
11  9:10  6   10:00  2    11:10 
10  9:20  BREAK  1    11:20 
9    9:30  5   10:40  D2 11:30 
8    9:40  4   10:50  D1 11:40 

Happy Holidays and good luck with the projects 
and the Assignment 3 presentations!   
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Project presentation, Group E 
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