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Foreword

This PM outlines the basics of the Dirac notation in quantum mechanics. This
notation is particularly useful in quantum optics where the wave-function nota-
tion is seldom used. The PM has been used in the course “Quantum electronics
with Electro Optics” and its predecessors at KTH for a number of years. In the
course, the material has been presented during roughly six 45 minute lectures.
The PM was also used at the “Nordic summer-school in non-linear and quan-
tum optics” held at Hensbacka, Sweden in 1997. The PM has been updated
in the summer of 2003, in 2011, and in early 2015 to reflect some of the recent
developments in quantum optics, and some minor corrections have been made.
The goal of the PM is to provide a concise introduction to the Dirac formalism,
sufficient for the student to get to the point where he or she can analyze simple,
but realistic, contemporary experiments in quantum optics.

In the PM, most assertions are left without proof. The interested reader will
find the proofs in a comprehensive elementary textbook of quantum mechanics,
e.g., “Quantum Mechanics” by C. Cohen-Tannoudji, B. Diu and F. Laloë, Wiley
Interscience, New York, 1977.
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1 State vectors

The fundamental entities in quantum mechanics are the states of objects and
the associated operators. P. A. M. Dirac formulated a concise and convenient
formalism for making quantum mechanical calculations and writing quantum
mechanical expressions. In Dirac’s notation, a (pure) quantum mechanical ob-
ject can be completely described by its state vector. The state vectors come
in two “flavors”, bras and kets. These contain identical information and are
adjoint vectors in a Hilbert space H. The ket is written |ψ〉, where the index ψ
specifies the state. The associated vector is called a bra and is written 〈ψ|. A
state can be expanded in a linear combination of other states:

|ψ〉 =
∑

n

cn|φn〉, (1)

where cn ∈ C and C is the set of complex numbers. The state |ψ〉 is said to be
in a superposition of the states |φn〉.

The scalar product (or inner product) of two state vectors is written

(|ψ〉, |φ〉) = 〈ψ|φ〉. (2)

The associated vector 〈ψ| is the Hermitian conjugate of the corresponding ket.
Hermitian conjugation is denoted by † and and is a linear operation. Conjuga-
tion of a scalar c, a linear operator Â and a ket |ψ〉 gives c∗, Â†, 〈ψ|, respectively,
where * denotes the complex conjugation. Two successive conjugations cancel,
therefore the respective elements above are mutually conjugate.

When a simple product of operators and/or states is conjugated the factors
are both conjugated and their mutual order is reversed, viz.

〈φ|ψ〉† = 〈ψ|φ〉. (3)

In this particular case, since the scalar product is a complex number we can
simplify the expression to

〈ψ|φ〉 = 〈φ|ψ〉∗. (4)

When products of more than two factors are conjugated, one repeatedly applies
the rule above, e.g.

(〈φ|Â|ψ〉)† = 〈ψ|(〈φ|Â)† = 〈ψ|Â†|φ〉. (5)

Unlike vectors in Rn-space, overall multiplicative factors of the state vector
are insignificant. Hence, |ψ〉 and c|ψ〉, where c ∈ {C\0}, represent the same
state. By convention (and to simplify the probabilistic interpretation of the
state vector) normalized state vectors are used, i.e.

〈ψ|ψ〉 = 1. (6)

Therefore every state correspond to a unique state vector (except for a trivial
overall phase factor). The probability of finding the object (described by the
state vector |ψ〉 in the state |φn〉 is given by

0 ≤ |〈ψ|φn〉|2 ≤ 1. (7)
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Two states are orthogonal if
〈ψ|φ〉 = 0, (8)

and are identical if
|〈ψ|φ〉| = 1. (9)

Suppose all the states in the set {|φn〉} are orthonormal. Under certain condi-
tions (that we will outline below) any state can be expressed in a superposition
of these basis states. If so, the set {|φn〉} is a complete orthonormal basis. From
(1) and (7) it follows that the probability of finding the object in the state |φn〉
is |cn|2, i.e. the square modulus of the object-state expansion-coefficient.

2 Number states

At the beginning of this century physicists discovered that the thermal, elec-
tromagnetic emission spectrum could be explained if it was assumed that the
electromagnetic field was quantized in energy units of hν, where h is Planck’s
constant and ν is the frequency. The observation was later supplemented by
the observation of the photo-electric effect. The quantum unit of electromag-
netic energy was eventually called a photon (after the Greek word phos = light).
Since energy is an observable, it is associated with a Hermitian operator (see
below) and (this is no coincidence) with a complete set of eigenstates. Since the
energy of any such eigenstate can be written hν(n + 1/2), where n = 0, 1, 2, . . .
is the number of electromagnetic energy quanta in the mode, the electromag-
netic energy eigenstates are usually denoted {|n〉}, and are called number states
or Fock states. The state |0〉 is the electromagnetic ground state and is often
referred to as the vacuum state.

Since the eigenvalues are all non-degenerate, the number states are orthogo-
nal. In addition, since the states are normalized, we have

〈m|n〉 = δmn. (10)

The number-state basis is a convenient and complete base to expand various
states of the electromagnetic field in. We shall use it several times below.

3 Linear operators

All the dynamics and all measurements of quantum mechanical objects are
described by the action of linear operators. Often, but not always, operators
are denoted by a hat, e.g., Â. In general, when an operator operates on a state,
the ensuing entity is a different state

Â|ψ〉 = |ψ′〉. (11)

Note that the order between the operator and the state, and between different
operators, is of importance, since operator algebra is non-commutative. Oper-
ators operate to the right (left) on kets (bras). Therefore the meaning of the
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construction |ψ〉Â is not defined. It suffices to define the action of an opera-
tor (and its conjugate) on a ket since the adjoint operator’s action on a bra is
defined by 〈ψ|Â† ≡ (Â|ψ〉)†.

The outer product of two states |ψ〉 and |φ〉 is defined as

|ψ〉〈φ|. (12)

Note that this is an operator in contrast to the inner product which is a complex
number.

A special operator is the identity operator Î defined by

Î|ψ〉 = |ψ〉 ,∀ |ψ〉 ∈ H. (13)

The identity operator can be written in a more explicit form. If the set of states
{|φn〉} represent a complete orthonormal basis, then the identity operator can
be written

Î ≡
∑

n

|φn〉〈φn|. (14)

This expression often comes in handy when doing operator algebra. Further-
more, since the action of any operator is fully described if the operator’s action
on each of the chosen basis states is known, any operator can be expressed as a
sum of outer products. I.e. if

Â|φn〉 =
∑
m

amn|φm〉, (15)

then
Â ≡

∑
m,n

amn|φm〉〈φn|. (16)

A linear operator satisfies

Â (c1|ψ1〉+ c2|ψ2〉) = c1Â|ψ1〉+ c2Â|ψ2〉. (17)

In addition (
Â + B̂

)
|ψ〉 = Â|ψ〉+ B̂|ψ〉. (18)

The operator Â:s inverse, Â−1, is defined through

ÂÂ−1 = Â−1Â = Î . (19)

An operator Û is said to be unitary if its conjugate operator is equal to its
inverse, viz.

Û† = Û−1 or Û Û† = Û†Û = 1. (20)

The commutator bracket of the states Â and B̂ is defined as
[
Â, B̂

]
≡ ÂB̂ − B̂Â. (21)
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If the commutator bracket is zero the operators are said to commute. From the
definition it is evident that every operator commutes with itself and the identity
operator. From the definition it also follows that

[
B̂, Â

]
= −

[
Â, B̂

]
. (22)

If the operators Â and B̂ do not commute then

ÂB̂|ψ〉 6= B̂Â|ψ〉, (23)

in general. (Even if Â and B̂ do not commute it may be possible to find specific
states for which the commutator is zero.) The non-commutative algebra is
what makes quantum mechanics richer in phenomena than classical physics,
but often more difficult to compute. In addition, observable operators that
do not commute lead to the concept of complementarity and uncertainty (or
indeterminacy) in quantum mechanics.

The eigenstate |En〉 and eigenvalue λn of an operator Â satisfies

Â|En〉 = λn|En〉, (24)

where the eigenvalues λn are complex, in general.
However, all observable or measurable entities correspond to observables, Ô,

which are Hermitian operators. The definition of a Hermitian operator is

Ô† = Ô. (25)

This relation imply that Hermitian operators’ eigenvalues are real. In addition
eigenstates to Ô with different eigenvalues are orthogonal. If all eigenvalues
are different, then the set of (normalized) eigenstates {|En〉} defines a complete
orthonormal basis. We have already asserted that the number states, which
are eigenstates to the Hermitian energy operator hν(n̂+1/2), forms a complete
orthonormal set of state vectors.

When one makes a measurement of the observable corresponding to the Her-
mitian operator Ô, the measurement will yield one of the operator eigenvalues
as the meter readout. The probability of getting the specific readout λn when
measuring the state |ψ〉 is given by

Pn = |〈En|ψ〉|2 . (26)

Hence, a priori the measurement result of a well specified state is in general
indeterministic. However, if the measurement yields λn as result, then the state
collapses into the state |En〉. This is called the von Neumann projection postu-
late. A subsequent measurement of the state made immediately after the first
will yield the result λn with certainty.

Since the outcome of quantum mechanical measurements in general are indeter-
ministic, quantum mechanics must be described statistically. The expectation
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value of an operator, given that the state vector is |ψ〉, can be expressed

〈Â〉 ≡ 〈ψ|Â|ψ〉 =
∑

n

Pnλn =
∑

n

|〈En|ψ〉|2 λn =
∑

n

|cn|2 λn. (27)

where we have used (26) above, and where cn ≡ 〈En|ψ〉 is the state vector
expansion coefficient in the {|En〉} state basis.

Note that in computing an expression of the type 〈ψ|Â|φ〉, one can either
operate with Â to the right on |φ〉 and then take the inner product of 〈ψ| and
the result, or operate with Â to the left on 〈ψ| and then take the inner product
of this result with |φ〉. The computed value (in general, a complex number)
will be the same in the both cases, but the computational difficulty may be
significantly different. Hence, before starting such a computation, take a look
at the expression and then decide on how to tackle it.

An important operator in quantum mechanics is the density operator ρ̂. For
a pure state (see below) the density operator is simply the outer product of the
state vector, ρ̂ ≡ |ψ〉〈ψ|. The density operator has a “symmetric” form which
makes it convenient to use for operator algebra. The expectation value of an
operator can be written

〈Â〉 = Tr
(
|ψ〉〈ψ|Â

)
. (28)

Tr denotes the trace and is computed by expanding the state |ψ〉 in any complete
orthonormal basis and summing the diagonal elements. Viz.

Tr
(
|ψ〉〈ψ|Â

)
=

∑
n

〈En|ψ〉〈ψ|Â|En〉 =
∑

n

|cn|2 λn. (29)

Specifically we see that
Tr(ρ̂) = 1. (30)

When manipulating expressions involving the Tr operation, it is useful to re-
member that the trace operation is invariant under cyclic permutation of its
arguments

Tr
(
ÂB̂Ĉ

)
= Tr

(
B̂ĈÂ

)
. (31)

4 Matrix representation

When Werner Heisenberg developed his version of the theory of quantum me-
chanics in the 1920s he used a methodology based on matrix algebra. Matrix
algebra is extremely well suited for the purpose as it is linear, associative, dis-
tributive, but non-commutative. That is, the products ĀB̄ and B̄Ā of two
square matrices Ā and B̄ are typically not equal.

To translate the Dirac notation into a matrix formalism one first chooses an
ordered basis-vector set. The basis vectors need only to be linearly independent,
but for all practical purposes one is well advised to choose an orthonormal set
of vectors that span the Hilbert space the system “lives” in. The set of number
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states is one commonly used set. In this section we shall use this set, for conve-
nience truncated to the ten least excited states |0〉, . . . , |9〉. We then use a ten-
dimensional, complex, column vector to represent any pure state in this Hilbert
space. The states |0〉 and |8〉 will be written (1, 0, . . . , 0)T and (0, . . . , 1, 0)T ,
respectively, where T denotes the transpose. The state (|0〉+ exp(iπ/5)|3〉)/√2
is represented by the vector (1/

√
2, 0, 0, exp(iπ/5)/

√
2, 0, . . . , 0)T etc. The cor-

responding bra is the conjugated and transposed column vector (i.e., a row
vector). The inner and outer products of the bra and ket vectors will result in
a complex scalar and a complex, square matrix, respectively.

An operator Â is represented by a square matrix Ā with matrix coefficients

Akl = 〈ψk|Â|ψl〉, (32)

where, e.g., |ψl〉 is the lth basis-vector ket. The operation Â|φ〉 is represented
by multiplying the column vector representing |φ〉 from the right with the Ā
matrix. The result will be a new column matrix.

The structure of the operators will carry over to the matrices. E.g., a Hermi-
tian operator will have an associated Hermitian matrix, and a unitary operator’s
corresponding matrix will be unitary. As there exist many good computer pro-
grams computing and manipulating vectors, matrices, and tensors on the mar-
ket such as Mathematica, MathLab, and Maple, it is often convenient to use
such programs for algebraic manipulation of quantum mechanical expressions.
In particular the computers are difficult to beat when it comes to numerical
evaluation of expressions. Often symbolic calculations are also possible, but
typically the obtained expressions become cumbersome and “ugly” as the size
of the Hilbert space grows.

5 The annihilation and the creation operator

Using the number-state basis {|n〉}, it is possible to define an annihilation op-
erator â by

â|0〉 = 0, (33)
â|n〉 =

√
n|n− 1〉 , n = 1, 2, 3, . . . . (34)

Similarly the (conjugate) creation operator â† is defined by

â†|n〉 =
√

n + 1|n + 1〉 , ∀ n ≥ 0. (35)

As an example of the relation (16) above one can alternatively define the creation
operator in terms of outer products of number states as

â† ≡
∞∑

n=0

√
n + 1|n + 1〉〈n|. (36)

Obviously the annihilation operator and the creation operator are different and
therefore neither operator is Hermitian. These operators do not correspond
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to any observables in quantum optics. However, the product operators â†â
and ââ† are both Hermitian. Using the definitions above it is trivial to prove
that â†â|n〉 = n|n〉. Therefore the energy operator of a mode must be Ê =
hν(â†â+1/2). The operator n̂ = â†â is called the number operator. Sometimes
it is convenient to use the creation and/or annihilation operator to express (or
generate) a state from e.g. the vacuum. E.g.

|n〉 =

(
â†

)n

√
n!
|0〉. (37)

Since {|n〉} is a complete basis set, any arbitrary state |ψ〉 can be generated
from the vacuum as

|ψ〉 =
∞∑

n=0

cn|n〉 =
∞∑

n=0

cn

(
â†

)n

√
n!
|0〉. (38)

We note that
[
â, â†

] |n〉 = ââ†|n〉 − â†â|n〉 = (n + 1) |n〉 − n|n〉 = |n〉 , ∀ n. (39)

Since the number states form a complete basis we can simplify the statement
above in the (mathematically) simpler form

[
â, â†

]
= Î = 1. (40)

Hence, the Hermitian operators ââ† and â†â are trivially related by ââ† = â†â+
1. An interpretation of the operators is that â†â correspond to a measurement
of the photon number (or energy) by an absorptive meter while ââ† correspond
to the same measurement by an emissive meter. The latter meter is sensitive
even to the vacuum state (by spontaneous emission) while the former meter is
not.

6 The quadrature operators

By combining the annihilation and the creation operators in a linear superpo-
sition one finds the two quadrature operators

â1 ≡ 1
2

(
â + â†

)
, (41)

â2 ≡ 1
2i

(
â− â†

)
. (42)

The quadrature operators â1 and â2 are Hermitian and correspond to a mea-
surement of the in-phase or out-of-phase components of the electric field. To
make this more clear, let us look at the classical (complex) notation of the elec-
tric field. A (narrow-band) electric field with angular frequency ω is denoted
E exp(−iωt). However, the real electrical field is given by Re{E exp(−iωt)} =
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Re{E} cos(ωt) + Im{E} sin(ωt). Hence, the field is uniquely decomposed in
slowly varying quadrature components Re{E} = (E + E∗)/2 and Im{E} =
(E − E∗)/(2i). The corresponding operators are â1 and â2, and they corre-
spond to a perfect homodyne measurement. Since an electric field is a contin-
uous observable, the respective eigenvalues of the associated eigenstates have
continuous spectra.

Since â1 and â2 are linearly independent combinations of the â and â† oper-
ators, all operators formed by combinations of â and â† can also be expressed
in â1 and â1. Specifically the Hermitian energy operator Ê can be expressed
as Ê = hν(â2

1 + â2
2). (Check this!) The quadrature operators do not commute.

The commutator is [â1, â2] = i/2. This follows from (40).

7 The coherent state

Although the operator â is non-Hermitian, it has an (over)-complete set of
associated eigenstates. The coherent state is denoted |α〉, where α is a complex
number. The defining equation of a coherent state is

â|α〉 = α|α〉, (43)

where α ∈ C.

The number state expansion of a coherent state is

|α〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n〉. (44)

Note that the coherent states with α = 1, 2, . . ., must be labeled in such a way as
to distinguish them from the number states |1〉, |2〉, . . .. However, it is clear from
(44) that α = 0 represents the electromagnetic ground state, the vacuum state.

The probability of detecting n photons in a coherent state |α〉 is given by (44)
as

Pn = |〈n|α〉|2 =
∣∣∣∣e−

|α|2
2

αn

√
n!

∣∣∣∣
2

= e−|α|
2 |α|2n

n!
. (45)

Hence, the photon-count statistics is Poissonian. One finds that the expectation
value and the variance of the photon number to be

〈n̂〉 = 〈(∆n̂)2〉 = |α|2 , (46)

where ∆n̂ is defined by ∆n̂ ≡ n̂ − 〈n̂〉. The light from a good, ordinary laser
is approximately in a coherent state for measurement times shorter than the
coherence time of the laser.

The expectation value for the operators â1 and â2 are

〈â1〉 = Re{α} and 〈â2〉 = Im{α} (47)
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and
〈∆â2

1〉 = 〈∆â2
2〉 =

1
4

(48)

for a coherent state |α〉. Check this using the commutator bracket and the fact
that if â|α〉 = α|α〉 then 〈α|â† = 〈α|α∗.

8 Modes and states, multi-mode states

It is important to distinguish between modes and states. The modes describe the
vibration-, rotation-modes, etc., of some system while the state vector describes
the excitation of these modes. For electromagnetic fields the modes are given by
the solutions of Maxwell’s equations (and the associated boundary conditions)
while the states are given by the solutions of Schrödinger’s equation (and the
associated initial conditions). Every mode has an associated Hilbert space and
unique associated operators. So far we have dealt with single mode states. To
describe a multi-mode state of e.g. one electromagnetic mode in the vacuum
state |0〉, and one two level atom in the excited state |e〉, we write

|0〉 ⊗ |e〉 = |0, e〉, (49)

where ⊗ denotes the tensor product and the right-most term denotes a simplified
notation of the tensor product of the states. When writing the associated bra
to this state, the notational order of the modes is usually not altered. Hence
|0, e〉† = 〈0, e|. Suppose that the electromagnetic mode has some associated
operator Ê and that the atom has an associated operator Â. Since Ê and Â
operate on different Hilbert spaces they commute. Furthermore

ÊÂ|0〉 ⊗ |e〉 = (Ê|0〉)⊗ (Â|e〉). (50)

If the modes are similar, e.g. two spatially different but otherwise similar elec-
tromagnetic modes, they formally have the same set of associated operators. In
this case it is in general necessary to index the operators to show which operator
operates on which mode.

9 Entangled states

A fundamental notion in quantum mechanics is a linear superposition. We al-
ready encountered superposition states in (1) above. However, the combination
of multi-mode states and superposition states leads to the consequence that
quantum mechanics is a non-local theory. This consequence of the superposi-
tion principle in quantum mechanics has troubled and/or intrigued physicists
almost since the invention (or discovery?) of quantum mechanics.

Assume that we have two electromagnetic modes in a superposition of a
zero-photon state (a vacuum state) and a one photon state. One way of writing
such a state is:

(|0〉+ |1〉)/
√

2⊗ (|0〉+ |1〉)/
√

2 =
1
2

(|0, 0〉+ |1, 0〉+ |0, 1〉+ |1, 1〉) . (51)
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We note that the joint state is the tensor product of two single-mode states.
Hence, according to the von Neumann projection postulate, if we measure the
photon number of the first mode, the probability of measuring zero photons is
1/2, and in this case the post-measurement state becomes |0〉 ⊗ (|0〉+ |1〉)/√2.
In the remaining half cases we will measure the photon number of the first mode
to be unity and the state will collapse to the state |1〉⊗ (|0〉+ |1〉)/√2. We note
that the state of the second mode is unaffected by the measurement outcome of
the first.

A different possibility of making a superposition state where both modes are in
a superposition of zero and one photons is the state

(|1, 0〉+ |0, 1〉)/
√

2. (52)

We note that this state is impossible to factor into a product state of the two
modes. Such a state is called an entangled state. If we measure the photon
number of the first mode, in half the cases we will measure zero photons. In
this case the joint state will collapse into the state |0, 1〉. If, on the other hand we
measure the first mode to contain one photon, the state collapses into the state
|1, 0〉. Hence, the post-measurement state of the second mode is contingent on the
measurement result of the first mode. According to the von Neumann postulate
this reduction of the state is instantaneous. Hence, even if the two modes are
separated by large distances the state of the second mode instantaneously reacts
to the “collapse” of the state of the first mode. Quantum mechanics is therefore
said to be a non-local theory. In addition, since the post measurement states
|0, 1〉 and |1, 0〉 are orthogonal, the joint state (52) is said to be maximally
entangled.

Entanglement forms the core of the new discipline quantum information.
By synthesis, it has been shown that entanglement can be harnessed to solve
certain tasks, such as quantum teleportation, quantum cryptography and quan-
tum computation, that are impossible using classical object. Conversely, in,
e.g., a quantum computer it is inevitable to create entangled states because
all quantum computing algorithms uses conditional superpositions (in, e.g., so-
called CNOT gates) to achieve their efficiency relative to classical computers.
Hence, the generation, manipulation and classification of entangled states has
been central in quantum optics for the past twenty years.

10 Pure and mixed states

In general there is always (wanted or unwanted) interaction between modes.
Quite often one is faced with the experimental reality that one cannot control
or measure a large number of these modes. Since, as we saw in the last section,
quantum mechanics is non-local, that is, the state of some mode is contingent of
the state of one or many other modes, one seems stuck in a impasse. In this case
the way out is to write down the density operator of total system and to trace
out the unwanted or neglected states. This will give a correct description of
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the outcome of any subsequent local measurement or operation in the ensemble
averaged sense. Suppose that we are interested in the second mode in (51). In
this case the reduced density operator of the system becomes

Tr1(ρ̂) =
∑

n

〈n1|ρ̂|n1〉 = (|0〉〈0|+ |1〉〈0|+ |0〉〈1|+ |1〉〈1|)/2, (53)

where the index 1 denotes that the we make only a partial trace (over the first
mode). We note that the ensuing density operator can be written as the outer
product of a ket and its associated bra, ρ̂ = (|0〉 + |1〉)(〈0| + 〈1|)/2. Therefore
the state is said to be pure. This is a consequence of the fact that the joint two-
mode state was not entangled. The density operator of all pure states satisfies
Tr

(
ρ̂2

)
= 1. It is easy to confirm that (53) satisfies this relation.

If we trace out the first mode of the state (52) a different situation arises.

Tr1(ρ̂) =
∑

n 〈n1| 12 (|1, 0〉〈1, 0|+ |1, 0〉〈0, 1|+ |0, 1〉〈1, 0|+ |0, 1〉〈0, 1|) |n1〉

= 1
2 (|0〉〈0|+ |1〉〈1|)

.

(54)
This state cannot be written as an outer product of a ket and its associated
bra and it is called a mixed state. One interpretation is that in principle one
could have known the state of the second mode state upon a measurement of
the first mode. If we ignore this information, the state is described by a proper
statistical mixture of the |0〉 and |1〉 state. It is easy to confirm that for this state
Tr(ρ̂) = 1 (this is true for all states, mixed or pure) but that Tr

(
ρ̂2

)
= 1/2 < 1.

The last inequality is a signature of a mixed state.
It is important to appreciate the difference between a mixed and a pure state.

The former is more akin to our everyday experiences. We may have limited
knowledge about certain results, e.g., whether or not we have a winning lottery
ticket or not. A good way to quantify our information is to assign a probability
to the possible outcomes. This probability is of course contingent on our prior
knowledge, e.g., how many lottery tickets are sold. We all understand that the
situation both before and after the lottery drawing is an “either win or lose”
situation. That is, the possible “system states” are mutually exclusive even
before the actual drawing, when the actual system state is revieled is made.

A superposition is rather different. In a superposition both possibilities co-
exist until a measurement is made. We have little everyday experience of this
situation, e.g., that a photon, which is indivisible, must be assigned a probability
amplitude of each of two or several possibilities that, if they are measured, result
in mutually exclusive outcomes.

A photon passing a double slit is a good example of a statistical mixture
vs. a superposition. Assume that one illuminates an area much larger than
the slit widths. The most likely outcome is then that the photon is reflected or
absorbed by the membrane the two slits are carved into. The situation pass or
not pass is described by a mixture of the two possibilities where, based on the
geometry of the illuminated spot and the double slit we can assign a probability
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of transmission and a probability of non-transmission. There are several reasons
why this situation is best describes by a statistical mixture of states. The first is
ignorance. We typically don’t care about the situation when the photon don’t
pass the slits, and therefore we will not worry about a reflected or absorbed
photon’s further history. It is then convenient to simply assign an a priori
probability to the two cases (that are mutually exclusive and also complete so
that the two probabilities sum to unity).

However, if the photon is absorbed by the membrane there is a deeper rea-
son to assign an a priori probability to the no-pass event. The reason is that
in principle Nature makes a “measurement” of whether the photon passes or
not. Thus, in principle this information is available to us (e.g., in the form
of a minuscule heating of the membrane). In practice we probably don’t care
about this information, and even if we did, our lack of preparation and control
of the membrane may make it impossible to obtain this information in practice,
although it is there in principle. If, by any means (if even only in principle) in-
formation about one outcome rather than the other is available, the possibilities
must be described by a mixed state.

In contrast, which path the photon took through the slits should be described
by a superposition. The reason is that the slits are (or should be) prepared in
such a way that it is impossible, even in principle, to know which path the
photon took. Here, the physical implementation of the slits does matter. If
the slit walls are too soft, or the membrane too light, the recoil of the photon
being diffracted through one slit or another may leave a “fingerprint” allowing
us to deduce (perhaps only in principle) which slit the photon passed through.
If so, also this situation should be described by a mixed state and not by a
superposition. This would also mean that no interference will be present after
the slits. In a typical Young’s experiment, however, the slits are too rigid and
the membrane much too heavy to experience a sufficient recoil to “measure”
which slit the photon took. Thus it is impossible, even in principle, to deduce
the path information. As a result interference between the two path possibilities
will appear after the slits.

In short, indistinguishability leads to superpositions, interference and coher-
ence. Distinguishability (if even only in principle) prohibits the named three.
The latter situation is formally handled by mixed density matrices in quantum
theory, reflecting the fact that in principle information about some event or
path is available but that this information is ignored or inaccessible in practice.

11 Temporal evolution

We have seen above that a state may change as a consequence of measurement.
However, even if the state is left by itself it will evolve dynamically. The evo-
lution will be unitary, i.e., a rotation of the state vector in Hilbert space. A
unitary operator is defined by (20) above. As a consequence the norm of the
state vector will always be preserved under a unitary transformation, viz. if the
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normalized state |ψ〉 evolves unitarily to the state |φ〉 = Û |ψ〉 then

〈φ|φ〉 = 〈ψ|Û†Û |ψ〉 = 〈ψ|Î|ψ〉 = 〈ψ|ψ〉 = 1. (55)

In addition unitary rotation of any orthonormal set of states will leave the set
orthonormal. If |ψm〉 and |ψn〉 are two arbitrary state vectors in the set so that
〈ψm|ψn〉 = 0, then the new states |φm〉 = Û |ψm〉 and |φn〉 = Û |ψn〉 satisfy

〈φm|φn〉 = 〈ψm|Û†Û |ψn〉 = 〈ψm|Î|ψn〉 = 〈ψm|ψn〉 = 0. (56)

There are two principal ways of treating the temporal evolution of a quantum
system. In the first, one assumes that all operators are independent of time and
assigns the temporal dynamics to the state. This is called the Schrödinger
picture. In the second, one lets the states be time independent and assign the
temporal evolution to the operators. This is the Heisenberg picture.

11.1 The Schrödinger picture

The Schrödinger equation in the Dirac notation is

ih̄
d

dt
|ψ (t)〉 = Ĥ|ψ (t)〉, (57)

where we have assumed that the Hamiltonian Ĥ has no explicit time depen-
dence. We can formally integrate (57) to obtain

|ψ(t)〉 = exp(−iĤt/h̄)|ψ(0)〉 = Û(t)|ψ(0)〉. (58)

In this equation (and other equations involving functions of an operator) the
function of an operator is defined in terms of its Taylor expansion. E.g.,

exp(−iĤt/h̄) ≡ 1 +
−iĤt

1!h̄
+

(−iĤt)2

2!h̄2 + . . . . (59)

Since Ĥ is an Hermitian operator (and therefore has real eigenvalues) one can
easily prove that the operator exp(−iĤt/h̄) is unitary. Hence, the temporal
evolution of a state in the Schrödinger picture is governed by a unitary operator
Û(t) = exp(−iĤt/h̄).

If the initial state is mixed it is convenient to use the density operator to de-
scribe the state. The corresponding equation of motion for the density operator
is

ρ̂(t) = Û ρ̂(0)Û†, (60)

and it fulfills

ih̄
dρ̂ (t)

dt
=

[
Ĥ, ρ̂ (t)

]
. (61)

Note that the density operator is particular in this respect. Although it is
formally an operator, it is time dependent in the Schrödinger picture.
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11.2 The Heisenberg picture

An alternative way of treating the temporal evolution of quantum mechanical
systems is to make the operators time dependent and the states time indepen-
dent. This will make all expectation values (which are the measurable entities in
the theory) time dependent, although the states are time independent. Starting
from the temporal evolution of ρ̂ in the Schrödinger picture (61) the expectation
value of an arbitrary operator, Â, for a state with the density operator ρ̂ is given
by

〈Â〉 (t) = Tr
(
ρ̂ (t) Â

)
= Tr

(
Û (t) ρ̂ (0) Û† (t) Â

)

= Tr
(
ρ̂ (0) Û† (t) ÂÛ (t)

)
= Tr

(
ρ̂HÂH (t)

)
, (62)

where the time-dependent operator Â and the density operator in the Heisenberg
picture are defined by

ÂH (t) = Û† (t) ÂÛ (t) , (63)

ρ̂H = Û† (t) ρ̂ (t) Û (t) = ρ̂ (0) . (64)

Hence, in the Heisenberg picture the density operator is time independent. So
is the Hamiltonian since

ĤH (t) = Û† (t) ĤÛ (t) = Û† (t) Û (t) Ĥ = Ĥ, (65)

where we used (58) and the fact that Ĥ commutes with itself (as any operator
does).

The Schrödinger equation in the Heisenberg picture (called the Heisenberg
equation of motion) can be written

ih̄
dÂH (t)

dt
=

[
ÂH (t) , Ĥ

]
. (66)

This equation should not be confused with (61), which pertains to the density
operator, the only operator which evolves in time in the Schrödinger picture.

The Schrödinger and the Heisenberg pictures are equivalent and mutually
consistent. Which picture to use in any specific problem is a matter of conve-
nience and personal taste. Occasionally it is convenient to solve a problem in the
Heisenberg picture, express the initial state in terms of operations on the vacuum
state (like in equation (37)) and then operate with the time-dependent oper-
ator(s). The ensuing time-dependent state-vector will be the the Schrödinger
picture solution.

12 The phase shifter

A phase shift is really not anything but a time displacement. Therefore, not
surprisingly, the phase-shift Hamiltonian is the free Hamiltonian of the mode.
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If the mode is a harmonic oscillator of the electromagnetic field, the phase-shift
Hamiltonian is given by

Ĥ = h̄ω(â†â + 1/2) = h̄ω(n̂ + 1/2), (67)

where ω = 2πν, and ν is the (optical) frequency. Often the zero point energy
1/2 is suppressed in the equation since it gives a fixed phase shift to every state
and therefore trivially can be removed.

The phase shifter’s unitary time-evolution operator is then given by (58)

Û (t) = e−i Ĥ
h̄ t = e−iωtn̂. (68)

The number states therefore evolve like

|ψn (t)〉 = e−iωtn̂|n〉 = e−iωtn|n〉, (69)

but, as we stated above, states differing only in an overall phase-factor are
equivalent. Therefore the number states remain invariant under phase shifting.
However, a general state |ψ (0)〉 =

∑∞
n=0 cn|n〉 is affected by a phase shifter and

its temporal evolution becomes

|ψ (t)〉 =
∞∑

n=0

cne−iωtn|n〉. (70)

If the state |ψ (t)〉 is a coherent state (70) can be simplified. In this case
e−iωtn̂|α〉 = |e−iωtα〉.

13 The beam splitter

In this last section of the PM we will apply the Dirac formalism to a simple but
non-trivial optical component, the beam splitter. It is important to remember
that throughout the PM we have outlined non-relativistic quantum mechanics.
In the lab, we usually deal with propagating pulses of light, but in the formalism
these pulses are modeled by stationary quantized modes (particle in a box).
Hence, the spatial evolution of a temporal mode is modeled by the temporal
evolution of a spatial mode. It is important to keep this in mind when thinking
about models for various quantum systems.

In the case of a beam splitter, in reality we have a component combining
two propagating modes into two other propagating modes in a fs time scale. We
usually model this system by considering two modes in two separate resonators
interacting for a fixed (and compared to the field’s oscillation cycle, usually a
fairly long) time. We then make predictions about the joint state after the in-
teraction is over. It is then obvious that the interaction time and the interaction
strength of the two resonator modes both must influence the final state of the
system. A real beam splitter, on the other hand, is usually characterized by
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a single number, e.g., its reflectivity. We shall see that this single number is
not sufficient to characterize a beam splitter, but that since absolute reflection
and transmission phase-shifts often are unimportant in applications, this single
number usually suffices for users.

The beam splitter a linear device coupling two modes to each other. The
Hamiltonian, in the rotating wave approximation can be written

Ĥ = h̄θ
(
â†b̂ + âb̂†

)
, (71)

where â and b̂ are the annihilation operators for the a- and b-mode, and θ is
a parameter characterizing the oscillator interaction strength. The Heisenberg
equation of motion (66) becomes

dâH(t)
dt

=
i

h̄

[
Ĥ, âH(t)

]
= iθ

[
â†H(t)b̂H(t) + âH(t)b̂†H(t), âH(t)

]

= iθ
{(

â†H(t)âH(t)− âH(t)â†H(t)
)

b̂H(t)

+
(
âH(t)âH(t)− âH(t)âH(t)

)
b̂†H(t)

}
= −iθb̂H(t). (72)

In the same manner the equation for the b̂ operator becomes

db̂H(t)
dt

= −iθâH(t). (73)

The coupled, linear equation-system has the solution

âH(t) = â cos θt− ib̂ sin θt, (74)

b̂H(t) = b̂ cos θt− iâ sin θt. (75)

It is convenient to express this as a matrix
(

cos θt −i sin θt
−i sin θt cos θt

)
. (76)

We see that the annihilation operators periodically evolve into each other with
the period θt = π/2 and they “revive” in a period θt = π. This “revival” may
seem strange, but this is a characteristic of any two linearly coupled harmonic
oscillators.

The “half-silvered mirror” which often is discussed in physics textbooks, is a
beam splitter with a 50 % transmission. We see that quantum mechanically
such a beam splitter is realized if the interaction strength is chosen according
to θt = π

4 + k π
2 , where k is an integer.

In the general case we can independently add phase shifts to both the beam
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splitter input ports. This will add independent phase shifts to the â and b̂
modes. The general beam splitter matrix can therefore be expressed

(
exp(iΦa) cos θt exp(iΦb) sin θt

− exp(−iΦb) sin θt exp(−iΦa) cos θt

)
. (77)

It is easy to check that the matrix above is unitary.

13.1 Splitting states in a 50/50 beam splitter

As stated above, the 50/50 beam splitter (which is generic to most interfer-
ence experiments) requires θt = π

4 . With this choice the corresponding unitary
operator becomes

e−i π
4 (â†b̂+âb̂†)|ψa, ψb〉. (78)

However, for simple states it is actually easiest to initially work in the Heisenberg
picture. For this end we use (74) and (75). The prescription then tells us to
make the substitutions

â† → 1√
2

(
â† + ib̂†

)
, (79)

b̂† → 1√
2

(
b̂† + iâ†

)
, (80)

to get the states after the beam splitter.

13.2 Input state: |1〉 ⊗ |0〉
Let us start by examining what happens when a single photon is incident on
a 50/50 beam splitter. A single photon is in the a-mode and nothing (the
vacuum) is the initial state of the b-mode. The respective states can be written
|1〉 = â†|0〉 and |0〉. Substitution of the initial to final operators give

|1, 0〉 = â†|0, 0〉 → 1√
2

(
â† + ib̂†

)
|0, 0〉 =

1√
2

(|1, 0〉+ i|0, 1〉) . (81)

We see that the probability of detecting one-photon in the a-mode after the
beam splitter is 50 %, and that every time we measure one photon in the a-
mode, no photon will be detected in the b-mode. If, on the other hand, no photon
is detected in the a-mode, then exactly one photon will be detected in the b-
mode. Hence, energy is always preserved. In the ensemble-average meaning the
beam splitter transmission is 50 %. However, in every single realization of the
experiment the transmittivity is either unity or zero (with equal probability).
This is a manifestation of the quantization of energy in combination with the
initial condition.
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13.3 Input state: |1〉 ⊗ |1〉
If both the impinging modes are in a single photon eigenstate we get

|1, 1〉 = â†b̂†|0, 0〉 → 1√
2

(
â† + ib̂†

) 1√
2

(
b̂† + iâ†

)
|0, 0〉

=
1
2

(
i
(
â†

)2
+ i

(
b̂†

)2
)
|0, 0〉

=
i√
2

(|2, 0〉+ |0, 2〉) =
1√
2

(|2, 0〉+ |0, 2〉) . (82)

Let us compare this case with the case when the impinging particles are classical.
In this latter case every particle has a 50 % chance of transmission, yielding the
“classical” density operator

ρ̂class. =
1
4
|2, 0〉〈2, 0|+ 1

2
|1, 1〉〈1, 1|+ 1

4
|0, 2〉〈0, 2|. (83)

We see that the probabilities of measuring one particle in each output becomes
1/2 and the probability of detecting two particles in the a- and b-output is 1/4,
respectively. Inspection of (82) shows that photons are non-classical in that they
will always exit the beam splitter both in the same output. The two photons
will never go separate ways. This is a quantum mechanical interference effect (in
quantum mechanics probability amplitudes, which may be negative, are added,
not probabilities which are always positive). This is the first example which
shows the rich, and sometimes non-intuitive, dynamics of even simple quantum
systems.
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