
1

APPENDIX A: MOCKITO UNIT TESTING TUTORIAL

This appendix is a tutorial over how to implement Mockito Unit testing/mocking framework. It

also contains a code example of a simple test created exclusively for this tutorial.

The goal with this tutorial is to show how to implement and use the Mockito testing framework.

Mockito is a testing framework implemented as an extension to JUnit, a testing framework itself

for Java. Mockito allows for mocking of objects. Mocked objects are used in automated unit

testing with Mockito. A mock simulates the behavior of an object in order to test another object

that is dependent on it. The advantage of this is that the behavior of a mock can be controlled

very precisely in a test environment and dependencies between different objects are easily set-up

in a separate container.

Before starting the tutorial, it is assumed that Netbeans 7.0.1 or later has been installed and that

the user has access to our Java EE Web project, The Recruitment System. Also the project must

be imported and implemented in NetBeans. This tutorial has only been tested on a PC running

Windows 7. It has not been verified to work on other Operating systems but there should not be

any major differences since this tutorial focuses on NetBeans IDE.

1.1 Downloading the necessary files.

Visit the Mockito official website at: https://code.google.com/p/mockito/downloads/list

Download the latest stable build jar file called mockito-all-x.x.x.jar. This file only contains a

single jar file for importing the Mockito source files.

1.2 Implementing Mockito to your Java EE Web project

Import the library to the project as described below.

Start NetBeans.

Right-click on the folder Test Libraries located inside your Java EE Web project tree. Your Java

EE project tree can be found under Projects in NetBeans (Figure 1).

https://code.google.com/p/mockito/downloads/list

2

Figure 1 – Project tree in NetBeans IDE.

Left-click Add Jar/Folder and then navigate on your PC to the folder which contains the

Mockito library that you downloaded earlier from the Mockito website. Choose the Mockito

library jar file called mockito-all-x.x.x.jar.

Figure 2 – Mockito framework imported into test libraries.

Once Mockito has been imported it will be visible as a jar file in the folder Test Libraries at your

Java EE Web project tree (Figure 2). You are now able to use Mockito as a testing tool.

1.3 Setting up test environment for Mockito

Right click on your Java EE Web project and navigate to New and then to Other…

Choose the category JUnit on the left hand side under Categories and choose the file type Test

for existing class (Figure 3).

NOTE: In later NetBeans builds the category name has been changed to Unit Tests.

3

Figure 3 – How to create a new test for existing java class in NetBeans IDE.

Choose the class you want to test from your Java EE Web project either by typing the class name

or by browsing to it with the Browse... button. For this example, we have chosen the class

DAOFacade.java. It is recommended that you do the same for easier learning. DAOFacade is

located in the project source package controller.

Click finish.

You will now be presented with a new test class called DAOFacadeTest.java which contains

around 150 lines of automatically generated test code. For this example, please delete this code

but leave the imports at the top of the class intact. This new test class, DAOFacadeTest, will be

located under a new folder called Test Packages. The name of test package will be the same as

the name for the source package where the tested class resides. For instance, DAOFacade is

located in the source package controller and its test class, DAOFacadeTest is found in the test

package with the same name, controller. Their locations are illustrated in Figure 4 where the

project tree is shown. The classes are highlighted in blue.

4

Figure 4 – DAOFacade.java and DAOFacadeTest.java in their respective locations.

1.4 Writing a simple test with Mockito

At this point, DAOFacadeTest.java should only contain the imports. It is now time to write the

test in it. The Mockito API provides several methods for many different testing scenarios. For

this example, the focus will be on one common method called verify(). Before writing the test, it

must be defined and, to this end, some context must be given first.

DAOFacade is the controller for the IV1201 web project and it acts as a facade over the lower

layers of the system, such as the source package model. All calls from the upper layers, for

instance the source package view, must pass through the controller. Its job is to validate the calls

and to delegate them down to the right location in the lower layers.

DAOFacadeTest will test one of those delegations and check that the right method was called in

another class, at the lower layers. The method that will be subject to test is called login(). This

method receives two parameters from the upper layers and passes them to a lower-layer class

called Logic.java by calling the method login() in this class. To clarify this, the method that will

be tested in DAOFacadeTest is shown in Figure 5.

5

Figure 5 – Login method in DAOFacade.java passes parameters to method of the same name in class Logic.java.

The class Logic returns to DAOFacade an integer 0 if the set parameters are correct. These

parameters have to do with the login information and are provided by the user when trying to log

in to the system. Now that the test is defined, it is time to give a short description of the methods

used in the test at DAOFacadeTest.

The method verify() is often used to make sure that a certain behavior happened or not. The

method also allows for high granularity. For instance, the test can verify that a certain method

was called at least three times or that the call is done with a specific set of parameters. In this

case, the test will verify that the method in Logic was called exactly one time with the correct

login parameters.

This implies that there exist dependencies between DAOFacade and Logic. Since the test is run

in a separate container than the project itself, the dependencies must be set up somehow.

Thankfully, these can be mocked out using Mockito. This is what mocking is used for and why

Mockito was created, to simplify mocking for the user. The tutorial will come back to the

properties of Mockito concerning mocks in section 1.6 but for now, it is only shown how it is

done. Figure 6 illustrates the mocking of Logic, the class for which DAOFacade is dependent on.

6

Figure 6 – Set-up stage of test in DAOFacadeTest.java. This shows how to mock Logic.java.

Please observe the @Before annotation. This is a JUnit annotation and it specifies that the

method setUp() must be executed before the test itself. @Before is usually used when there is

more than one test method and they share resources such as mocked objects. It is therefore good

practice to mock out the required dependencies during the set-up stage of the test instead of

directly in the test method, although this is also a viable option. In Figure 7, DAOFacadeTest is

shown in its entirety. Please use this as a template for your own test class.

7

Figure 7 – DAOFacade.java. This can be used as a template.

With the test class provided, it is now time to run the test. DAOFacadeTest can also be accessed

directly at its test package called controller.

8

1.5 Executing a test

To execute the test, right click on the test class at the project tree and choose Run File (Figure 8).

Alternatively, all test classes under the folder Test Packages can be run simultaneously by right-

clicking on the project instead and chose Test.

Figure 8 – How to run a test class in NetBeans IDE.

A new window will appear showing the test results at the lower left in NetBeans (Figure 9).

Figure 9 – Results from a passed test.

9

1.6 The Mockito API

Please disregard any project specific naming such as class names and package names in the

following example. This example was coded for the sole purpose of showing the Mockito API in

a tutorial. The goal with this example is to familiarize the reader with the structure of the code

more and to see how Mockito is being used. The example also uses the method verify() which

should now be familiar to the reader. This is important because this section focuses more on the

theory behind the Mockito API and establishes the terminology used when talking about unit

testing in general.

The test example illustrated in Figure 10 below, uses a method from the Mockito framework

called verify(). As mentioned in section 1.4, verify() can be used whenever a verification of some

sort needs to be done, however verify() is often used to check that a certain method call invokes

the right method in another class. Dependencies between classes and method calls between them

are verified. This type of testing is called integration testing. During such a test, the interactions

between modules are tested. A module can be different things depending on the nature of the

test. In this case, a module is just a java class. More specifically, it is ClassA.java.

This class is dependent of ClassB.java in such a way that a the only method found in ClassA,

methodA() delegates the work to the one method in ClassB called methodB. ClassA is essentially

a facade over ClassB, much like the case of DAOFacade.java and Logic.java in section 1.4. The

example here, just as before, verifies that the method in ClassB was actually called from the

method in ClassA.

In order to make such a test, dependencies between the two classes need to be set up. This is

where Mockito is used. With Mockito, the dependencies can be mocked by creating what is

called a mocked object of a class for which the tested class is dependent upon. In the example,

ClassA is dependent on ClassB because its method invokes a method in ClassB. This is why

ClassB is mocked. It is recommended that the comments in the code is read and understood

(Figure 10).

10

Figure 10 – Complete source code for test class.

The test class above tests the only method found in the SUT. SUT stands for System under test

and it is an abbreviation used to refer to whatever is being tested. As a consequence, an SUT can

mean different things depending on the test case. In this case however, the SUT refers to the java

class that is being tested, namely ClassA. Furthermore, in section 1.4 the SUT would be

DAOFacade.

The method in ClassB does nothing. The SUT, ClassA, has a constructor that receives an object

of ClassB which is used to access the method found in ClassB. In the test class, instead of an

object of the real ClassB, a mocked object is sent to ClassA using Mockito in order to mock the

dependencies between ClassA and ClassB. It is important to realize that unit tests are run in a

separate container to avoid contamination of the project. This way, the behavior of the project is

in no danger of being affected by the tests.

Figure 11 illustrates the constructor found in the SUT, (a) and how this is used by the test class

to mock out the dependencies in the test container, (b).

11

Figure 11 – (a) shows the constructor in the SUT. (b) Shows the test class using the constructor to pass a mocked object to

the SUT.

In order for the test to run, dependencies to ClassB need to be mocked first. There are several

ways to do this. One way is shown in Figure 12.

Figure 12 – One way to mock when static imports are used. If not, the Mockito class must be explicitly referenced.

Another way to mock is to use the Mockito annotation for mocking @Mock (Figure 13).

Figure 13 – One way to mock using annotations.

To enable Mockito specific annotations, the code must specify how to run the test class. This is

done using the JUnit annotation @RunWith (Figure 14). The annotation is put on top of the class

definition.

Figure 14 – JUnit Annotation @RunWith to enable Mockito annotations.

Please observe that no expectation was set up before the test. This is done after the fact and it is a

feature unique to Mockito. Usually, an expectation is set up before the method is called, where

the expected outcome is specified.

This structure is known as the expect-run-verify pattern and it is one that does not need to be

followed when using Mockito, making the test more intuitive. In the case above, the test only

verifies that methodB was invoked with the correct parameter, “anyString”, when methodA was

called. This was the expected outcome of the test and Mockito offers many options to tailor the

verification.

For example, the test can check that a specific method was invoked a specified number of times.

Using the same example classes, such verification would look like this (Figure 15).

12

Figure 15 – Verify that methodB was invoked exactly one time with the parameter “anyString”.

Several verifications can be made in the test method by simply typing verify again with new

logic, as seen in Figure 16.

Figure 16 – Several verifications in succession.

A test class can have more than one test method. This is accomplished by adding the JUnit

annotation @Test right above the intended test method. This is illustrated by Figure 17.

Figure 17 – Several test methods using the JUnit annotation @Test.

13

The way of passing a mocked object as illustrated in Figure 11 can become problematic when

the code base becomes more complex and data structures such as EJB’s are used. In some cases,

like in Java EE Web projects with the MVC-model-structure, constructors for passing class

objects may not be a viable option due to the need of encapsulating and having low coupling

between the different layers. To solve this issue, an injection point that sets the EJB to be the

mocked object can be used to pass it to the SUT when running a test.

This means altering the SUT by adding this ability. In the context of testing, this violates the rule

of not altering the SUT just for the sake of testing it. However, by adding this ability to the SUT,

neither its logic nor the overall structure is changed. It is therefore, an acceptable solution to the

problem and it is how it is done in DAOFacadeTest in section 1.4. Figure 18 shows such a case,

where dependencies between two classes at different layers of the system are set up using EJB’s

and not by passing objects of classes using constructors.

Figure 18 – AuthenticationBean.java in the upper layer of the project has access to methods in DAOFacade in the next,

lower layer.

In this case, a class called AuthenticationBean.java, located in the upper layer of the Java EE

Web project, passes all methods to the lower layers of the system via the facade, DAOFacade.

DAOFacade is the controller and it is located one layer down, in the source package controller.

AuthenticationBean does not see the lower layers. Instead, it sees only a facade over it which it

interacts with, much like what the SUT ClassA does with ClassB. The difference here is that,

instead of having a constructor in AuthenticationBean that receives an object of the facade, the

facade is set as an EJB in AuthenticationBean with the @EJB annotation (Figure 18 again). This

yields better encapsulation of the code layers and lower coupling between them, some of the

goals with the MVC-model.

Now, a test is created under these circumstances. The SUT is now AuthenticationBean and the

method in it that will be tested is called login(). This method passes login information to the

lower layers by calling a method in DAOFacade and not any methods directly from the lower

layers. Those methods are hidden from AuthenticationBean. Since DAOFacade is an EJB in

AuthenticationBean this can be done, even though AuthenticationBean does not have constructor

for DAOFacade as in the case of ClassA in Figure 11 - (a). Figure 19 illustrates the portion of the

code from the method that shows how the work is delegated to DAOFacade.

Figure 19 – login method in the new SUT, AuthenticationBean.java, passing on to login() in DAOFacade.java.

14

The test verifies that the method login() in DAOFacade was actually called exactly once with

two specific strings a parameters. This is shown in Figure 20.

Figure 20 – The test for the SUT.

The depending class, DAOFacade, is mocked as usual in the test class (Figure 21).

Figure 21 – DAOFacade.java mocked as in a previous test example (Figure 6).

As mentioned before, the difference lies in the SUT. In order for the test to pass, the SUT must

be able to receive a mocked object somehow. For this reason, an injection point is added to the

SUT that explicitly sets an object of type DAOFacade equal to the EJB for DAOFacade in the

SUT (Figure 22).

Figure 22 – The added code in the SUT.

In the test class, after mocking DAOFacade, the mocked object is set to be equal to the EJB in

the SUT through this injection point. This way, the SUT uses the mocked object instead of the

EJB. If this injection point is not present, the SUT tries to pass on to the method in the real

DAOFacade instead of using the mocked object. This results in a null pointer exception since the

EJB is not defined within the context of the test. The dependencies have not been passed to the

SUT, even though DAOFacade is mocked.

This example showed how to mock dependencies to EJB’s. Mockito offer more ways of

mocking other types of dependencies such as different types of contexts but examples on how to

do this is not covered in this tutorial.

End of tutorial.

