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Homework 3

Finite Differences and Absolute Stability

due February 9, 2015

Task 1: Finite Difference Scheme

Find the highest order approximation possible of the first derivative based on the grid values ui−2,
ui−1, ui and ui+1. Assume equidistant grid spacing ∆x.
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≈ f(ui−2, ui−1, ui, ui+1)

a) Give the approximation for the derivative.

b) What is the leading error term? What is the order of this scheme?

c) Implement this scheme for the approximation of the derivative in a similar way as you did
in Task 2a) of Homework 2 and numerically assess the order of its accuracy. Note that you
do not need to compute truncation and round-off errors separately, just the global order of
accuracy is required.

Task 2: Stability Criterion

The range of absolute stability of the Runge-Kutta 4th-order method is studied. This time-stepping
method for an initial value problem of the form du

dt = f(u, t), u(t0) = u0 is:
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Consider a simple linear test equation (Dahlquist equation):

du

dt
= λu.

Show that un+1 can be written as a function of un and z = ∆tλ as follows
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The absolute stability criterion is given by

|G(z)| =
∣∣∣∣un+1

un

∣∣∣∣ ≤ 1. (1)

Draw the region that correspond to equation (1) on the complex z−plane.
(Hint: The curve |G(z)| = 1 cuts the imaginary axis at ±2.83)

Task 3: The Modified Wavenumber

On an equispaced grid, the finite-difference derivative of a Fourier mode eikx can be found by
multiplying the function value on each node with the so-called modified wavenumber k̃(k).
To better understand this concept consider a periodic function

f(x) : R→ C, f(x+ 2π) = f(x), ∀x.

Let f be the discrete representation of f(x) on an equidistant grid where xj = j∆x, ∆x = 2π/N ,
j = 0, 1, . . . , N − 1 with N = 20,

f = [f0, f1, . . . , fN−1]
T where fj = f(xj).

a) Write a MATLAB script that computes the matrix D corresponding to right-sided finite
differences of first order. The matrix D is defined as:

f ′
num

= D f

where the vector f ′
num

is

f ′
num

= [δf0, δf1, . . . , δfN−1]
T ,

and the operator δfj is

δfj =
fj − fj−1

∆x
.

Remember that f(x) is periodic when computing the derivative at the point x = xN−1, i.e.
fN = f0.

b) Consider f(x) = eikx and derive the expression for the modified wavenumber k̃ for the right-
sided finite-difference scheme. Non-dimensionalise the wavenumber with the grid spacing, i.e.
derive k̃∆x(k∆x).

c) From now on assume that k = 5 (i.e. consider a specific wave). Compute the derivative in a
discrete (δfj) and analytical (f ′x=xj

) manner at every grid point. Use the previously defined D
for the discrete derivative. Plot the real part for both the numerical and analytical derivative
as a function of x.

d) Compute the vector µ with the elements

µj =
δfj
fj

and compare it with the complex number ik̃, where k̃ is the modified wavenumber for the
right-sided finite differences as derived in b). Use k = 5 and ∆x = 2π/N (N = 20).
Does this result confirm that the finite-difference derivative of a Fourier mode eikx can be
found by multiplying the function by the modified wave number? i.e. does ik̃f = D f hold?


