
Why use a small 8-bit processor
when there are cheap powerful

32-bit?

William Sandqvist william@kth.se

8-bit processor close to the sensor?

William Sandqvist william@kth.se

• A simple sensor often has a weak output signal. It
may need to be connected with an expensive cable.

• An expensive sensors with "integrated electronics"
can get by with a simple cable.

The cost of both options can very well end up to be
the same!

Thus smart to embedd an 8 bit processor inside the
sensor!

8-bit processor as smart cable?

William Sandqvist william@kth.se

How many 8 bit processors can you get for the cost
of a meter cable? The processor as cable
replacement!

Analog signal transfer

Digital signal transfer

• Cheap cable
• Cheap
processor

• Expensive
cable
• No processor

William Sandqvist william@kth.se

PIC 8-bit processor

PIC (Peripheral Interface
Computer) are inexpensive
computer circuits with "all in
one".

• Different
number of
pins

• Different
combi-
nations Of
IO-units

• Different
amount of
program memory
• different
amount of data
memory

PIC Midrange
processor

63 different typs
of Midrange PIC
processors!

The business idea - buy only as
much as you need

Develop your application on a processor with "little of
everything".

To the finished product then use just exactly how much
you need.

William Sandqvist william@kth.se

ELFA’s cheapest PIC-processor

William Sandqvist william@kth.se

4 kr each if you buy 10 …

Programmemory: 384 words
RAM-memory: 16 Byte
8 bit AD-converter 2 channels
Internal oscillator 4 MHz
TIMER0
Voltage 2…5,5 V
Typical current consumption:
175μA

PIC10F220T-I/OT
Can be compiled with
Cc5x – includefile exist

When computing power is so
cheap there opens up completely
new possibilities…

This is one reason why it might
be good idea to learn PIC
processors!

The built in IO devices increases
8-bit processors' performance

William Sandqvist william@kth.se

IO ports and IO bits,
timers,
Capture/Compare/PWM,
Analog comparators, ADC,
Serial ports, voltage
references, data EEPROM,
etc.

The same IO devices can then be
found also in larger processors

William Sandqvist william@kth.se

The course is all about connecting
electronics to the IO devices

William Sandqvist william@kth.se

How to indicate that a coin is nearby
(the coil)?

• CCP-unit

• LC-oscillator

Circuit Theory and PIC processor!

You will, for example, get to know how an inductive
sensor works…

PIC16F690

William Sandqvist william@kth.se

William Sandqvist william@kth.se

PIC 8-bit processor
PIC (Peripheral Interface
Computer) are inexpensive
computer circuits with "all in
one".

Prog Mem. Program memory.

File Reg. Data memory and special
registers. The special register are
connected to IO, for example the
chip pins.

William Sandqvist william@kth.se

Program memory

Stack
only for return
adresses (8), not for
parameters.

Program memory.
PIC16F690 has 7 kByte
FLASH.
4096 word a’ 14 bit.

William Sandqvist william@kth.se

16F690 Program memory
PIC-processor GOTO and CALL -
instructions can directly reach addresses
within 2 k (opcode has 11 addressbits).

16F690 has 4 k program memory, so one
has to choose new ”page” in the program-
memory.

The division in
pages, is an
outdated
architecture.

William Sandqvist william@kth.se

Code pages
PIC processors have the program memory divided into
”code pages"? (0, 1, 2, 3), about 2048 instructions. The
compiler Cc5x begins to put code on page 0 and gives error
when this page is not enough. Should this occur you write
there instructions? #pragma codepage 1, then further
instructions end up on the next page (and so on code page 2
if necessary).

To get compact code a thorough ”page planning ” is needed,
something that one hardly cares about during prototype
development.

William Sandqvist william@kth.se

Data memory
register File

PIC processor data memory is
the Register File. It consists
of SFR, special function
registers, and the GPR
General-purpose registers
which are the actual data
memory.
SFR registers are connected
to the processor IO.
Mapped RAM, same register is
found in all banks - you do not
have to change rambank!

William Sandqvist william@kth.se

RP1 and RP0
One chooses bank with the bits RP1 and RP0 in STATUS
register

The division of data memory in RAM banks is an outdated
architecture.

William Sandqvist william@kth.se

The compiler can choose for us!
The PIC processor's register area (RAM) is divided into "ram
banks" (0, 1, 2, 3). Cc5x begins to fill rambank 0. You can
change rambank with instruction #pragma Rambank 1
and then all variables that are declared are placed in the next
rambank (rambank 1). Some memory cells are found in the
same place in all ram banks, known as mapped RAM. You can
choose to place variables as "mapped ram" (as long as there is
space) with the instruction #pragma rambank -.

Best use of RAM banks requires a lot of planning, something one hardly
cares about during prototype development.

William Sandqvist william@kth.se

PC, IR, ALU, W-register
Prog Counter, PC. Programcounter
register points to where in program memory
the current instruction is. It is incremented
automatically after each executed
instruction.

Inst Register, IR. Instruction register holds
the code for the current instruction.

ALU. Arithmetisc Logic Unit handles the
calculations.

The vast majority of operations are performed
through the working register, W-reg. This is the
PIC processor "wasp waist".

W

William Sandqvist william@kth.se

Harvard vs Von Neumann

• Von Neumann architecture
have a common bus for
instructions and data.

• Harvard architecture has
 different busses for instruc-
 tions and data. Harvard is (twice) faster …

William Sandqvist william@kth.se

CISC vs RISC
• CISC (Complex Instruction Set Computer)
 Eg. Intel PC, has 700 instructions.

• RISC (Reduced Instruction Set Computer)
 Eg. Microchip PIC, has 33 instructions.

These concepts are now obsolete. Intel processors are
still classified as CISC - but they have advanced
architecture that utilizes all the best of RISC…

William Sandqvist william@kth.se

KIA’s factory in Slovenia
A car every minute is leaving the band – does it take
one minute to build a car?
No at KIA's factory outside Zilina it
will take 18 manhours to build a car
(this is worldrecord! Toyota will need
30 manhours).

The solution is a Pipeline. 18 hours is
1080 minuts, så build is done in parallell at
1080 one minute stations. The factory has
3000 employees working in three shifts, ie
1000 workers per shift. Many of the
station are thus completely robotized.

William Sandqvist william@kth.se

Fetch and Execute

PIC has Harvard architecture and can therby Fetch an
instruktion at the same time it is Executing the previous
instruction. It will take 8 clock cykles to finnish an
instruction. We have a two step pipeline, so there will be one
instruction finnished after each fourth oscillator-clockcykel.
With a 4 MHz clock this is 1.000.000 instructions/sec.
Each instruction will take 1 µs.

William Sandqvist william@kth.se

Instruction format
PIC is a classisc RISC-
processor with only 33
instructions …

Instructions are 14 bit

• OP-code what to be done
– is 6 bit (or 3 bit).

• The rest of the bits are
used to tell – with what it
should be done.

William Sandqvist william@kth.se

Byte operations
Ex. Addition of numbers in FILE, data memory, and
working-register W. The result is stored lagras in
workingregister or data memory – and the initial
number will be overwritten.
ADDWF f,d
ADDWF f,0; W=f+W
eller
ADDWF f,1; f=f+W

In the same way: SUBWF f,d

Assembler instructions
are written as easy to
remember abbreviation
mnemonics.

William Sandqvist william@kth.se

More Byte operations

If you want to copy content between the memory and the
working register one does it with
MOVF f,0; W=f
or between working register and memory with
MOVWF f; f=W

Some special cases of addition and subtraction, increase
by one respective decrease by one, have their own
instructions. Like the reset of register.

INCF f,d DECF f,d CLRW resp CLRF f

Move mean really Copy!

William Sandqvist william@kth.se

Program constants
Programconstants as
number 17 or the letter
’A’ are stored inside
instructions.

k is a ”Literal”, a Byte constant, stored inside the
instruction MOVLW k; W=k. At the execution of the
instruction the constant will be transfered to the
working register.

More Literal-instructions: ADDLW k; W=W+k
SUBLW k; W=W-k

17 ’A’

William Sandqvist william@kth.se

Bit operations
PIC processor has direct bit
operations.

BCF f,b Clear bit b in File nr f (bits are numbered 0…7)
BSF f,b Set bit b in f

William Sandqvist william@kth.se

Program jumps
GOTO k Program jump

CALL k Subroutine call
RETURN Return jump
Instruction GOTO changes PC to the value of Literal k
which for this instruction is 11 bit (and two extra bits
from register PCLATH). PC now continnues to exequte
the program from the new place.

When CALL instruction, first the PC value is stored in a
stack register, then its the same as with GOTO. At
instruction RETURN the previous value of PC is retrieved
from the stack register and the program continnues with
the instruction that follows after the CALL instruction.

William Sandqvist william@kth.se

Conditional tests, skip
PIC processor has some instructions to test whether conditions
are met and, if so, skip, the next instruction. The next
instruction is then usually a GOTO instruction.

DECFSZ f,d; f - 1 but skip ”next” if 0-result
INCFSZ f,d; f +1 skip if 0 (registers can ”turn around”!)
BTFSC f,b; skip if bit b in f is 0 (Clear)
BTFSS f,b; skip if b in f is 1 (Set)

This counterintuitive thinking ”don’t jump if ..." is a bit special for
PIC and no longer common to other processor types.

William Sandqvist william@kth.se

Why skip?
The outcome of a test often means that one needs to do an
additional instruction that one would not otherwise do.

skip instruction skips this extra instruction, and because
jumps always takes twice as long as other instructions, so
take the instruction sequence always the same time to
execute regardless of the result!

This can be seen as a feature of the PIC processor's
instruction set.

William Sandqvist william@kth.se

NOP No Operation

Processors generally have an instruction that does
"nothing". It can be added to equalize the time
differences between different paths in the program.

William Sandqvist william@kth.se

How long time does instructions take?
The processor internal clock uses ¼ of the oscillator
frequency. Usual is 4 MHz crystal and then there will be
1 MHz clock speed. Most operations are performed in
one clock cycle, ie, takes 1µs. The instructions that affect
the PC takes two clock cycles, ie, 2 µs.

GOTO, CALL, RETURN Allways take 2 cycles,

DECFSZ, INCFZ, BTFSC, BTFSS takes 2 cykles
when they create ”skip”, otherwise 1 cykle.

One can calculate the PIC processor execution time with
finger counting!

William Sandqvist william@kth.se

Ports

Of the PIC circuit pins 6 are bundled to a PORTA
and 8 to a PORTC, 4 to a PORTB. The pins can also
be used alone, and apparently they can have many
optional features.

+ -

William Sandqvist william@kth.se

Tris-register
If a pin is to be used as
input or output depends on
settings in a TRIS-register.

TRISA and TRISB and
TRISC

If the "corresponding" bit in
trisregistret is 1 the pin is
used as an input, if it’s 0 as
an output!

TRIS = Threestate

William Sandqvist william@kth.se

William Sandqvist william@kth.se

An Assembly program
init
 CLRF PORTB;
 MOVLW 10111111b;
 MOVWF TRISB;
loop
 BTFSS PORTB,7;
 GOTO lampoff;
lampon
 BSF PORTB,6;
 GOTO loop;
lampoff
 BCF PORTB,6;
 GOTO loop;
 end;

The program lights on and off the
LED on the command from the
switch.

(This of course could be done
without PIC - but then it's no sport!)

William Sandqvist william@kth.se

Commented
assembly program
Assembly language program is called "spaghetti programming". It becomes easier to
follow the program jumps when you draw out the arrows.

init
 CLRF PORTB; reset register portB
 MOVLW 10111111b; get a constant to the working register W
 MOVWF TRISB; copy the constant to trisB register
loop
 BTFSS PORTB,7; skip next instruction if portb.7 = 1
 GOTO lampoff; jump to ”lampoff”
lampon
 BSF PORTB,6; Set portB.6 -> light up LED
 GOTO loop; go on from ”loop”
lampoff
 BCF PORTB,6; reset portB.6 -> turn off LED
 GOTO loop; go on from ”loop”
 end;

William Sandqvist william@kth.se

C-program
/* onoff.c */
/* B Knudsen Cc5x */
/* C-compiler */
/* not ANSI-C */

#include "16F690.h "
#pragma config |= 0x00D4

void main(void)
{
 TRISB.6 = 0;
 PORTB.7 = 1;
 while(1)
 {
 if (PORTB.7==1) PORTB.6=1;
 else PORTB.6=0;
 }
}

Pragma – extensions of theC-
language
Bitvariables variabel.bit
The compiler recognizes names
of most registers, the rest of the
names are stated in the processor
include file.

William Sandqvist william@kth.se

Download format
The program code is downloaded
to the chip with a circuit program-
mer.

The format used is a text file with the op-codes as a
string of Hex digits. This is the download code for the
previous example program.

:1000000001288316031307108312071483120313A6
:10001000871C0C28071406288312031307100628D0
:02400E00D400DC
:00000001FF End of file.

William Sandqvist william@kth.se

Compilation ”report”
RAM: 00h : -------- -------- -------- --------
RAM: 20h : ==.***** ******** ******** ********
RAM: 40h : ******** ******** ******** ********
RAM: 60h : ******** ******** ******** ********
RAM: 80h : -------- -------- -------- --------
RAM: A0h : ******** ******** ******** ********
RAM: C0h : ******** ******** ******** ********
RAM: E0h : ******** ******** ******** ********
Codepage 0 has 68 word(s) : 3 %
Codepage 1 has 0 word(s) : 0 %

Symbols:
 * : free location
 - : predefined or pragma variable
 = : local variable(s)
 . : global variable

Program

SFR/GPR

William Sandqvist william@kth.se

(Cc5x internal variables)

char W;
char INDF, TMR0, PCL, STATUS, FSR, PORTA, PORTB;
char OPTION, TRISA, TRISB;
/* STATUS : */ bit Carry, DC, Zero_, PD, TO, PA0, PA1, PA2;
/* FSR : */ bit FSR_5, FSR_6; char PORTC, TRISC; char PCLATH, INTCON;
/* OPTION : */ bit PS0, PS1, PS2, PSA, T0SE, T0CS, INTEDG, RBPU_;
/* STATUS : */ bit Carry, DC, Zero_, PD, TO, RP0, RP1, IRP;
/* INTCON : */ bit RBIF, INTF, T0IF, RBIE, INTE, T0IE, GIE;

Built-in the compiler provides the following names of
registers and flags (bits in register):

These should not be declared in the programs. Include files then
hold additional register names and names of bits, the same
names that are used in the official manual.

William Sandqvist william@kth.se

(Cc5x internal functions)

btsc(Carry); // void btsc(char); - BTFSC f,b
btss(bit2); // void btss(char); - BTFSS f,b
clrwdt(); // void clrwdt(void); - CLRWDT
i = decsz(i); // char decsz(char); - DECFSZ f,d
W = incsz(i); // char incsz(char); - INCFSZ f,d
nop(); // void nop(void); - NOP
nop2(); // void nop2(void); - GOTO next address
retint(); // void retint(void); - RETFIE
W = rl(i); // char rl(char); - RLF i,d
i = rr(i); // char rr(char); - RRF i,d
sleep(); // void sleep(void); - SLEEP
skip(i); // void skip(char); - computed goto
k = swap(k); // char swap(char); - SWAPF k,d

The internal functions provide "direct access" to some of the PIC
processor instructions:

clearRAM(); // void clearRAM(void); An internal function that can be
called to reset all data memory in the processor.

William Sandqvist william@kth.se

(Simple C-statements → Assembler)
Simple C statements are in general translated directly to the
single assembler instructions. Programs written in assembly
language can be translated instructions by instruction to a
Cc5x C program.

Typical program structures

William Sandqvist william@kth.se

A typical program

A typical program.

First initiate PORTs and units so they are set to fit the
application. This is done once for all in the beginning of the
program.

Then gthe program loops for ever – and reacts on input
signals and delivers output signals for every turn in the loop.

The program finnishes when the power is turned off.

Single run program?

William Sandqvist william@kth.se

main
 ; nop(); /* to do something once */
 NOP
 ;}
 SLEEP
 GOTO main

 END

void main(void)
{
 nop(); /* to do something once */
}

Single run program would not
work, the compiler inserts SLEEP
command, so the processor enters
current save mode.
This also goes for the IO-units.

• C-program:

• Translated to assembly:

Single run program?

William Sandqvist william@kth.se

main
 ; nop(); /* something once */
 NOP
 ; while(1) ;
m001 GOTO m001

 END

void main(void)
{
 nop(); /* something once */
 while(1);
}

This is a program that does not
force the compiler to use SLEEP,
the power saving mode.

• C-program:

• Translated to assembly:

Wait for a key press?

• wait for a key press, blocking code:

while (PORTB & 0x01 == 0) /* do nothing */ ;

PORTB bit 0
gets 1 when
you press

• Or simpler – PIC-processors have bitvariables:

while (!PORTB.0) /* do nothing */ ;

Many times the CPU has not
so much to do, then you can
use blocking code.

/* OK, now you have pressed the button ... */

/* OK, now you have pressed the button ... */

William Sandqvist william@kth.se

v

v

Contact bounces!
When you press, or release, a mechanical contact it bounces
a while before the contact surface is coming to rest. PIC
processor are so fast that they can perceive each bounce as
distinct contact press!

If a contact will bounce much or little is not visible on the
outside!

? ≈3
ms

≈3
ms

William Sandqvist william@kth.se

≈?
ms

Toggle a LED ON/OFF

void main(void)
{
 TRISB = 0b10111111; /* RB7 in, RB6 out */
 while(1)
 {
 while(!PORTB.7) ; /* wait key pressed */
 PORTB.6 = !PORTB.6; /* toggle led */
 while(PORTB.7) ; /* wait for key released */
 }
}

Nothing else than a random number generator, anything can happen/not
happen when you press the button!

William Sandqvist william@kth.se

• Not as thought, every other time - but a random number
generator!

Toggle a LED ON/OFF

void main(void)
{
 TRISB = 0b10111111; /* RB7 in, RB6 out */
 while(1)
 {
 while(!PORTB.7) ; /* wait key pressed */
 PORTB.6 = !PORTB.6; /* toggle led */
 delay(5);
 while(PORTB.7) ; /* wait for key released */
 delay(5);
 }
}

Wait out the contact bounces. A contact can bounce both when pressing
it and when you release it!

Wait out the contact bounces (>5ms)

William Sandqvist william@kth.se

• Now it works!

Wait out the contact bounces (>5ms)

delay() function

William Sandqvist william@kth.se

C-functions
void delay(char);

void main(void)
{
 TRISB = 0b10111111; /* RB7 in, RB6 out */
 while(1)
 {
 while(!PORTB.7) ; /* wait key pressed */
 PORTB.6 = !PORTB.6; /* toggle led */
 delay(5);
 while(PORTB.7) ; /* wait for key released */
 delay(5);
 }
}

• Function declaration (prototype) before main()

• Function call

• Function call

• Place the funktion definition after main() in the same file.
William Sandqvist william@kth.se

delay() function
/* Delays a multiple of 1 milliseconds at 4 MHz */
/* (16F690 internal clock) using the TMR0 timer */

void delay(char millisec)
 {
 OPTION = 2; /* prescaler divide by 8 */
 do
 {
 TMR0 = 0;

 while (TMR0 < 125) /* 125 * 8 = 1000 */ ;
 } while (-- millisec > 0);
 }

1000 µs
millisec
Nr of turns

do
{
 --- ;
} while(---);

It is the after-tested loop that is the
iteration procedure that best fits the PIC
processor.

• Place function definitions after main() in the same file.

William Sandqvist william@kth.se

TIMER0
TIMER0 is an internal 8-bit modulo 256-counter which
can be read/written from program. When the timer
“turns around” the bit T0IF is set.
If bit TOCS in OPTION register is "0" then the
processor clock is counted. If bit TOCS is "1" then
edges on pin T0CKI is counted.

The bit PSA=0 inserts a prescaler, a frequency divider. With it active only
a fraction of the incoming pulses are counted. Bits PS2 PS1 PS0 sets the
prescaler division ratio.

TMR0=0; /* reset timer0 */
time=TMR0; /* store timer0 value in char variable time */
TMR0=17; /* preset timer0 to 17 */

William Sandqvist william@kth.se

TIMER0
TMR0

T0IF

1 MHz

William Sandqvist william@kth.se

C-functions summary

William Sandqvist william@kth.se

• Function deklarations before main().
• Call from inside main()or from inside
other functions.
• Function definitions afterr main(), in
the same file.

Often its so little code that everything can be in one file.
The functions are often tailored directly to the application
and the processor, therefore it may be unnecessary to store
them as a ”general” function library.

Wait for key presses?

while(!PORTB.0 || !PORTB.1) /* do nothing */ ;

/* now one or both buttons are pressed */
if(PORTB.0) /* action for red button */ ;
if(PORTB.1) /* action for black button */ ;

Two keys, blocking code.

William Sandqvist william@kth.se

PORTB bit 0
gets 1 when one
presses the key

PORTB bit 1
gets 1 when one
presses the key

OR

React on keypresses?

bit flagbit;
While(1) /* main programloop */
 {
 /* examine button status */
 if(PORTB.0) /* direct action for red button */ ;
 if(PORTB.1) flagbit = 1; else flagbit = 0;
 /* . . . */
 /* later, act on the flagbit */
 if(flagbit) /* action for black button */ ;
 }

Two keys, nonblocking code

One can react directly on the key status or share the information with a bitvariabel, a
flag bit.

William Sandqvist william@kth.se

• Contact bounces?

PORTB bit 0
gets 1 when one
presses the key

PORTB bit 1
gets 1 when one
presses the key

bit flagbit;
While(1) /* main programloop */
 {
 /* examine button status */
 if(PORTB.0) /* direct action for red button */ ;
 if(PORTB.1) flagbit = 1; else flagbit = 0;
 /* . . . */
 /* later, act on the flagbit */
 if(flagbit) /* action for black button */ ;

 delay(5);

 }

Wait out (>5ms) contact bounces
before the nect turn in the main-loop

William Sandqvist william@kth.se

React on keypresses?

Two keys, nonblocking code

PORTB bit 0
gets 1 when one
presses the key

PORTB bit 1
gets 1 when one
presses the key

Checkbox or Radiobutton?
Checkbox (meny alternatives):

if(a)b; if(c)d; if(e)f; . . .

Radio Button (only one):

if(a)b; else if(c)d; ... else f;

William Sandqvist william@kth.se

? ?

William Sandqvist william@kth.se

Radiobutton …
To select only one option among several …

if(a) b;

else if(c) d;

else f;

Or with the C-language switch-case expression …

C-language switch – case expression

William Sandqvist william@kth.se

Hint! Note that B Knudsen compiler generates more
effective code for
• switch() – case
than for
• if() – else if() – else
so always use a switch statement when possible!

William Sandqvist william@kth.se

C switch – case
 switch(d) {
 case 0×00 : k='1'; break;
 case 0×01 : k='2'; break;
 case 0×02 : k='3'; break;
 case 0×04 : k='4'; break;
 case 0×05 : k='5'; break;
 case 0×06 : k='6'; break;
 case 0×08 : k='7'; break;
 case 0×09 : k='8'; break;
 case 0×0A : k='9'; break;
 case 0×0C : k='*'; break;
 case 0×0D : k='0'; break;
 case 0×0E : k='#'; break;
 /* 0×03,0×07,0×0B,0×0F */
 default : k=' ';
}

Recoding. Keyboard
delivers mostly a completely
different code d than is
engraved on the key k !

William Sandqvist william@kth.se

switch(choice)
 {
 case 'Y' : /* Yes */
 case 'y' : /* yes */
 case 'J' : /* Ja */
 case 'j' : /* ja */
 printf("As you wish");
 break;
 case 'N' : /* No Nej */
 case 'n' : /* no nej */
 printf("Ok. You don't need to");
 break;
 default :
 printf("Wrong answer, Y/y/J/j/N/n");
 }

Group
alternatives

Default, for all
unspecified
alternatives

Handy menu-handling

William Sandqvist william@kth.se

Programing with state chart

A very common technique for
programming embedded
processors is to use "state" and
"state chart".

The idea is borrowed from
Digital Designs ”state
machines".

UML-state chart

William Sandqvist william@kth.se

Multitask?

/* Blink1: 1s ON - 1s OFF */

/* Blink2: 0,2s ON - 0,2s OFF - 1s ON - 1s OFF */

William Sandqvist william@kth.se

First one lightdiode …
while(1)
 {
 /* Blink1: 1s ON - 1s OFF */
 switch(State1)
 {
 case 0:
 PORTB_copy.6=1; /* Blink1 = ON */
 Time1++;
 if(Time1 == 10) { State1 = 1; Time1 = 0; }
 break;
 case 1:
 PORTB_copy.6=0; /* Blink1 = OFF */
 Time1++;
 if(Time1 == 10) { State1 = 0; Time1 = 0; }
 }
 PORTB = PORTB_copy;
 delay10(10); /* 0,1 sec delay each lap */
 }

William Sandqvist william@kth.se

Then another lightdiode …
while(1)
 {
 /* Blink2: 0,2s ON - 0,2s OFF - 1s ON - 1s OFF */
 switch(State2){
 case 0:
 PORTB_copy.5 = 1; Time2++; /* Blink2 ON */
 if(Time2 == 2) { State2 = 1; Time2 = 0; }
 break;
 case 1:
 PORTB_copy.5 = 0; Time2++; /* Blink2 OFF */
 if(Time2 == 2) { State2 = 2; Time2 = 0; }
 break;
 case 2:
 PORTB_copy.5 = 1; Time2++; /* Blink2 ON */
 if(Time2 == 10) { State2 = 3; Time2 = 0; }
 break;
 case 3:
 PORTB_copy.5 = 0; Time2++; /* Blink2 OFF */
 if(Time2 == 10) { State2 = 0; Time2 = 0; }
 }
 PORTB=PORTB_copy:
 delay10(10); /* 0,1 sek delay */
 }

William Sandqvist william@kth.se

Why not both?

while(1)
 {
 /* Blink1: 1s ON - 1s OFF */
 switch(State1)
 {
 case 0: ... ; break;
 case 1: ... ;
 }

 /* Blink2: 0,2s ON - 0,2s OFF - 1s ON - 1s OFF */
 switch(State2)
 {
 case 0: ... ; break;
 case 1: ... ; break;
 case 2: ... ; break;
 case 3: ... ;
 }
 PORTB = PORTB_copy;
 delay10(10); /* 0,1 sek delay */
 }

fast 10
µs

fast 10
µs

slow 0.1 s

William Sandqvist william@kth.se

State machine

WARNING! There is a "sneaky" so-called RMW problem.
HINT, SOLUTION: Changing bits in a variable
PORT_copy instead of directly on the PORT. Then copy this
entire variable to port, port = PORT_copy;
More about this later in course …

By programming "state machines"
(compare with Digital Design) you can
make it look as if the processor is able to
accomplish many things simultaneously.
One can try out each thing separately, and
usually works then the whole combination
as intended.

William Sandqvist william@kth.se

	Why use a small 8-bit processor when there are cheap powerful 32-bit?
	8-bit processor close to the sensor?
	8-bit processor as smart cable?
	PIC 8-bit processor
	Slide Number 5
	The business idea - buy only as much as you need
	ELFA’s cheapest PIC-processor
	The built in IO devices increases 8-bit processors' performance
	The same IO devices can then be found also in larger processors
	The course is all about connecting electronics to the IO devices
	Slide Number 11
	PIC16F690
	PIC 8-bit processor
	Program memory
	16F690 Program memory
	Code pages
	Data memory register File
	RP1 and RP0
	The compiler can choose for us!
	PC, IR, ALU, W-register
	Harvard vs Von Neumann
	CISC vs RISC
	KIA’s factory in Slovenia
	Fetch and Execute
	Instruction format
	Byte operations
	More Byte operations
	Program constants
	Bit operations
	Program jumps
	Conditional tests, skip
	Why skip?
	NOP No Operation
	How long time does instructions take?
	Ports
	Tris-register
	Slide Number 37
	An Assembly program
	Commented �assembly program
	C-program
	Download format
	Compilation ”report”
	(Cc5x internal variables)
	(Cc5x internal functions)
	(Simple C-statements  Assembler)
	Typical program structures
	A typical program
	Single run program?
	Single run program?
	Wait for a key press?
	Contact bounces!
	Toggle a LED ON/OFF
	Toggle a LED ON/OFF
	delay() function
	C-functions
	delay() function
	TIMER0
	TIMER0
	C-functions summary
	Wait for key presses?
	React on keypresses?
	Slide Number 62
	Checkbox or Radiobutton?
	Radiobutton …
	C-language switch – case expression
	C switch – case
	Slide Number 67
	Programing with state chart
	Multitask?
	First one lightdiode …
	Then another lightdiode …
	Why not both?
	State machine
	Slide Number 74

