Booklet: Refresher, complex numbers

© William Sandqvist 2004

Refresher, complex numbers

Basic properties of complex numbers

Definitios

A common, real number is usually illustrated as a point on the so-called number line. The magnitude is represented by the distance from the point in question to zero..
number line

A complex number z consists of two components. It can be written as $a+\mathrm{j} b$. Here, a and b are real numbers. j is the square root of -1 and is called the imaginary unit. a is the complex number real part $\operatorname{Re}(z)$. b is the imaginary part, $\operatorname{Im}(z)$.

Every complex number can be represented as a point in a two-dimensional coordinate system, the complex plane.

Number z is represented by a point with coordinates a and b.
The distance from the point to the origin represents the amount or number value $|z|$.

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

or

$$
|z|=\sqrt{[\operatorname{Re}(z)]^{2}+[\operatorname{Im}(z)]^{2}}
$$

The angle α is called the argument of $z, \arg (z)$ and as seen in the figure

$$
\tan (\alpha)=\frac{b}{a}
$$

or

$$
\begin{array}{ll}
\arg (z)=\alpha=\arctan \left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)+n \cdot 2 \pi & a>0 \\
\arg (z)=\alpha=\arctan \left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)+\pi+n \cdot 2 \pi & a<0
\end{array}
$$

We can also express z in polar form, eg with $|z|$ and α. As seen in the figure

$$
\begin{aligned}
a & =|z| \cos (\alpha) \quad b=|z| \sin (\alpha) \\
z & =|z|(\cos (\alpha)+\mathrm{j} \cdot \sin (\alpha))
\end{aligned}
$$

One can then imagine that it's the connecting line between the point and the origin that represents the number. We can see this as a pointer (vector) with the length $|z|$ and a direction that is defined by the angle α.

Basic properties

Complex numbers can be treated algebraically, the following rules apply.

Addition

$$
\begin{aligned}
& z=z_{1}+z_{2}=\operatorname{Re}\left(z_{1}\right)+\operatorname{Re}\left(z_{2}\right)+\mathrm{j}\left(\operatorname{Im}\left(z_{1}\right)+\operatorname{Im}\left(z_{2}\right)\right) \\
& z_{1}=a_{1}+\mathrm{j} b_{1} \quad z_{2}=a_{2}+\mathrm{j} b_{2} \\
& z=z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+\mathrm{j}\left(b_{1}+b_{2}\right)=\operatorname{Re}(z)+\mathrm{j} \cdot \operatorname{Im}(z)
\end{aligned}
$$

The figure shows what the addition means in the complex plane. The pointer of z equals the geometric sum of the pointers of z_{1} and z_{2}. For $|z|$ and $\arg (z)$ applies the previously mentioned general terms.

Subraction

$$
z=z_{1}-z_{2}=\operatorname{Re}\left(z_{1}\right)-\operatorname{Re}\left(z_{2}\right)+\mathrm{j}\left(\operatorname{Im}\left(z_{1}\right)-\operatorname{Im}\left(z_{2}\right)\right)
$$

In the complex plane z equals the geometric difference between the z_{1} and z_{2}.

Multiplication

The multiplication rule, we demonstrate most easily with an example.

$$
\begin{aligned}
& z_{1}=a_{1}+\mathrm{j} b_{1} \quad z_{2}=a_{2}+\mathrm{j} b_{2} \quad(\mathrm{j})^{2}=-1 \\
& z=z_{1} \cdot z_{2}=\left(a_{1}+\mathrm{j} b_{1}\right)\left(a_{2}+\mathrm{j} b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\mathrm{j}\left(a_{1} b_{2}+a_{2} b_{1}\right)
\end{aligned}
$$

The multiplication can also be implemented with the numbers expressed in polar form.

$$
\begin{aligned}
& z=z_{1} \cdot z_{2} \\
& =\left|z_{1}\right|\left(\cos \left(\alpha_{1}\right)+\mathrm{j} \sin \left(\alpha_{1}\right)\right) \cdot\left|z_{2}\right|\left(\cos \left(\alpha_{2}\right)+\mathrm{j} \sin \left(\alpha_{2}\right)\right) \\
& =\left|z_{1}\right| \cdot\left|z_{1}\right|\left(\cos \left(\alpha_{1}+\alpha_{2}\right)+\mathrm{j} \sin \left(\alpha_{1}+\alpha_{2}\right)\right)
\end{aligned}
$$

This means that

$$
|z|=\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \quad \arg (z)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)
$$

Division

Algebraic the division is implemented like this:

$$
\begin{aligned}
& z_{1}=a_{1}+\mathrm{j} b_{1} \quad z_{2}=a_{2}+\mathrm{j} b_{2} \\
& z=\frac{z_{1}}{z_{2}}=\frac{a_{1}+\mathrm{j} b_{1}}{a_{2}+\mathrm{j} b_{2}}
\end{aligned}
$$

Now, one often wants to have the results in the form $a+\mathrm{j} b$ and if so, one extends the denominator with the conjugates quantity $\mathrm{t} a_{2}-\mathrm{j} b_{2}$. Then one gets

$$
z=\frac{\left(a_{1}+\mathrm{j} b_{1}\right)\left(a_{2}-\mathrm{j} b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}=\frac{a_{1} a_{2}+b_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}+\mathrm{j} \frac{a_{2} b_{1}-a_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}
$$

If numbers are expressed in polar form, the division rule that look like this:

$$
\begin{aligned}
& z=\frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\left(\cos \left(\alpha_{1}-\alpha_{2}\right)-j \sin \left(\alpha_{1}-\alpha_{2}\right)\right) \\
& |z|=\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \quad \arg (z)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
\end{aligned}
$$

Some memory rules

1. If $z=z_{1}+z_{2}$, so is generally $|z| \neq\left|z_{1}\right|+\left|z_{2}\right|$ (only if $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$ then $|z|=\left|z_{1}\right|+\left|z_{2}\right|$)
2. When calculating the amount of a product or a quotient of two complex numbers z_{1} and z_{2} it is generally unnecessary to first calculate the complex result and then form the amount. One calculates instead $\left|z_{1}\right|$ and $\left|z_{2}\right|$ eparately, for as we have seen applies

$$
\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

Exemples

Exemple 1

Redo the expression $2+3 / \mathrm{j}$ to form $a+\mathrm{j} b$.

$$
2+\frac{3}{\mathrm{j}}=2+\frac{3 \cdot \mathrm{j}}{\mathrm{j} \cdot \mathrm{j}}=2+\frac{3 \cdot \mathrm{j}}{-1}=2-3 \mathrm{j}
$$

Exemple 2

Write expression $z=6+\mathrm{j} A+1 /(\mathrm{j} B)$ in the general form of complex numbers, and write a expression for the amount.

$$
\begin{aligned}
& z=6+\mathrm{j} A-\frac{\mathrm{j}}{B}=6+\mathrm{j}\left(A-\frac{1}{B}\right) \\
& |z|=\left|6+\mathrm{j}\left(A-\frac{1}{B}\right)\right|=\sqrt{36+\left(A-\frac{1}{B}\right)^{2}}
\end{aligned}
$$

Exemple 3

Determine $|z|$ and $\arg (z)$ when $z=z_{1} \cdot z_{2}$ and $z_{1}=j$ and $z_{2}=-1-j$

Algebraic

$$
\begin{aligned}
& z=z_{1} \cdot z_{2}=\mathrm{j} \cdot(-1-\mathrm{j})=-\mathrm{j}-\mathrm{j}^{2}=1-\mathrm{j} \\
& |z|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
& \arg (z)=\alpha=\arctan \left(\frac{-1}{1}\right)=\arctan (-1)= \\
& -\frac{\pi}{4}+2 \pi=\frac{7 \pi}{4}
\end{aligned}
$$

Polar

$$
\begin{aligned}
& \left|z_{1}\right|=1 \quad\left|z_{2}\right|=\sqrt{2} \\
& z_{1}=1\left(\cos \frac{\pi}{2}+\mathrm{j} \sin \frac{\pi}{2}\right) \quad z_{2}=\sqrt{2}\left(\cos \frac{5 \pi}{4}+\mathrm{j} \sin \frac{5 \pi}{4}\right) \\
& z=z_{1} \cdot z_{2}=1 \cdot \sqrt{2}\left(\cos \left(\frac{\pi}{2}+\frac{5 \pi}{4}\right)+\mathrm{j} \sin \left(\frac{\pi}{2}+\frac{5 \pi}{4}\right)\right) \\
& |z|=\sqrt{2} \quad \arg (z)=\frac{7 \pi}{4}
\end{aligned}
$$

Exemple 4

$z_{1}=3+\mathrm{j} 5, \mathrm{z}_{2}=5+\mathrm{j} 7$. Calculate

$$
\begin{aligned}
& |z|=\left|\frac{z_{1}}{z_{2}}\right| \\
& |z|=\left|\frac{z_{1}}{z_{2}}\right|=\frac{|3+\mathrm{j} 5|}{|5+\mathrm{j} 7|}=\frac{\sqrt{3^{2}+5^{2}}}{\sqrt{5^{2}+7^{2}}}= \\
& \frac{\sqrt{9+25}}{\sqrt{25+49}}=\frac{\sqrt{34}}{\sqrt{74}}=\sqrt{\frac{34}{74}}=0,68
\end{aligned}
$$

If instead multiplied with conjugate quantity the calculations had been

$$
\begin{aligned}
& z=\frac{3+\mathrm{j} 5}{5+\mathrm{j} 7}=\frac{(3+\mathrm{j} 5)(5-\mathrm{j} 7)}{(5+\mathrm{j} 7)(5-\mathrm{j} 7)}=\frac{15-\mathrm{j} 21+\mathrm{j} 25-\mathrm{j}^{2} 35}{25-\mathrm{j}^{2} 49} \\
& =\frac{50+\mathrm{j} 4}{74} \quad \mathrm{j}^{2}=-1 \\
& |z|=\frac{|50+\mathrm{j} 4|}{|74|}=\frac{\sqrt{50^{2}+4^{2}}}{74}=\frac{\sqrt{2516}}{74}=0,68
\end{aligned}
$$

If one compares the above one can see that complex conjugation involves much more work!

Exercises

Question 1

In which direction points the complex pointer $z=-2+\mathrm{j} 2$?

Question 2

What is the sum of z_{1} and z_{2} if $z_{1}=1+j 2$ and $z_{2}=2-j$?

Question 3

How long is the pointer $3+\mathrm{j} 4$?

Question 4

Draw the pointer $z=z_{1}-z_{2}$ if $z_{1}=1+\mathrm{j}$ and $z_{2}=2+\mathrm{j}$?

Question 5

How large is $\operatorname{Im}(z)$ if $z=z_{1}+z_{2}$?
$z_{1}=3(1+\mathrm{j})$ and $z_{2}=2(1-\mathrm{j})$.

Question 6

How large is $|z|$ if $z=z_{1} \cdot z_{2}$?
$z_{1}=2+j$ och $z_{2}=-(2+j)$.

Question 7

What is $|3+\mathrm{j} 4| \cdot|\mathrm{j} 2|$?

Question 8

Determine $|z|$ and $\arg (z)$ if $z=z_{1} \cdot z_{2}$ and $z_{1}=1+\mathrm{j}$ and $z_{2}=-1+\mathrm{j}$.

Question 9

what will be $z=z_{1} \cdot z_{2}$ if $z_{1}=j$ and $z_{2}=1-j$.

Question 10

Vhat is $|z|$?

$$
z=\frac{\frac{2}{\mathrm{j} 3}}{2+\frac{1}{\mathrm{j} 3}}
$$

Question 11

Calculate z .
$z_{1}=2+\mathrm{j} 3$ and $\mathrm{z}_{2}=1+\mathrm{j}$.

$$
z=\frac{z_{1}}{z_{2}}
$$

Refresher, complex numbers

Answers and solutions

Question 1

Question 2
$z=z_{1}+z_{2}=1+\mathrm{j} 2+2-\mathrm{j}=3+\mathrm{j}$.
Question 3

$$
\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=5
$$

Question 4

Question 5

$$
\operatorname{Im}(z)=\operatorname{Im}\left(z_{1}\right)+\operatorname{Im}\left(z_{2}\right)=3+(-2)=1
$$

Question 6

$$
\begin{aligned}
& \left|z_{1}\right|=\sqrt{4+1}=\sqrt{5} \quad\left|z_{2}\right|=\sqrt{4+1}=\sqrt{5} \\
& |z|=\left|z_{1}\right| \cdot\left|z_{2}\right|=\sqrt{5} \cdot \sqrt{5}=5
\end{aligned}
$$

Question 7

$$
\sqrt{9+16} \cdot 2=10 \quad \text { eller } \quad|j 6-8|=\sqrt{36+64}=10
$$

Question 8

$$
\begin{aligned}
& z=z_{1} \cdot z_{2}=(1+\mathrm{j})(-1+\mathrm{j})=-1+\mathrm{j}-\mathrm{j}+\mathrm{j}^{2}=-2 \\
& \arg (z)=\arctan \left(\frac{0}{-2}\right)+\pi=\pi
\end{aligned}
$$

Question 9

$z=z_{1} \cdot z_{2}=\mathbf{j}(1-\mathbf{j})=\mathbf{j} \cdot \mathbf{j}^{2}=\mathbf{1}+\mathbf{j}$
eller

$$
\begin{aligned}
& z_{1}=1\left(\cos \frac{\pi}{2}+\mathrm{j} \sin \frac{\pi}{2}\right) \quad z_{2}=\sqrt{2}\left(\cos \frac{7 \pi}{4}+\mathrm{j} \sin \frac{7 \pi}{4}\right) \\
& z=z_{1} \cdot z_{2}=\sqrt{2}\left(\cos \frac{\pi}{4}+\mathrm{j} \sin \frac{\pi}{4}\right)
\end{aligned}
$$

Question 10

$$
\begin{aligned}
& z=\frac{\frac{2}{\mathrm{j} 3}}{2+\frac{1}{\mathrm{j} 3}} \cdot \frac{\mathrm{j} 3}{\mathrm{j} 3}=\frac{2}{\mathrm{j} 6+1} \\
& |z|=\frac{|2|}{|\mathrm{j} 6+1|}=\frac{2}{\sqrt{36+1}}=0,329
\end{aligned}
$$

Question 11

Algebraic

$$
\begin{aligned}
& z=\frac{z_{1}}{z_{2}}=\frac{2+\mathrm{j} 3}{1+\mathrm{j}}=\frac{(2+\mathrm{j} 3)}{(1+\mathrm{j})} \cdot \frac{(1-\mathrm{j})}{(1-\mathrm{j})}= \\
& =\frac{2+\mathrm{j}-3 \mathrm{j}^{2}}{1+1}=\frac{5+\mathrm{j}}{2}=2,5+0,5 \mathrm{j}
\end{aligned}
$$

Polar

$$
\begin{aligned}
& |z|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \quad \arg (z)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right) \\
& z=|z| \cdot(\cos (\arg (z))+\mathrm{j} \cdot \sin (\arg (z)))
\end{aligned}
$$

