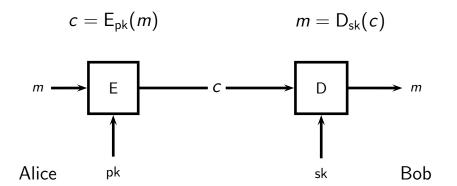
Lecture 6

Douglas Wikström KTH Stockholm dog@csc.kth.se

February 27, 2015

Public-Key Cryptosystem



Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen, E, D) where,

- Gen is a probabilistic key generation algorithm that outputs key pairs (pk, sk),
- ► E is a (possibly probabilistic) encryption algorithm that given a public key pk and a message m in the plaintext space M_{pk} outputs a ciphertext c, and
- ▶ D is a **decryption algorithm** that given a secret key sk and a ciphertext *c* outputs a plaintext *m*,

such that $D_{sk}(E_{pk}(m)) = m$ for every (pk, sk) and $m \in \mathcal{M}_{pk}$.

The RSA Cryptosystem (1/2)

Key Generation.

- ▶ Choose n/2-bit primes p and q randomly and define N = pq.
- ▶ Choose e in $\mathbb{Z}_{\phi(N)}^*$ and compute $d = e^{-1} \mod \phi(N)$.
- ▶ Output the key pair ((N, e), (p, q, d)), where (N, e) is the public key and (p, q, d) is the secret key.

The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext $m \in \mathbb{Z}_N^*$ by computing

$$c = m^e \mod N$$
.

Decryption. Decrypt a ciphertext c by computing

$$m = c^d \mod N$$
.

 $(m^e \mod N)^d \mod N = m^{ed} \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

= $m^{1+t\phi(N)} \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

= $m^{1+t\phi(N)} \mod N$
= $m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

 $= m^{1+t\phi(N)} \mod N$
 $= m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$
 $= m \cdot 1^t \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

$$= m^{1+t\phi(N)} \mod N$$

$$= m \cdot 1^t \mod N$$

$$= m \mod N$$

Implementing RSA

- Modular arithmetic.
- Primality test.

Modular Arithmetic (1/2)

Basic operations on O(n)-bit integers using "school book" implementations.

Operation	Running time
Addition	O(n)
Subtraction	O(n)
Multiplication	$O(n^2)$
Modular reduction	$O(n^2)$

What about modular exponentiation?

Modular Arithmetic (2/2)

Square-and-Multiply.

```
SquareAndMultiply(x, e, N)

1 z \leftarrow 1

2 i = \text{index of most significant one}

3 while i \geq 0

do

4 z \leftarrow z \cdot z \mod N

5 if e_i = 1

then z \leftarrow z \cdot x \mod N

6 i \leftarrow i - 1

7 return z
```

Prime Number Theorem

The primes are relatively dense.

Prime Number Theorem

The primes are relatively dense.

Theorem. Let $\pi(m)$ denote the number of primes 0 .

Then

$$\lim_{m\to\infty}\frac{\pi(m)}{\frac{m}{\ln m}}=1.$$

Prime Number Theorem

The primes are relatively dense.

Theorem. Let $\pi(m)$ denote the number of primes 0 . Then

$$\lim_{m\to\infty}\frac{\pi(m)}{\frac{m}{\ln m}}=1.$$

To generate a random prime, we repeatedly pick a random integer m and check if it is prime. It should be prime with probability $1/\ln m$.

Definition. Given an odd integer $b \ge 3$, an integer a is called a **quadratic residue** modulo b if there exists an integer x such that $a = x^2 \mod b$.

Definition. The **Legendre Symbol** of an integer a modulo an **odd prime** p is defined by

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 0 & \text{if } a = 0 \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p \end{array} \right.$$

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

- ▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.
- ▶ If $a^{(p-1)/2} = 1 \mod p$ and b generates \mathbb{Z}_p^* , then $a^{(p-1)/2} = b^{x(p-1)/2} = 1 \mod p$ for some x. Since b is a generator, $(p-1) \mid x(p-1)/2$ and x must be even.

Theorem. If *p* is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

- ▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.
- If $a^{(p-1)/2} = 1 \mod p$ and b generates \mathbb{Z}_p^* , then $a^{(p-1)/2} = b^{x(p-1)/2} = 1 \mod p$ for some x. Since b is a generator, $(p-1) \mid x(p-1)/2$ and x must be even.
- ▶ If a is a non-residue, then $a^{(p-1)/2} \neq 1 \mod p$, but $(a^{(p-1)/2})^2 = 1 \mod p$, so $a^{(p-1)/2} = -1 \mod p$.

Jacobi Symbol

Definition. The **Jacobi Symbol** of an integer a modulo an odd integer $b = \prod_i p_i^{e_i}$, with p_i prime, is defined by

$$\left(\frac{a}{b}\right) = \prod_{i} \left(\frac{a}{p_i}\right)^{e_i} .$$

Note that we can have $\left(\frac{a}{b}\right) = 1$ even when a is a non-residue modulo b.

Properties of the Jacobi Symbol

Basic Properties.

$$\left(\frac{a}{b}\right) = \left(\frac{a \bmod b}{b}\right)$$

$$\left(\frac{ac}{b}\right) = \left(\frac{a}{b}\right) \left(\frac{c}{b}\right) .$$

Law of Quadratic Reciprocity. If a and b are odd integers, then

$$\left(\frac{a}{b}\right) = \left(-1\right)^{\frac{(a-1)(b-1)}{4}} \left(\frac{b}{a}\right) .$$

Supplementary Laws. If b is an odd integer, then

$$\left(rac{-1}{b}
ight)=(-1)^{rac{b-1}{2}} \quad ext{and} \quad \left(rac{2}{b}
ight)=(-1)^{rac{b^2-1}{8}} \ .$$

Computing the Jacobi Symbol (1/2)

The following assumes that $a \ge 0$ and that $b \ge 3$ is odd.

```
JACOBI(a, b)
       if a < 2
(1)
(2)
            return a
(3) s \leftarrow 1
(4) while a is even
            s \leftarrow s \cdot (-1)^{\frac{1}{8}(b^2-1)}
(5)
(6)
            a \leftarrow a/2
(7) if a < b
(8)
            SWAP(a,b)
            s \leftarrow s \cdot (-1)^{\frac{1}{4}(a-1)(b-1)}
(9)
         return s \cdot \text{JACOBI}(a \mod b, b)
(10)
```

(5)

Solovay-Strassen Primality Test (1/2)

The following assumes that $n \ge 3$.

return probably prime

```
SOLOVAYSTRASSEN(n, r)

(1) for i = 1 to r

(2) Choose 0 < a < n randomly.

(3) if \left(\frac{a}{n}\right) = 0 or \left(\frac{a}{n}\right) \neq a^{(n-1)/2} \mod n

(4) return composite
```

Solovay-Strassen Primality Test (2/2)

Analysis.

▶ If *n* is prime, then $0 \neq \left(\frac{a}{n}\right) = a^{(n-1)/2} \mod n$ for all 0 < a < n, so we never claim that a prime is composite.

Solovay-Strassen Primality Test (2/2)

Analysis.

- ▶ If *n* is prime, then $0 \neq \left(\frac{a}{n}\right) = a^{(n-1)/2} \mod n$ for all 0 < a < n, so we never claim that a prime is composite.
- ▶ If $\left(\frac{a}{n}\right) = 0$, then $\left(\frac{a}{p}\right) = 0$ for some prime factor p of n. Thus, $p \mid a$ and n is composite, so we never wrongly return from within the loop.

Solovay-Strassen Primality Test (2/2)

Analysis.

- ▶ If *n* is prime, then $0 \neq \left(\frac{a}{n}\right) = a^{(n-1)/2} \mod n$ for all 0 < a < n, so we never claim that a prime is composite.
- ▶ If $\left(\frac{a}{n}\right) = 0$, then $\left(\frac{a}{p}\right) = 0$ for some prime factor p of n. Thus, $p \mid a$ and n is composite, so we never wrongly return from within the loop.
- ▶ At most half of all elements a in \mathbb{Z}_n^* have the property that

$$\left(\frac{a}{n}\right) = a^{(n-1)/2} \bmod n .$$

Factoring

The obvious way to break RSA is to factor the public modulus N and recover the prime factors p and q.

▶ The number field sieve factors N in time

$$O\left(e^{(1.92+o(1))\left((\ln N)^{1/3}+(\ln \ln N)^{2/3}\right)}\right)$$
.

▶ The elliptic curve method factors *N* in time

$$O\left(e^{(1+o(1))\sqrt{2\ln p \ln \ln p}}\right)$$
.

Factoring

The obvious way to break RSA is to factor the public modulus N and recover the prime factors p and q.

▶ The number field sieve factors N in time

$$O\left(e^{(1.92+o(1))\left((\ln N)^{1/3}+(\ln \ln N)^{2/3}\right)}\right)$$
 .

▶ The elliptic curve method factors *N* in time

$$O\left(e^{(1+o(1))\sqrt{2\ln p \ln \ln p}}\right)$$
 .

Note that the latter only depends on the size of p!

Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

▶ Small Message. If m is small, then $m^e < N$. Thus, no reduction takes place, and m can be computed in \mathbb{Z} by taking the eth root.

Small Encryption Exponents

Suppose that e = 3 is used by all parties as encryption exponent.

- ▶ Small Message. If m is small, then $m^e < N$. Thus, no reduction takes place, and m can be computed in \mathbb{Z} by taking the eth root.
- ▶ **Identical Plaintexts.** If a message m is encrypted under moduli N_1 , N_2 , N_3 , and N_4 as c_1 , c_2 , c_3 , and c_3 , then CRT implies a $c \in \mathbb{Z}_{N_1 N_2 N_3 N_4}^*$ such that $c = c_i \mod N_i$ and $c = m^e \mod N_1 N_2 N_3 N_4$ with $m < N_i$.

Additional Caveats

▶ **Identical Moduli.** If a message m is encrypted as c_1 and c_2 using distinct encryption exponents e_1 and e_2 with $gcd(e_1, e_2) = 1$, and a modulus N, then we can find a, b such that $ae_1 + be_2 = 1$ and $m = c_1^a c_2^b \mod N$.

Additional Caveats

- ▶ **Identical Moduli.** If a message m is encrypted as c_1 and c_2 using distinct encryption exponents e_1 and e_2 with $gcd(e_1, e_2) = 1$, and a modulus N, then we can find a, b such that $ae_1 + be_2 = 1$ and $m = c_1^a c_2^b \mod N$.
- ▶ Reiter-Franklin Attack. If e is small then encryptions of m and f(m) for a polynomial $f \in \mathbb{Z}_N[x]$ allows efficient computation of m.

Additional Caveats

- ▶ **Identical Moduli.** If a message m is encrypted as c_1 and c_2 using distinct encryption exponents e_1 and e_2 with $gcd(e_1, e_2) = 1$, and a modulus N, then we can find a, b such that $ae_1 + be_2 = 1$ and $m = c_1^a c_2^b \mod N$.
- ▶ Reiter-Franklin Attack. If e is small then encryptions of m and f(m) for a polynomial $f \in \mathbb{Z}_N[x]$ allows efficient computation of m.
- ▶ Wiener's Attack. If $3d < N^{1/4}$ and q , then <math>N can be factored in polynomial time with good probability.

Factoring From Order of Multiplicative Group

Given N and $\phi(N)$, we can find p and q by solving

$$N = pq$$

$$\phi(N) = (p-1)(q-1)$$

Factoring From Encryption & Decryption Exponents (1/3)

▶ If N = pq with p and q prime, then the CRT implies that

$$x^2 = 1 \mod N$$

has **four distinct solutions** in \mathbb{Z}_N^* , and **two** of these are **non-trivial**, i.e., distinct from ± 1 .

Factoring From Encryption & Decryption Exponents (1/3)

▶ If N = pq with p and q prime, then the CRT implies that

$$x^2 = 1 \mod N$$

has **four distinct solutions** in \mathbb{Z}_N^* , and **two** of these are **non-trivial**, i.e., distinct from ± 1 .

▶ If x is a non-trivial root, then

$$(x-1)(x+1)=tN$$

but
$$N \nmid (x - 1), (x + 1)$$
, so

$$gcd(x-1, N) > 1$$
 and $gcd(x+1, N) > 1$.

Factoring From Encryption & Decryption Exponents (2/3)

▶ The encryption & decryption exponents satisfy

$$ed = 1 \mod \phi(N)$$
,

so if we have $ed - 1 = 2^{s}r$ with r odd, then

$$(p-1) = 2^{s_p} r_p$$
 which divides $2^s r$ and $(q-1) = 2^{s_q} r_q$ which divides $2^s r$.

▶ If $v \in \mathbb{Z}_N^*$ is random, then $w = v^r$ is random in the subgroup of elements with order 2^i for some $0 \le i \le \max\{s_p, s_a\}$.

Factoring From Encryption & Decryption Exponents (3/3)

Suppose $s_p \ge s_q$. Then for some $0 < i < s_p$,

$$w^{2^i} = \pm 1 \mod q$$

and

$$w^{2^i} \mod p$$

is uniformly distributed in $\{1, -1\}$.

Conclusion.

 $w^{2^i} \pmod{N}$ is a non-trivial root of 1 with probability 1/2, which allows us to factor N.