Circuit elements in graphical form

With this polarity definitions the elements receive power when the U and I are positive.
(Emf and Current generator are beeing "charged")

William Sandqvist william@kth.se

Two-terminal circuit with emf and resistance

$U=E+R \cdot I$ or $I=(U-E) / R$
When $U>E$ will I be positive. The circuit receives power. When $U<E$ will I be negative. The circuit delivers power.

Two-terminal circuit with emf and resistance

William Sandqvist william@kth.se

Two-terminal circuit with emf and resistance

William Sandqvist william@kth.se

Two-terminal circuit with emf and resistance

Circuit delivers power. Then it is convenient to define the current in the opposite direction.

(Current source and resistance)

$I=U / R+I_{0}$
If $U>0$ the circuit is recieving power.
When $U<0$ the circuit is delivering power.

(Current source and resistance)

The circuit is delivering power.
Then it is convenient to define the current in the opposite direction.

William Sandqvist william@kth.se

Measurements at the AD-Lab

At lab vi are loading two different twoterminal circuits with a variable resistor, $100 \Omega \ldots 1 \mathrm{k} \Omega$. We measure the associated values of voltage U, and current I (indirectly as voltage drop over a constant 100Ω resistor) with two of the AD-converter channels.
Measured values are stored in a file and presented with excel.

Measuring equipment

Variable resistor load

Are 2-terminal equivalents true?

Thevenin theorem says:

Is this correct?

William Sandqvist william@kth.se

Measurements on two-terminal circuits

Rail splitter virtual ground?

TLE2426

$$
V_{\text {OUT }}=\frac{V_{\text {IN }}}{2}
$$

This circuit containes a control system which "tries" to keep the output voltage $V_{\text {OUT }}$ at half the input voltage $V_{\text {IN }}$.

What are the uses for a rail splitter circuit?

Measuring a bipolar voltage

Advalue

If an alternating voltage is referred to $\mathrm{E} / 2$, the voltage can be measured with \pm sign. Advalue += ADRESL; Advalue -= 512; // -512...0...+512

AD with external reference?

$U<2,5 \mathrm{~V}$ then $\mathrm{REF}=2,5 \mathrm{~V}$ is a better choice than $\mathrm{REF}=5 \mathrm{~V}$.

- If the AD-converter uses $2,5 \mathrm{~V}$ reference (from the rail splitter circuit) we will get better measuring accuracy!

AD with external reference?

$U<2,5 \mathrm{~V}$ then $\mathrm{REF}=2,5 \mathrm{~V}$ is a better choice than $\mathrm{REF}=5 \mathrm{~V}$.

- If the AD-converter uses 2,5V reference (from the rail splitter circuit) we will get better measuring accuracy!

Log measurement values to a text file

Use PICKit2 UART tool for logging measurements in the file.

Start/Stop log to file
data.txt

William Sandqvist william@kth.se

Measured values to Excel圊data.txt

William Sandqvist william@kth.se

Scatter plot in Excel

Mark data-columns and then click on Scatter in the Insert-menu.

Trendline and Equation

Layout - Trendline - Moore Trendline Options

Display Equation on Chart

periods

periods
Set Intercept $=0.0$
Display Equation on chart
Dsplay B -squared valve on ch \square Dsplay \mathbb{B}-squared value on chart

William Sandqvist william@kth.se

Two-terminal equivalents proved?

If it is identical equations for the two equivalents - surely twoterminal equivalents are probable, although not proven?

William Sandqvist william@kth.se

Simulate

We want to automatically simulate with different values of RL, eg. 1002005007001000Ω.
$\mathbf{R L}$ value must be changed to a parameter $\left\{\mathbf{R} _\mathbf{v}\right\}$. The curly brackets around the variable name R_v means just parameter.

William Sandqvist william@kth.se

Simulate

Correct quantities in the plot

The circuit with simulated load

No mA or Volts are shown - you have to make your own calculations on this circuit later ...

William Sandqvist william@kth.se

William Sandqvist william@kth.se

