Circuit elements in graphical form

With this polarity definitions the elements receive power when the *U* and *I* are positive.(Emf and Current generator are beeing "charged")

 $U = E + R \cdot I$ or I = (U - E)/R

When U > E will *I* be positive. The circuit receives power. When U < E will *I* be negative. The circuit delivers power.

Circuit delivers power. Then it is convenient to define the current in the opposite direction.

(Current source and resistance)

 $I = U/R + I_0$ If U > 0 the circuit is recieving power. When U < 0 the circuit is delivering power.

(Current source and resistance)

The circuit is delivering power.

Then it is convenient to define the current in the opposite direction.

Measurements at the AD-Lab

At lab vi are loading two different twoterminal circuits with a variable resistor, $100 \Omega \dots 1k \Omega$. We measure the associated values of voltage U, and current I (indirectly as voltage drop over a constant 100Ω resistor) with two of the AD-converter channels. Measured values are stored in a file and presented with excel.

Measuring equipment

Variable resistor load

Are 2-terminal equivalents true?

Is this correct?

Measurements on two-terminal circuits

Rail splitter virtual ground?

This circuit containes a control system which "tries" to keep the output voltage $V_{\rm OUT}$ at half the input voltage $V_{\rm IN}$.

What are the uses for a **rail splitter circuit**?

AD with external reference?

U < 2,5 V then REF=2,5V is a better choice than REF=5V.

• If the AD-converter uses 2,5V reference (from the rail splitter circuit) we will get **better measuring accuracy**!

AD with external reference?

U < 2,5 V then REF=2,5V is a better choice than REF=5V.

• If the AD-converter uses 2,5V reference (from the rail splitter circuit) we will get **better measuring accuracy**!

Log measurement values to a text file

Use PICKit2 UART tool for logging measurements in the file.

🔡 PICkit 2 U/	ART Tool			
9600	Con	nect Disconnect		8 data bits - No parity - 1 Stop bit. ASCII newline = 0x0D 0x0A
	Log to File	. 1		
	Logging Data	Star	t/Stop	
		log t	to file	
	🗐 dat	a.txt		

Measured values to Excel

Scatter plot in Excel

Mark *data-columns* and then click on **Scatter** in the **Insert**-menu.

Trendline and Equation

Two-terminal equivalents proved?

If it is identical equations for the two equivalents - surely twoterminal equivalents are probable, although not proven?

Simulate

We want to automatically simulate with different values of **RL**, eg. 100 200 500 700 1000 Ω .

RL *value* must be changed to a parameter {**R_v**}. The curly brackets around the variable name **R_v** means just parameter.

Simulate

Correct quantities in the plot

The circuit with simulated load

V(Out)

No mA or Volts are shown – you have to make your own calculations on this circuit later ...