
DD2457 Program Semantics and Analysis

Examination Problems
with partial solutions
14 December 2009

Dilian Gurov
KTH CSC

tel: 08-790 8198

Give solutions in English or Swedish, each problem beginning on a new sheet. Write your name
on all sheets. The maximal number of points is given for each problem. Up to two bonus points
per section will be taken into account. The course book, the handouts, own notes taken in class,
as well as reference material are admissible at the exam.

1 Level E

For passing level E you need 6 points from this section.

Consider the extension of While with non–deterministic choice S1 or S2 discussed in class and in the book.

1. In the structural operational semantics of this extended language, compute the configuration graph of 5p
the program

while (0 ≤ x) ∧ (x ≤ 1) do (x := x− 1 or x := x + 1)

from a state s such that s(x) = 0. Draw the graph as informatively as possible. Every transition of
the graph should be justified by a derivation (but you can point out and omit derivations that are
almost identical to an existing one).

Solution: Routine.

2. Consider the following two types of termination properties for a (possibly non–deterministic) state- 3p
ment S from a state s:

• possible termination, meaning that there is a terminating execution, and

• necessary termination, meaning that all executions terminate.

Formalise the two termination properties in both natural semantics and structural operational seman-
tics. If you consider that it is not possible to formalise some case, give a justification why.

Solution: In natural semantics we have:

• possible termination: ∃s′ ∈ State. 〈S, s〉 → s′

• necessary termination: not expressible, since one cannot capture (absense of) on–going behaviour
by relating initial to final configurations;

while in structural operational semantics:

• possible termination: ∃s′ ∈ State. 〈S, s〉 ⇒+ s′

• necessary termination: more cumbersome to express, but still formalisable as ”there is no infinite
execution starting at 〈S, s〉”:
¬ ∃S0, S1, . . . ∈ Stm, s0, s1, . . . ∈ State. S0 = S ∧ s0 = s ∧ ∀i ≥ 0. 〈Si, si〉 ⇒ 〈Si+1, si+1〉



2 Level C

For grade D you need to have passed level E and obtained 4 points from this section. For passing level C
you need 7 points from this section.

1. Recall the extension of While with division a1/a2 and exception–handling try S1 catch S2 considered
in the first laboratory assignment. To adapt the semantics of While, we added the special error value⊥
to the set of integer values, letting Z⊥

def= Z∪{⊥}, and re-defined the evaluation function A : AExp →
(State → Z⊥) to capture division by zero as the source of producing an exception, and propagation of
the error value by all arithmetic operations. Similarly, we added ⊥ to the set of truth values, letting
T⊥

def= T ∪ {⊥}, and re-defined the evaluation function B : BExp → (State → T⊥) so that the error
value propagates. Finally, to distinguish between normal and exceptional termination, we introduced
the set of extended states EState def= State × {>,⊥}, where an extended state (s,>) is normal and
(s,⊥) is exceptional. By abuse of notation, we decided to let s denote the normal state (s,>), and ŝ
denote the exceptional state (s,⊥).

(a) Adapt the direct style denotational semantics of statements to the extended language (assuming 3p
that mappings A and B are already adapted suitably, for instance as you have done in the labo-
ratory assignment). Show only the changed or added defining clauses.
Hint: statement denotation is now of type Sds : Stm → (EState ↪→ EState). You can have
separate defining clauses for normal and exceptional states.

Solution: For exceptional states we just need one (non–inductive) clause:

Sds[[S]] (ŝ) def= ŝ

For normal states, the rule for assignment becomes:

Sds[[x := a]] (s) def=

{
s[x 7→ A[[a]] (s)] if A[[a]] (s) ∈ Z
ŝ if A[[a]] (s) = ⊥

The remaining rules stay as they are, but the auxilliary function cond is redefined (still only for
normal states) as follows:

cond(p, g1, g2)(s)
def=


g1(s) if p(s) = tt
g2(s) if p(s) = ff
ŝ if p(s) = ⊥

However, the functional Fb,s then needs an explicit clause for exceptional states:

Fb,s(g)(ŝ) def= ŝ

Finally, we have to add a clause for exception handling:

Sds[[try S1 catch S2]] (s)
def=


s′ if Sds[[S1]] (s) = s′

Sds[[S2]] (s′) if Sds[[S1]] (s) = ŝ′

undef if Sds[[S1]] (s) = undef

or more elegantly by using function composition, with the help of a suitably defined functional
applied to the denotation of S2.



(b) Use your denotational semantics to compute the denotation of the program: 2p

x := 7; try x := x− 7;x := 7/x;x := x + 7 catch x := x− 7

applied to an arbitrary normal initial state s.

Solution:

Sds[[x := 7; try x := x− 7;x := 7/x;x := x + 7 catch x := x− 7]] (s)
= Sds[[try x := x− 7;x := 7/x;x := x + 7 catch x := x− 7]] (Sds[[x := 7]] (s))
= Sds[[try x := x− 7;x := 7/x;x := x + 7 catch x := x− 7]] (s[x 7→ 7])

Now, Sds[[x := x− 7;x := 7/x;x := x + 7]] (s[x 7→ 7])
= Sds[[x := x + 7]] (Sds[[x := 7/x]] (Sds[[x := x− 7]] (s[x 7→ 7])))
= Sds[[x := x + 7]] (Sds[[x := 7/x]] (s[x 7→ 0]))
= Sds[[x := x + 7]] (ŝ[x 7→ 0])
= ŝ[x 7→ 0]
and therefore

= Sds[[x := x− 7]] (s[x 7→ 0])
= s[x 7→ −7]

2. Consider again the extension of While with non–deterministic choice S1 or S2.

(a) For a post–condition Q, express the weakest liberal pre–condition wlp(S1 or S2 ,Q) composition- 1p
ally, that is in terms of the weakest liberal pre–conditions for S1 and S2. Justify your answer!
Note: we are taking the intensional view to Hoare logic, so pre– and post–conditions are assertions.

Solution: We have:
wlp(S1 or S2 ,Q) = wlp(S1 ,Q) ∧ wlp(S2 ,Q)

because execution of S1 or S2 results in execution of either S1 or S2, but the post–condition Q
must hold (upon termination) in both cases.

(b) Guided by your answer, extend the verification condition generator discussed in class by adding 1p
a defining clause for vcg [[S1 or S2]] (P,Q).

Solution: We have:
vcg [[S1 or S2]] (P,Q) def=

let (P1, Q1) = vcg [[S1]] (P,Q)
(P2, Q2) = vcg [[S2]] (P,Q)

in (P1 ∧ P2, Q1 ∧Q2)

(c) Verify the Hoare triple 3p

{true}while (0 ≤ x) ∧ (x ≤ 1) do (x := x− 1 or x := x + 1) {x < 0 ∨ x > 1}

by extracting a verification condition with your verification condition generator and justifying
the verification condition.
Note: you need first to annotate the while loop with a suitable loop invariant.

Solution: The loop invariant has to be implied by the pre–condition true and hence we take the
formula true as a loop invariant.



Then, we compute:

vcg [[{true}while (0 ≤ x) ∧ (x ≤ 1) do (x := x− 1 or x := x + 1)]] (x < 0 ∨ x > 1, true)
= let (P,Q) = vcg [[x := x− 1 or x := x + 1]] (true, true)

in (true, true ∧Q ∧ (true ∧ (0 ≤ x) ∧ (x ≤ 1) ⇒ P )) ∧ (true ∧ ¬((0 ≤ x) ∧ (x ≤ 1)) ⇒ x < 0 ∨ x > 1)))
= let (P,Q) = (true ∧ true, true ∧ true)

in (true, true ∧Q ∧ (true ∧ (0 ≤ x) ∧ (x ≤ 1) ⇒ P )) ∧ (true ∧ ¬((0 ≤ x) ∧ (x ≤ 1)) ⇒ x < 0 ∨ x > 1)))
= (true, true ∧ true ∧ (true ∧ (0 ≤ x) ∧ (x ≤ 1) ⇒ true)) ∧ (true ∧ ¬((0 ≤ x) ∧ (x ≤ 1)) ⇒ x < 0 ∨ x > 1)))

and finally we obtain the verification condition:

VCG({true}while (0 ≤ x) ∧ (x ≤ 1) do (x := x− 1 or x := x + 1) {x < 0 ∨ x > 1})
= (true ⇒ true) ∧ true ∧ true ∧ (true ∧ (0 ≤ x) ∧ (x ≤ 1) ⇒ true)) ∧ (true ∧ ¬((0 ≤ x) ∧ (x ≤ 1)) ⇒ x < 0 ∨ x > 1))

of which only the last conjunct is not trivial, but is still easy to justify, since the post–condition
is logically equivalent to the negation of the loop guard.

3 Level A

For grade B you need to have passed level C and obtained 5 points from this section. For grade A you need
8 points from this section.

1. Show that statement while b do (if b then S1 else S2) is semantically equivalent to statement 3p
while b do S1. Base your proof on a semantic style of your choice.

Solution: Proofs based on operational semantics require induction, since the while–rules unfold the
loop. It is therefore conceptually simpler to give a proof in denotational semantics. We have the
following equality on functionals:

Fb, if b then S1 else S2(g)(s)

=

{
g(Sds[[if b then S1 else S2]] (s)) if B[[b]] (s) = tt
s if B[[b]] (s) = ff

=

{
g(Sds[[S1]] (s)) if B[[b]] (s) = tt
s if B[[b]] (s) = ff

= Fb, S1(g)(s)

and therefore:
Sds[[while b do (if b then S1 else S2)]]

= FIX Fb, if b then S1 else S2

= FIX Fb, S1

= Sds[[while b do S1]]



2. In the denotational semantics you developed above for While extended with division and exception
handling, compute the denotational semantics of the statement

while 0 ≤ y do x := x/y; y := y − 1

That is:

(a) determine the functional F for this loop, simplifying as much as possible; 3p

Solution:

F (g)(ŝ) = ŝ

F (g)(s) =


g(Sds[[x := x/y; y := y − 1]] (s)) if B[[0 ≤ y]] (s) = tt
s if B[[0 ≤ y]] (s) = ff
ŝ if B[[0 ≤ y]] (s) = ⊥

=

{
g(Sds[[y := y − 1]] (Sds[[x := x/y]] (s))) if s(y) ≥ 0
s if s(y) < 0

=


g(s[x 7→ s(x)/s(y)][y 7→ s(y)− 1]) if s(y) > 0
g(ŝ) if s(y) = 0
s if s(y) < 0

(b) compute the first two approximants in the iterative fixed–point construction and explain intu- 3p
itively their meaning;

Solution: As a first approximant we obtain:

F (∅)(ŝ) = ŝ

F (∅)(s) =

{
undef if s(y) ≥ 0
s if s(y) < 0

indicating that the statement terminates from a state s without executing the loop body exactly
when s(y) < 0, and then it terminates in the same state.
As a second approximant we obtain:

F 2(∅)(ŝ) = F (F (∅))(ŝ) = ŝ
F 2(∅)(s) = F (F (∅))(s)

=


F (∅)(s[x 7→ s(x)/s(y)][y 7→ s(y)− 1]) if s(y) > 0
F (∅)(ŝ) if s(y) = 0
s if s(y) < 0

=


undef if s(y) > 0 ∧ s(y)− 1 ≥ 0
F (∅)(s[x 7→ s(x)/s(y)][y 7→ s(y)− 1]) if s(y) > 0 ∧ s(y)− 1 < 0
ŝ if s(y) = 0
s if s(y) < 0

=


undef if s(y) > 0
ŝ if s(y) = 0
s if s(y) < 0

indicating that the statement terminates from a state s with executing the loop body at most
once exactly when s(y) ≤ 0, and then it terminates in the same state s if s(y) < 0 and in the
respective exceptional state ŝ if s(y) = 0.



(c) guess the i–th approximant and explain intuitively its meaning; 2p

Solution:

F i(∅)(ŝ) = ŝ

F i(∅)(s) =


undef if s(y) ≥ i− 1
ŝ[x 7→ s(x)/s(y)/s(y)− 1/ . . . /2][y 7→ 0] if 2 ≤ s(y) < i− 1
ŝ[y 7→ 0] if 0 ≤ s(y) ≤ 1
s if s(y) < 0

indicating that the statement terminates from a state s with executing the loop body at most
i− 1 times exactly when s(y) < i− 1, and then it terminates in the same state s if s(y) < 0 and
otherwise in an exceptional state after a corresponding number of integer divisions to x and y
being 0.

(d) present the denotation of the loop as the limit of the construction and explain intuitively its 1p
meaning.

Solution:

(FIX F )(ŝ) = ŝ
(FIX F )(s) = (

⋃
i≥0 F i(∅))(s)

=


ŝ[x 7→ s(x)/s(y)/s(y)− 1/ . . . /2][y 7→ 0] if 2 ≤ s(y)
ŝ[y 7→ 0] if 0 ≤ s(y) ≤ 1
s if s(y) < 0

indicating that the statement, when executed from a state s, always terminates, and then it ter-
minates in the same state s if s(y) < 0 and otherwise in an exceptional state after a corresponding
number of integer divisions to x and y being 0.


