IE1206 Embedded Electronics

Transformer

William Sandqvist william@kth.se

Voltage ratio

$$
\begin{aligned}
& U_{1}=N_{1} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t} \quad U_{2}=N_{2} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t} \\
& \frac{U_{1}}{U_{2}}=\frac{N_{1}}{N_{2}}
\end{aligned}
$$

Ideal transformer $I_{0}=0$

$$
N_{1} \cdot I_{0}=N_{1} \cdot I_{1}-N_{2} \cdot I_{2}
$$

Magnetisig current $I_{0} \approx 0$ is small compared to the work currents I_{1} and I_{2}. The transformer itself has a high inductance.

Current ratio

William Sandqvist william@kth.se

Eddy current losses

Eddy currents - currents inside the iron core is prevented with lacquered ($=$ isolation) sheet metal.

El-core

I lamination

- EI-core is very economical to manufacture !

William Sandqvist william@kth.se

El-core

William Sandqvist william@kth.se

Toroid

Toroid core has a low leakage field - so it will not disturb nearby electronics!

How do one wind such a transformer?

William Sandqvist william@kth.se

Automatic Winding of toroidal core

William Sandqvist william@kth.se

Transformer (15.4)

William Sandqvist william@kth.se

Transformer (15.4)

William Sandqvist william@kth.se

Transformer (15.4)

$$
10-R_{1} \cdot I_{1}-U_{1}=0 \Rightarrow U_{1}=10-0,2 \cdot 10=8
$$

Transformer (15.4)

$$
\begin{aligned}
& 10-R_{1} \cdot I_{1}-U_{1}=0 \Rightarrow U_{1}=10-0,2 \cdot 10=8 \\
& U_{2}=U_{1} \cdot \frac{1}{2}=\frac{8}{2}=4
\end{aligned}
$$

Transformatorn (15.4)

$$
\begin{aligned}
& 10-R_{1} \cdot I_{1}-U_{1}=0 \Rightarrow U_{1}=10-0,2 \cdot 10=8 \\
& U_{2}=U_{1} \cdot \frac{1}{2}=\frac{8}{2}=4 \quad I_{2}=I_{1} \cdot \frac{2}{1}=0,4
\end{aligned}
$$

Transformer (15.4)

$$
\begin{gathered}
10-R_{1} \cdot I_{1}-U_{1}=0 \Rightarrow U_{1}=10-0,2 \cdot 10=8 \\
U_{2}=U_{1} \cdot \frac{1}{2}=\frac{8}{2}=4 \quad I_{2}=I_{1} \cdot \frac{2}{1}=0,4 \\
R_{2}=\frac{U_{2}}{I_{2}}=\frac{4}{0,4}=10 \Omega
\end{gathered}
$$

William Sandqvist william@kth.se

Transforming impedances

William Sandqvist william@kth.se

Transforming impedances

William Sandqvist william@kth.se

Ex. Transforming impedances

A transformer has the voltage ratio 240V/120V.

We have two capacitors $1 \mu \mathrm{~F}$ and $16 \mu \mathrm{~F}$. How should one connect to get $5 \mu \mathrm{~F}$?

Ex. Transforming impedances

A transformer has the voltage ratio 240V/120V.

We have two capacitors $1 \mu \mathrm{~F}$ and $16 \mu \mathrm{~F}$. How should one connect to get $5 \mu \mathrm{~F}$?

$$
\begin{aligned}
& Z_{2}=\frac{1}{\omega C} \Rightarrow \\
& Z_{1 \leftarrow 2}=\frac{1}{\omega C} \cdot 2^{2}=\frac{1}{\omega(C / 4)}
\end{aligned}
$$

Ex. Transforming impedances

A transformer has the voltage ratio $240 \mathrm{~V} / 120 \mathrm{~V}$.

We have two capacitors $1 \mu \mathrm{~F}$ and $16 \mu \mathrm{~F}$. How should one connect to get $5 \mu \mathrm{~F}$?

William Sandqvist william@kth.se

Series and parallel connection of inductors

(Ex. 15.6) Assuming that none of the coils parts magnetic lines of force with each other but are completely independent components, they can be treated series and parallel inductors just as if they were resistors.

William Sandqvist william@kth.se

Series and parallel connection of inductors?

We have previously studied serial and parallel coils as if they were completely independent components that do not share magnetic lines with each other.

We are now treating coils with interconnected flow

William Sandqvist william@kth.se

Inductive coupling

A portion of the flow in the coil 1 is interconnected with flow from the coil 2 .

$$
u_{1}=r_{1} \cdot i_{1}+\frac{\mathrm{d} \varphi_{1}}{\mathrm{~d} t} \quad \varphi_{1}=i_{1} \cdot L_{1}+i_{2} .(M)
$$

In same
way:

$$
\left.u_{2}=r_{2} \cdot i_{2}+\frac{\mathrm{d} \varphi_{2}}{\mathrm{~d} t} \quad \varphi_{2}=i_{2} \cdot L_{2}+i_{1} \cdot M\right)
$$

Inductive coupling

$\pm M$ is called mutual inductance

$$
\begin{aligned}
& u_{1}=r_{1} \cdot i_{1}+L_{1} \frac{\mathrm{~d} i_{1}}{\mathrm{~d} t}+M \frac{\mathrm{~d} i_{2}}{\mathrm{~d} t} \\
& u_{2}=r_{2} \cdot i_{2}+L_{2} \frac{\mathrm{~d} i_{2}}{\mathrm{~d} t}+M \frac{\mathrm{~d} i_{1}}{\mathrm{~d} t}
\end{aligned}
$$

$j \omega$-method:

$$
\begin{aligned}
& U_{1}=r_{1} \cdot I_{1}+\mathrm{j} \omega L_{1} I_{1}+\mathrm{j} \omega M I_{2} \\
& U_{2}=r_{2} \cdot I_{2}+\mathrm{j} \omega L_{2} I_{2}+\mathrm{j} \omega M I_{1}
\end{aligned}
$$

An ideal transformer has coupling factor $k=1 \quad(100 \%)$

Coupling factor:

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

The coupling factor indicates how much of the flow a coil has in common with another coil

Series with mutual inductance

Derive:

Series connection has the same current

$$
\begin{aligned}
& \underline{I}_{L 1}=\underline{I}_{L 2}=\underline{I} \quad \underline{U}=\underline{U}_{L 1}+\underline{U}_{L 2} \quad M_{12}=M_{21}=M \quad \Rightarrow \\
& \underline{U}=\underline{I} \cdot j \omega\left(L_{1} \pm M+L_{2} \pm M\right)
\end{aligned}
$$

$$
\frac{\underline{U}}{\underline{I}}=j \omega\left(L_{1}+L_{2} \pm 2 M\right.
$$

William Sandqvist william@kth.se

$$
\begin{aligned}
& L_{1} \quad M_{12} \quad \underline{U}_{L 1} \quad \underline{I}_{L 1} \quad L_{2} \quad M_{21} \quad \underline{U}_{L 2} \quad \underline{I}_{L 2} \\
& { }^{A} \rightarrow m m . M^{1} \rightarrow B^{B} \\
& \underline{U}_{L 1}=j \omega L_{1} \underline{I}_{L 1} \pm j \omega M_{12} I_{L 2} \quad \underline{U}_{L 2}=j \omega L_{2} \underline{I}_{L 2} \pm j \omega M_{21} I_{L 1}
\end{aligned}
$$

Series with mutual inductance

Series connection has the same current $I_{1}=I_{2}=I$

$$
L_{\text {TOT }}=L_{1}+L_{2}+2 M \quad L_{\text {TOT }}=L_{1}+L_{2}-2 M
$$

M can can contribute or counter act to the flow, this gives \pm sign. Therefore, coil winding polarity is usually indicated by a dot convention in schematics.

"Dot" convention

An increasing current $\boldsymbol{i n}$ to a dot results in induced voltages with directions that would give increasing currents out of other dots.

"Dot" convention

An increasing current in to a dot results in induced voltages with directions that would give increasing currents out of other dots.

In parallel with mutual inductance

Parallel connected coils

$$
L_{\text {ToT }}=\frac{L_{1} \cdot L_{2}-M^{2}}{L_{1}+L_{2} \Theta 2 M}
$$

Antiparal conected coils

$$
L_{\text {ToT }}=\frac{L_{1} \cdot L_{2}-M^{2}}{L_{1}+L_{2} \oplus 2 M}
$$

Ex. 15.7 Series connection

Ex. 15.7 Series connection

$$
\begin{aligned}
& L_{\mathrm{TOT}}= \\
& L_{1}+M_{12}-M_{13}+ \\
& L_{2}+M_{12}-M_{23}+ \\
& L_{3}-M_{23}-M_{13}= \\
& =5+2-1+10+2-3+15-3-1=26[\mathrm{H}]
\end{aligned}
$$

William Sandqvist william@kth.se

Measuring the mutual inductance?

$$
L_{T O T+}=L_{1}+L_{2}+2 M
$$

$$
L_{\text {TOT }-}=L_{1}+L_{2}-2 M
$$

Measuring the mutual inductance?

$L_{\text {TOT }+}=L_{1}+L_{2}+2 M$

$L_{\text {TOT }-}=L_{1}+L_{2}-2 M$

$$
M=\frac{L_{T O T+}-L_{T O T-}}{4}
$$

William Sandqvist william@kth.se

Variometer (to an antique radio)

William Sandqvist william@kth.se

A bad actuator can become a good sensor

Porter \& Currier patent (simplified), the earliest variable differential transformer.

William Sandqvist william@kth.se

The industry's "rugged" position sensor

William Sandqvist william@kth.se

Differential transformer

LVDT Linear Variable Differential Transformer

The secondary coils are connected in series but with opposite polarity - when the core is in the middle $U=0$.

LVDT design

High Permoability Nickel-Iron Core

William Sandqvist william@kth.se

LVDT principle

The output voltage is relatively high - it makes this a popular sensor ...

William Sandqvist william@kth.se

LVDT probe

Monteringsblock

Output signal changes phase 180° exactly when the core pass the middle point.

A XOR-gate kan indicate this change.

William Sandqvist william@kth.se

William Sandqvist william@kth.se

Periodic differential transformer

