Reactor Chemistry

Chemical equilibrium
Mats Jansson

Chemical Equilibrium

Consider the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Chemical Equilibrium, continued

Law of Mass Action (Guldberg Waage's law)

For any equilibrium reaction $\mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC}+\mathrm{dD}$
The rate expression for the forward reaction $=k_{f}[A]^{a} \cdot[B]^{b}$
(more about reaction rates next lecture)
Reverse reaction rate $=k_{r}[C]^{c} \cdot[D]^{d}$
[A] = concentration of species A
A constant for the reaction at equilibrium is defined as:
$K=\frac{\mathrm{K}_{\mathrm{r}}}{\mathrm{K}_{\mathrm{f}}}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{a}[\mathrm{~B}]^{\mathrm{b}}}$
Large $\mathrm{K}=>$ The reaction driven far to the right The opposite for small K

Unit: $\mathrm{M}^{\text {c+d-a-b }} \quad(\mathrm{M}=$ moles $/$ liter $)$

The equilibrium constant

Gas reactions:
$\mathrm{aA}(g)+\mathrm{bB}(g) \rightleftarrows \mathrm{cC}(g)+\mathrm{dD}(g)$
$\mathrm{K}=\frac{\mathrm{P}_{\mathrm{C}}{ }^{\mathrm{C}} \mathrm{P}_{\mathrm{D}}{ }^{\mathrm{d}}}{\mathrm{P}_{\mathrm{A}}{ }^{a} \mathrm{P}_{\mathrm{B}}{ }^{\mathrm{b}}}$

Unit: $(\mathrm{Pa})^{c+d-a-b}$

Reactions in water:
$\mathrm{aA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{cC}(\mathrm{aq})+\mathrm{dD}(\mathrm{aq})$
$K=\frac{[C]^{c}[D]^{d}}{[A]^{a}}$

Unit: $(M)^{c+d-a}$

Reactions with a solid phase

$\mathrm{aA}+\mathrm{bB}(\mathrm{s}) \rightleftarrows \mathrm{cC}+\mathrm{dD}$
$K=\frac{[C]^{c}[D]^{d}}{[A]^{a}}$

Unit: $(M)^{c+d-a}$

Example:
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)$
Calculate the equilibrium pressure of $\mathrm{N}_{2}(g)$ at 500 K if the equilibrium pressures of $\mathrm{H}_{2}(g)$ and $\mathrm{NH}_{3}(g)$ are 13.3 and 32.7 atm, respectively and the equilibrium constant $\mathrm{K}_{\mathrm{p}}=0.0362 \mathrm{~atm}^{-2}$. What is the total pressure?

Le Chatelier's principle

 (The equilibrium law)$\mathrm{aA}+\mathrm{bB}(\mathrm{s}) \rightleftarrows \mathrm{cC}+\mathrm{dD}$
$K=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

When a system in equilibrium is changed in some way (concentration, temperature, volume or pressure), the equilibrium will be shifted to counteract the change and a new equilibrium will be established.

Le Chatelier's principle
 Examples

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$ is exothermic (produces energy)
An addition of N_{2} would lead to that more NH_{3} is produced. Since H_{2} is consumed, the concentration of H_{2} would decrease slightly.

What would happen if the temperature was lowered?

- More NH_{3} would be produced
- The process would be slower
\Rightarrow The Haber process is kept at a reasonable temperature to have sufficient ammonia produced at reasonable rate

More Le Chatelier's principle

$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)$
What would happen if the volume is decreased (i.e. the pressure of the system increased)?
4 moles $\rightleftarrows 2$ moles

What would happen if an inert gas like Helium was added?

What would happen if a catalyst (in this case Mo or Fe) was added?

Adding reactions

$$
\begin{array}{ll}
\mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC} & \mathrm{~K}_{1}=\frac{[\mathrm{C}]^{\mathrm{c}}}{[\mathrm{~A}]^{[}[\mathrm{B}]^{\mathrm{b}}} \\
\mathrm{dD} \rightleftarrows \mathrm{eE}+\mathrm{fF} & \mathrm{~K}_{2}=\frac{[\mathrm{E}]^{\mathrm{e}}[\mathrm{~F}]^{\mathrm{f}}}{[\mathrm{D}]^{\mathrm{d}}} \\
\mathrm{aA}+\mathrm{bB}+\mathrm{dD} \rightleftarrows \mathrm{cC}+\mathrm{eE}+\mathrm{fF} & \mathrm{~K}_{3}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{E}]^{\mathrm{e}}[\mathrm{~F}]^{\mathrm{f}}}{[\mathrm{~A}]^{\mathrm{c}}[\mathrm{~B}]^{\mathrm{b}}[\mathrm{D}]^{\mathrm{d}}} \\
\mathrm{~K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2} &
\end{array}
$$

Acids and bases

An acid is a molecule or ion that can donate a proton $\left(\mathrm{H}^{+}\right)$

A base is a molecule or ion that can accept a proton $\left(\mathrm{H}^{+}\right)$

An amphoteric molecule or ion can act both as an acid or a base $\left(\mathrm{HCO}_{3}{ }^{-}\right)$

$$
\mathrm{H}_{2} \mathrm{CO}_{3}^{-} \rightleftarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightleftarrows \mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+}
$$

Autodissosiation of water

In water some of the molecules will dissociate forming oxonium- and hydroxide ions (that's why water has a conductivity of $0.055 \mu \mathrm{~S} / \mathrm{cm}$)
$2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

Chemists often write H^{+}instead of $\mathrm{H}_{3} \mathrm{O}^{+}$:
$\begin{array}{ll}\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}^{+}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\ -\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}^{+}\right]+-\log \left[\mathrm{OH}^{-}\right] & \mathrm{p}=-\log _{10} \\ \mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH} & \mathrm{K}_{\mathrm{w}}=10^{-14} \mathrm{M}^{2} \text { (for reasonably pure water) }\end{array}$

Acid-base equilibria

HA as an acid

HA and A^{-}is a conjugated acid-base pair.
A^{-}is the conjugate base of the acid HA.

Acid-base equilibria

A^{-}as a base

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-}
$$

K_{b} is the base association constant

$$
\mathrm{pK}_{\mathrm{w}}=\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}
$$

A strong acid always conjugates with a weak base.
HNO_{3} : strong acid. $\mathrm{NO}_{3}{ }^{-}$so weak base it's often not considered a base

Le Chatelier vs Acid-base equilibria

$$
\mathrm{HA} \rightleftarrows \mathrm{~A}^{-}+\mathrm{H}^{+}
$$

Adding a strong acid to the system will push the equilibrium to the left.
=> The system will not have a large increase in hydrogen ions (pH will not decrease that much)

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}^{-}+\mathrm{OH}^{-}
$$

Adding a strong base to the system will push the equilibrium to the left.
=> The system will not have a large increase in hydroxide ions (pH will not increase that much)
$=>$ The system is not sensitive to changes in $\left[\mathrm{H}^{+}\right]$; A buffer

The Henderson-Hasselbalch equation

$$
\begin{gathered}
\mathrm{HA} \rightleftarrows \mathrm{~A}^{-}+\mathrm{H}^{+} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]} \\
\log \mathrm{K}_{\mathrm{a}}=\log \frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]}=\log \left[\mathrm{H}^{+}\right]+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
p \mathrm{~K}_{\mathrm{a}}=p H-\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
p H=p \mathrm{~K}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

Example of buffer

What will the pH be if one drop of conc. HCl is added to

1) Water, normal $\mathrm{pH}=7$
2) Blood, normal $\mathrm{pH}=7.4$ (buffered by $\mathrm{HCO}_{3}{ }^{-}$), $\left[\mathrm{HCO}_{3}{ }^{-}\right]=0.024 \mathrm{M}$
3) One drop $\sim 0.05 \mathrm{ml}=5^{*} 10^{-5} \mathrm{I}$.

Concentrated HCl is $12 \mathrm{M}(\mathrm{mol} / \mathrm{l})$
$6^{*} 10^{-4}$ moles H^{+}added to 1 I .
$\left[\mathrm{H}^{+}\right]=6^{*} 10^{-4} \mathrm{M}=>-\log \left(6^{*} 10^{-4}\right)=3.22$
$\Rightarrow \mathrm{pH}=3.22$ (a change in ~ 4 magnitudes)

