

WHEN IS RADIATION CHEMISTRY OF IMPORTANCE?

- Nuclear reactors
- Nuclear materials (in general)
- Biological effects of ionizing radiation
- Atmospheric chemistry
- Tool for studying radical chemistry
- Synthesis of novel materials (e.g. nanoparticles)

Linear En Let	ergy Trans	FER						
LET=-dE/dx								
LET depends absorber	LET depends on the electron density of the absorber (usually proportional to the physical density)							
Radiation (3 MeV)	LET (keV/µm)	cm in air						
Electron	0.20	1400						
Proton	21	14						
Deuteron	34	8.8						
α	180	1.7						
	·							

Radiation	Rel. Penetration depth	Shielding
α	1	Paper, skin
β	100	3 mm Al
γ	10 000	Concrete, lead
	Keep the distance: r^2 !	

• Unit: 1 Gy (Gray) = 1 J/kg • 1 Gy = 100 rad $D = \frac{dE_{abs}}{dm}$ $E_{abs} = E_{in} - E_{out}$

RADIATION EFFECTS ON GASES, LIQUIDS AND SOLIDS

• Gas: Low density, high mobility

• Liquid: High density, intermediate mobility

• Solid: High density, low mobility

ABSORPTION OF IONIZING RADIATION

 LET = dE_{abs}/dx
 (Depends on charge and velocity of the particle and on the density of the absorber)

• Dose = dE_{abs}/dm

• Proportional to activity/current and LET

• Unit: Gy/s

RADIATION CHEMICAL YIELD

• G-value: $G_X = d[X]/dE_{abs}$

• Unit (SI): mol/J (older unit: number of molecules / 100 eV)

Solids

• Metals: Displacements (heavy particles)

• Inorganic nonmetallic compounds:

-Excitation \rightarrow Fluorescence

-Crystal defects (heavy particles)

-Decomposition

and denated	Table 7.4 Onsager rad	ii. electron mobilities and	free ion vields	
Real Property lines	able free of buger run			a 19290 83
Liquid	r _c	mobility	G(free ions)	
10	(nm)	(cm²/V s)	(µmol/J)	
Neopenta	ne 32	55	0.09 - 0.11	
Cyclohex	ane 28	0.35	0.016 - 0.02	
Benzene	25	Start and Antonia	0.005 - 0.008	
Methanol	2.3		0.2	
Watar	0.7	second and the second second second	0.28	

Tai	ble 7.5. Effects of	y-radiation on organic	compounds of technical in	nterest
Compound	Observed change at (kGy)	Uscless at (kGy)	Compound	25% reduction of desired property (kGy)
Olefins	5	10	Teflon	0.1
Silicones	- 5	50	Cellulose acetate	2
Mineral oils	10	100	Polyethylene	9
Alkyl aromatics	100	500	Polyvinylchloride	10
Polyphenyls	500	5000	Polystyrene	400
			Neoprene, silicon r	ubber 0.6
			Natural subbas	2.6

	AN.	םים ער-	VALU	ES FU	JK KA	ADIC	JLIS.	15
OF W	AII	2N						
Radiation	LET	G(H ₂ O)	G(H ₂)	G(H ₂ O ₂)	G(e-aq)	G(H•)	G(HO•)	G(HO ₂ •)
γ, e-	0.24	-0.43	0.047	0.073	0.28	0.062	0.28	0.0027
α (12 MeV)	92	-0.294	0.115	0.112	0.0044	0.028	0.056	0.007

RADIOLYSIS OF AQUEOUS SOLUTIONS CONTAINING OXYGEN

 $H^{\cdot} + O_2 \rightarrow HO_2^{\cdot}$

 $e_{aq} + O_2 \rightarrow O_2$

- Surface reactions
- Radiation Chemistry in Heterogeneous systems
- Photochemistry in Heterogeneous systems

 $G(H_2O_2)$

• Will be reduced in concentrated solutions (e.g., brines)

- Groundwater radiolysis
- Surface reactions (redox processes, catalysis and dissolution)

Rate C	ONSTANTS		
	Oxidant	<i>k</i> (m s ⁻¹)	
	H_2O_2	7.3 x 10 ⁻⁸	
	O_2	$3.6 \ge 10^{-10}$	
	OH•	10-6	
	CO ₃ •-	10-6	
	Olivia Roth and Mats Jonsso	on, Cent. Eur. J. Chem. 2008, 6, 1-14	

RELATIVE IMPACT OF (A-) RADIOLYSIS PRODUCTS									
	rat	te = $\frac{dn_{\rm U(VI)}}{dt}$	$A^{0} = A_{\mathrm{UO}_{2}}$	$\sum_{x=1}^{n} k_{\text{ox}}$	$[\text{Ox}]\frac{n_{\text{e}^-}}{2}$				
		H ₂ O ₂	02	0 ₂	HO ₂ ·	CO₃・・	он.		
	No additives	100.0 %	0.01 %	0 %	0.03 %	0 %	0 %		
	H ₂ (40 bar)	99.9 %	0 %	0 %	0.02 %	0 %	0.03 %		
	H ₂ (40 bar) HCO ₃ ⁻ (10 mM)	100.0 %	0 %	0 %	0 %	0.02 %	0 %		
	HCO ₃ ⁻ (10 mM)	99.9 %	0.09 %	0 %	0 %	0 %	0 %		
	H ₂ O ₂ is the major oxidant! E. Ekeroth, O. Roth, M. Jonsson, J. Nucl. Mater. 355 (2006) 38-46.								

Material (Dose	p(H ₂)	[HCO ₃ ⁻] (mol dm ⁻³)	Time (days)	Calc. final conc (mol dm ⁻³)	Calc. diss rate (mol dm ⁻³ d ⁻¹)	Experimental fi conc. (mol dm
10 % U- 233 (99 Gy/h)	(Ar)	1.68×10 ⁻³	47	7.05×10 ⁻⁸	1.50×10 ⁻⁹	6.40×10 ⁻⁸
10 % U- 233 (99 Gy/h)	(1,2 % O2) 1.07×10 ⁻³	126	1.96×10 ⁻⁶	1.56×10 ⁻⁸	5.69×10 ⁻⁷
SF $(\alpha = 828)$ Gy/h $\beta = 31$ Gy/h)	(Ar)	10×10 ⁻³	40	1.42×10 ⁻⁴	3.54×10 ⁻⁶	5,96×10 ⁻⁵
SF $(\alpha = 828)$ Gy/h $\beta = 31$ Gy/h	5 bar	10×10 ⁻³	376	0	0	1.70 x 10 ⁻¹⁰

Accoun reactiv	TING FOR TTY	SOLID PI	HASE						
	Surface		<i>k</i> /m s ⁻¹						
		O_2	H_2O_2	H_2					
	UO_2	$3.9 \ge 10^{-10}$	7.3 x 10 ⁻⁸						
	$UO_2/UO_2^{2+}(Pd)$	10-7	10-6	1 x 10 ⁻⁶					
	UO_2 (irrad.)	$5.1 \ge 10^{-10}$	$9.5 \ge 10^{-8}$						
	UO ₂ (irrad.) 5.1 x 10 ⁻¹⁰ 9.5 x 10 ⁻⁸ Olivia Roth, Martin Trummer and Mats Jonsson, <i>Research on Chemical Interme</i> diates, In press								

