

Energy balance

Binding energy/nucleon for heavy nuclei:	7.6 MeV
Binding energy/nucleon for semi-heavy nuclei (A=80-150):	8.5 MeV
Difference:	0.9 MeV
For U-235: 235×0.9 MeV =	210 MeV
Kingtig another of final an analysis	
Kinetic energy of fission products:	175 IVIEV
Kinetic energy of neutrons:	5 MeV
Kinetic energy of γ :	7 MeV
β from fission products:	7 MeV
γ from fission products	6 MeV
Neutrinos (energy is lost):	10 MeV

Cross neutr	Cross sections and number of released neutron			
Nuclide	Radiative capture	Fission	n	n_fission
²³² Th	5.13			
²³³ U	46	529	2.49	2.29
²³⁵ U	99.3	587	2.42	2.07
²³⁸ U	2.73			
²³⁹ Pu	271	749	2.87	2.11
²⁴⁰ Pu	289.5	0.064		
²⁴¹ Pu	363	1015	2.92	2.15

KITH	Moderation			
	Slowing of neutron • n denotes th MeV to 0.025 • L the therma	by various materials ne number of elastic eV al diffusion length	s scatters to slow dow	vn neutron from 2
	Material	А	n	L (cm)
	Н	1	18.2	
	H ₂ O	1 & 16	19.8	2.85
	D	2	25.1	
	D ₂ O	2 & 16	35.7	170
	Не	4	42.8	
	Ве	9	88.1	21
	С	12	115	59
	²³⁸ U	238	2172	
_				

KTH	Main cor	nponents in Nuclear Reactors
	• <u>The fuel</u> :	Natural U Enriched U (>3% ²³⁵ U) Breeder fuel (²³² Th or ²³⁸ U)
	• <u>Moderator</u> :	H ₂ O D ₂ O graphite
	• <u>Coolant</u> :	H ₂ O D ₂ O He CO ₂ Na or Pb Molten salt

Fuel as	semblies			
	Data	Boiling Water Reactor BWR	Pressurized Water Reactor PWR	
	Length	4.4 m	4.2 m	Bar all
	Width	0.14 m	0.21 m	
	Weight	c:a 300 kg	c:a 660 kg	
N/I	Weight UO ₂	c:a 200 kg	c:a 520 kg	
	Fuel rods	63	204/264	
	No. fuel assemblies	700	157	
	Total amount of U in core	120 000 kg	82 000 kg	
BWR				PWR

Classification of N	Nuclear Reactors
Classification by neutron energy:	Fast reactors Thermal reactors Epithermal reactors
Classification by configuration:	Homogeneous reactors Heterogeneous reactors
Classification by generation:	Gen I Gen II (current reactors) Gen III (improvements of Gen II) Gen IV
Classification by use:	Research Electricity production Heat production Propulsion Transmutation Neutron source Safety functions

Г

Re	eactor generation	ons		
Generation I Early Prototype Reactors Shippingport - Dresden, Fermi I - Magnox	O1, O2, O3 F1-2, F3 R1 Ceneration II Commercial Power Reactors	Generation III Advanced LWRs - ABWR - ABWR - System 80+ - AP600 - EPR	Near-Term Deployment Generation II+ Evolutionary Designs Offering Improved Economics	Generation IV - Highly Economical - Enhanced Safety - Minimal Waste - Proliferation Resistant
Gen I	Gen II	Gen III	Gen III+	Gen IV
1950 1960	1970 1980 1990	2000 2010	2020	2030
	-			

Reactor safety
Absolutely safe: Does not exist
Inherent safe: Melt down not possible due to nature laws
Structurally safe: Dense containment, filters hinder any release at melt down
Structurally unsafe: Lack dense containment, and any release limiting arrangements
RBMK: (Chernobyl type)
1
Inherent unsafe: Reactivity increase when coolant disappears