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Different views on probabilities

Axiomatic defines axioms and derives properties

Classical number of ways something can happen over total
number of things that can happen (e.g. dice)

Logical same, but weight the different ways
Frequency frequency of success in repeated experiments
Propensity
Subjective degree of belief
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Axiomatic view on probabilities (Kolmogorov)
Given an event E in a event space F
1. P(E)>0forall E€F
2. sure event : P(2) =1

3. E1, E5, ... countable sequence of pairwise disjoint events,

then

o0

P(EEUEU--) =Y P(E)

EEUEU---

/

6

79



Consequences

1. Monotonicity: P(A) < P(B)if AC B

2. Empty set 0: P(0) =0
3. Bounds: 0 < P(E)<1forall E€F
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More Consequences: Addition

P(AUB) = P(A) + P(B) — P(AN B)

AUB
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More Consequences: Negation

P(A) = P(Q\ A) = 1— P(A)
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Conditional Probabilities

P(AB)

The probability of event A when we know that event B has
happened

Note: different from the probability that event A and event B
happen
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Conditional Probabilities

P(A|B) # P(AN B)
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Conditional Probabilities

P(A|B) # P(AN B)
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Conditional Probabilities

P(A|B) # P(AN B)
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Conditional Probabilities

p(aig) = PANE)

P(B)
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Bayes' Rule

PAIE) =
then
P(AN B) = P(A|B)P(B) = P(B|A)P(A)
and
pag)— PBAPA

P(B)
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Discrete vs Continuous variables

&

» Discrete events: either 1, » Any real number
2,3, 4,5, or6. (theoretically infinite)

» Discrete probability » Distribution function
distribution (PDF) f(x) (NOT
p(x) = P(d = x) PROBABILITY!)

» P(d=1)=1/6 (fair » P(t=36.6) =0

dice) > P(36.6 <t <36.7) =0.1
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Gaussian distributions: One-dimensional
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Gaussian distributions: One-dimensional

15

P(x2<x<x3) = 0.15

f(x1) = 8.1
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Bayes rule with continuous variables

» Discrete case:

P(BIA)P(A)

P(AIB) = gy

» Continuous case (not probabilities)

f(x|A)P(A)

P(Alx) = F(x)

» Continuous case (probabilities)

P(Alx) =
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Gaussian distributions: d Dimensions

X1 251 011 012 ... O14d
X2 2 o
Xd Kd Od1 .- Odd
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The Probabilistic Model of Classification

00 01 02 03 04 05 06

» “Nature” assumes one of c¢ states w; with a priori

probability P(w;)

» When in state w;, “nature” emits observations X with

distribution p(x|w;)

a priori probabilities

class conditional probability distributions

statel

state2

state3
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Problem

» If | observe X and | know P(w;) and
p(x|wj) for each j

» what can | say about the state of
“nature” w;?

19/79



Bayes decision theory

,,,,,,,,,,,,,,
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Classifiers: Discriminant Functions

d;
X1 d,
X2
Ema ] ol
Xd
ds
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Classifiers: Decision Boundaries

(xln,) P(o
optimal PUT 5!
decision
boundary

pumﬁﬂm)-\\\\

decision
boundary

Figure from Huang, Acero, Hon.
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Decision Boundaries in Two Dimensions
N R
1

decision boundary

Figure from Huang, Acero, Hon.
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Bayes' Rule and Pattern Recognition
A = words, B = sounds:

» During training we know the words and can compute
P(sounds|words) using frequentist approach (repeated
observations)

» during recognition we want
words = arg max P(words|sounds)

» using Bayes' rule:

P(sounds|words) P(words)
P(sounds)

P(words|sounds) =

where

P(words): a priori probability of the words (Language Model)
P(sounds): a priori probability of the sounds (constant, can be
ignored)
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Estimation Theory

» so far we assumed we know P(w;) and p(x|wj)
» how can we obtain them from collections of data?

» this is the subject of Estimation Theory
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Parametric vs Non-Parametric Estimation

Parametric non parametric
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Parameter estimation

Assumptions:
» samples from class w; do not influence estimate for class
wj, I+
» samples from the same class are independent and
identically distributed (i.i.d.)
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Parameter estimation (cont.)

» class independence assumption:

%y — N P
1;7é — @ = !

l

l
KX

l

» Maximum likelihood estimation
» Maximum a posteriori estimation

» Bayesian estimation
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Maximum likelihood estimation

» Find parameter vector § that maximises p(D|6) with

D:{Xl,..

. Xn}

> i.id. = p(D]0) = [1;_; p(x«|0)

likelihood p(Dltheta)

log likelihood

]

~

Hﬂh\-_

|

X

_/

/
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Maximum likelihood estimation

» Find parameter vector § that maximises p(D|6) with
D ={x1,...,Xn}
» ii.d. = p(D]0) = [1,_, p(x|0)
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Maximum likelihood estimation

» Find parameter vector § that maximises p(D|6) with
D ={x1,...,Xn}
» ii.d. = p(D]0) = [1,_, p(x|0)

£}
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=

a

= -p(x|theta)

X
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=

log likelihood
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ML estimation of Gaussian mean

1 X — p)? .
(sl 7%) = - —exp [—( - ]  with 6 = {1,0%}

Log-likelihood of data (i.i.d. samples):

N

log P(D|0) = Zlong,]u, ——NIog( )ZT‘Z

i=1

dlogPDye ZN: B XX — Ny .

o2
i=1

1 N
:N§”
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ML estimation of Gaussian parameters

>

» same result by minimizing the sum of square errors!

» but we make assumptions explicit
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Problem: few data points

10 repetitions with 5 points each

33/79



Problem: few data points

10 repetitions with 5 points each
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Maximum a Posteriori Estimation

N
f1,5% = arg max [ Pili.a®)P (. 0?)
i=1

where the prior P(1, 0?) needs a nice mathematical form for
closed solution

N

~ _ . T s
HUmap N+,}/NML+N+7
MAP N+3+2a ™ N+ 3+ 2«

where «, 3,7, 0 are parameters of the prior distribution
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ML, MAP and Point Estimates

» Both ML and MAP produce point estimates of ¢
» Assumption: there is a true value for 6

» advantage: once f is found, everything is known

X

S\

p(D|theta)

likelihood

log likelihood
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Overfitting

Figure from Huang, Acero, Hon.
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Overfitting: Phoneme Discrimination
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Figure from Huang, Acero, Hon.

1000
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Bayesian estimation

» Consider # as a random variable
» characterize # with the posterior distribution P(6|D)

given the data

ML: D — O
MAP: D,P(0) — Oun
Bayes: D,P(#) — P(0|D)

» for new data points, instead of P(xnewléML) or

P(xneW\GAMAP), compute:

D) = /9 _ Plol0)P(OID)d0

P(xnew
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Bayesian estimation (cont.)

» we can compute p(x|D) instead of p(x|0)
» integrate the joint density p(x, 8|D) = p(x|0)p(6|D)

‘/@\

X

N\
T

p(Dltheta)

o
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likelihood

log likelihood
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Bayesian estimation

» we can compute p(x|D) instead of p(x|0)
» integrate the joint density p(x, 8|D) = p(x|0)p(6|D)

join dist

/ p(x/0)p(0|D)d6

integral
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Bayesian estimation

» we can compute p(x|D) instead of p(x|0)
» integrate the joint density p(x, 8|D) = p(x|0)p(6|D)

join dist

/ p(x/0)p(0|D)d6

integral
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Bayesian estimation (cont.)

Pros:

» better use of the data
» makes a priori assumptions explicit
» easily implemented recursively

» use posterior p(6|D) as new prior

» reduce overfitting
Cons:

» definition of noninformative priors can be tricky

» often requires numerical integration
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Other Training Strategies: Discriminative Training

» Maximum Mutual Information Estimation
» Minimum Error Rate Estimation

» Neural Networks
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Multi layer neural networks

Multi layer
neural networks

» Backpropagation algorithm
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Unsupervised Learning

» so far we assumed we knew the class w; for each data
point

» what if we don't?

» class independence assumption loses meaning
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Vector Quantisation, K-Means

» describes each class with a centroid

» a point belongs to a class if the corresponding centroid is
closest (Euclidean distance)

» iterative procedure
» guaranteed to converge
» not guaranteed to find the optimal solution

» used in vector quantization
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K-means: algorithm

Data: k (number of desired clusters), n data points x;

Result: k clusters
initialization: assign initial value to k centroids c;;

repeat

assign each point x; to closest centroid c;;

compute new centroids as mean of each group of points;
until centroids do not change,
return k clusters;

47
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K-means: example

update clusters

iteration 20,
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K-means: sensitivity to initial conditions

iteration 20, update clusters
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Solution: LBG Algorithm

» Linde-Buzo—Gray

» start with one centroid
» adjust to mean

» split centroid (with €)
» K-means

» split again. ..
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K-means: limits of Euclidean distance

» the Euclidean distance is isotropic (same in all directions
in RP)
» this favours spherical clusters

» the size of the clusters is controlled by their distance
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K-means: non-spherical classes

two non-spherical classes
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Probabilistic Clustering

» model data as a mixture of probability distributions
(Gaussian)

» each distribution corresponds to a cluster

» clustering corresponds to parameter estimation
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Gaussian distributions
exp {—3(xi — ) TZ N (xi — i) }

fe(Xi| e, Zi) = (2n)E |z |%
)2 k

Eigenvalue decomposition of the covariance matrix:

Y« = MDD AD]!

01101
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Mixture of Gaussian distributions

P Distribution Volume Shape Orientation
Al Spherical Equal Equal N/A

Al Spherical Variable Equal N/A
ADADT Ellipsoidal ~ Equal Equal Equal
/\DkAD,Z— Ellipsoidal Equal Equal Variable
MDyAD]  Ellipsoidal ~ Variable Equal Variable
/\kaAkD,Z— Ellipsoidal Variable Variable Variable

X2

x1

55 /79



Fitting the model

» given the data D = {x;}
» given a certain model M and its parameters 6

» maximize the model fit to the data as expressed by the
likelihood

L =p(D|0)

56
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Unsupervised Case

v

release class independence assumption:

learn the mixture at once

v

v

problem of missing data

v

solution: Expectation Maximization
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Expectation Maximization

» let x = (xq,...,X,) be the data (observations) drawn
from K distributions (known)

» we call z; € [1, K] the index of the Gaussian that
generated the point x; (unknown)

» the combination of x and z is called the complete data

» the probability that the jth Gaussian generates a
particular x is proportional to

p(x|z=1,0) = N(ui, I;)
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Expectation Maximization 2

» the task is to estimate the unknown parameters

0 = {#’17"'7:“/(7:1""72}(’
P(z=1),...,P(z=K)}

» to do so we iterate between improving our knowledge
about z and improving the estimate of # given this
knowledge
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EM: formulation

E-step estimate the probability of z given the
observation and the current model:

P(z = ilx;, 0:)

M-step 1) compute the expected log-likelihood of the
complete data (x, z)

Q) = E. llnﬂpm,zwnxj]

2) maximize Q(#) with respect to the model
parameters ¢
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EM and GM: properties

» the variance in the GM model must be constrained (to
avoid infinite likelihood)

» EM is guaranteed to converge to a local maximum of the
complete data likelihood

» the initial conditions play an important role (as with
K-means)

» GM and EM are quivalent to K-means when the
covariances are all equal to the identity matrix

» equal covariances lead to linear discriminants
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Expectation Maximization
Fitting model parameters with missing (latent) variables

P(x|6) = Zka x|65),
with 6 = {Wl,...,ﬂk,el,...,eK}

» very general idea (applies to many different probabilistic
models)

» augment the data with the missing variables: hj,
probability of assignment of each data point x; to each
component of the mixture k

» optimize the Likelihood of the complete data:

P(x, hl|0)



Mixture of Gaussians
This distribution is a weight sum of K Gaussian distributions

K
P(x) = 3 mN(x: e, 73)

k=1

where 11 + - -+ =1
and m, >0 (k=1,...,K).

Pr(z)

xT

This model can describe complex multi-modal probability
distributions by combining simpler distributions.
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Mixture of Gaussians

K
P() = 3 meN(x i 0F)

k=1

» Learning the parameters of this model from training data
X1,...,Xp IS not trivial - using the usual straightforward

maximum likelihood approach.

» Instead learn parameters using the
Expectation-Maximization (EM) algorithm.
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Mixture of Gaussians as a marginalization

We can interpret the Mixture of Gaussians model with the

introduction of a discrete hidden/latent variable h and P(x, h):

Pr(z, h)

< mixture density

Figures taken from Computer Vision: models, learning and inference by Simon Prince.

65 /79



EM for two Gaussians

Assume: We know the pdf of x has this form:
P(x) = m N (x; i1, 02) 4+ m N'(x; pa, 03)

where 71 + 1 = 1 and 7w, > 0 for components k = 1, 2.

Unknown: Values of the parameters (Many!)

©= (7r1,,u1,01,,u2,02).
Have: Observed n samples xi, ..., x, drawn from P(x).

Want to: Estimate © from xq,..., x,.

How would it be possible to get them all???
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EM for two Gaussians
For each sample x; introduce a hidden variable h;

b 1 if sample x; was drawn from N (x; 1, 0%)
~ |2 if sample x; was drawn from N (x; i, 03)
and come up with initial values

00 _ (z9 4@ 5O ,© ;)

for each of the parameters.

EM is an iterative algorithm which updates ©() using the
following two steps...
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EM for two Gaussians: E-step
The responsibility of k-th Gaussian for each sample x
(indicated by the size of the projected data point)

1

Pr(xz,h)

Look at each sample x along hidden variable h in the
E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians: E-step (cont.)

E-step: Compute the “posterior probability” that x; was
generated by component k given the current estimate of the

parameters ©(*). (responsibilities)

fori=1,...n
for k=1,2

95 = P(hi = k| x,0)

wi YN (xi; 1, o))
w N (s 187, 019) + 780 N (5 11, o)

Note: fy(l)+7()*1and T +m =1
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EM for two Gaussians: M-step
Fitting the Gaussian model for each of k-th constinuetnt.
Sample x; contributes according to the responsibility 7.

Pr(z,h)

(dashed and solid lines for fit before and after update)

Look along samples x for each h in the M-step

Figure from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians: M-step (cont.)

M-step: Compute the Maximum Likelihood of the parameters
of the mixture model given out data's membership
distribution, the 7{"'s:

fork=1,2

(t+1) 27:1 ’7,(;))0
i I

> 7(15) ’
n +1
o) D i1 'Yfkt)(xi - ,“Sf ))2
k - n 3
Zi:l 'Yi(kt)
n (t)
Wl((tH) _ Zi:l YVik ‘

n
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EM in practice

a) b) c) d)
E-Step M-Step E-Step

e) f) 9) h)
M-Step E-Step M-Step. E-Step

i) i) k) ]

M-Step E-Step M-Step. E-Step

m) n) o) P)
M-Step E-Step M-Step. E-Step

n s) t)
E-Step M-Step. E-Step
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Classification and Regression Tree (CART)

gender age occupation milk consumption  height
(litres/day) (meters)
male 23  basketball player 1.0 2.0
female 22 student 0.5 1.6
male 13 student 0.2 1.3
female 8 student 0.5 1.2

female 72 retired 0.1 1.7
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Classification and Regression Tree (CART)

» Binary decision tree

» An automatic and data-driven framework to construct a
decision process based on objective criteria

» Handles data samples with mixed types, nonstandard
structures

» Handles missing data, robust to outliers and mislabeled
data samples

» Used in speech recognition for model tying
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Classification and Regression Tree (CART)

Is age > 122
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Steps

in constructing a CART

Find set of questions
Put all training samples in root
Recursive algorithm

» Find the best combination of question and node. Split
the node into two new nodes

» Move the corresponding data into the new nodes

» Repeat until right-sized tree is obtained

Greedy algorithm, only locally optimal, splitting without
regard to subsequent splits
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Defining questions

Data described by x = (x1, %2, . - ., Xg)
» one question per variable (singleton questions)

» If x; discrete with values in {cy, ..., cx}, questions in the
form: is x; € §7, with S subset of the values.

» If x; continuous, questions in the form: is x; < ¢?, with ¢
real number.

» in both cases, finite number of questions for a dataset
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Splitting Criterium

» we want data points in each leaf to be homogeneous
» Find the pair of node and question for which the split
gives largest improvement
» Examples:
1. Largest decrease in class entropy

2. Largest decrease in squared error from a regression of
the data in the node
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