SF1625 Calculus in one variable Lösningsförslag till tentamen 2015-01-12

Del A

1. We will investigate the function f given by $f(x)=x e^{1 / x}$.
A. Find the domain of definition of f.
B. Compute the four limits $\lim _{x \rightarrow \pm \infty} f(x)$ and $\lim _{x \rightarrow 0^{ \pm}} f(x)$
C. Find all local extreme values of f.
D. Sketch, using the above, the graph $y=f(x)$

Solution. A. The domain of definition consists of all real x for which $x e^{1 / x}$ is defined, i.e. all $x \neq 0$.
B. These are standard limits:

$$
\lim _{x \rightarrow \infty} f(x)=\infty, \quad \lim _{x \rightarrow-\infty} f(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f(x)=\infty, \quad \lim _{x \rightarrow 0^{-}} f(x)=0
$$

C. We differentiate and obtain:

$$
f^{\prime}(x)=e^{1 / x}+x e^{1 / x}\left(-\frac{1}{x^{2}}\right)=e^{1 / x}\left(1-\frac{1}{x}\right)
$$

that exists for all $x \neq 0$ and is equal to 0 iff $x=1$. We have:
If $x<0$ then $f^{\prime}(x)>0$. Consequently f is strictly increasing on this interval. Hence there are no extreme values when $x<0$

If $0<x<1$ then $f^{\prime}(x)<0$. Consequently f is strictly decreasing on this interval.
If $x=1$ then $f^{\prime}(x)=0$.
If $x>1$ then $f^{\prime}(x)>0$. Consequently f is strictly increasing on this iterval.
From the above it follows that f has exactly one local extreme value, a local minimum when $x=1$, and $f(1)=e$.
D. Now we cab sketch the graph:

Answer: Se lösningen.
2. Compute the integral

$$
\int_{\pi^{2} / 4}^{\pi^{2}} \cos \sqrt{x} d x
$$

by doing the following:
A. Perform the substitution $\sqrt{x}=t$ (don't forget to change the interval of integration).
B. Compute, using integration by parts, the integral you obtain in A.

Solution. A. Using the substitution $\sqrt{x}=t$, or $x=t^{2}$, with $d x=2 t d t$ and interval of integration between $\pi / 2$ and π, we get

$$
\int_{\pi^{2} / 4}^{\pi^{2}} \cos \sqrt{x} d x=\int_{\pi / 2}^{\pi} 2 t \cos t d t
$$

B. Using integration by parts on the integral from problem A we get

$$
\int_{\pi / 2}^{\pi} 2 t \cos t d t=[2 t \sin t]_{\pi / 2}^{\pi}-\int_{\pi / 2}^{\pi} 2 \sin t=-\pi-2
$$

Answer: A. $\int_{\pi / 2}^{\pi} 2 t \cos t d t$.
B. $-\pi-2$
3. A tin can in the shape of a cylinder, with lid and bottom plate, containing 1 litre, is to be manufactured. Compute the height of the cylinder and the radius of its circular bottom plate in order to minimize the total surface area of the can.
Solution. Let r be the radius of the bottom plate and h the hight of the cylinder. The Volume of the cylinder is $\pi r^{2} h$ and with this equal to 1 we get $\pi r^{2} h=1$, i. e. $h=1 / \pi r^{2}$.

The area of surface of the cylindern, to be minimized, is $2 \pi r^{2}+2 \pi r h$. If we substitute $h=1 / \pi r^{2}$ into this we see that we need to minimize the function

$$
A(r)=2 \pi r^{2}+\frac{2}{r}
$$

där $r>0$. We differentiate and obtain

$$
A^{\prime}(r)=4 \pi r-\frac{2}{r^{2}}
$$

that exists for all $r>0$. We see that $A^{\prime}(r)=0 \Longleftrightarrow 2 r=1 / \pi r^{2}=h$. If we study the derivative we see that we have a local and global minimum when $2 r=h$. Argument for this:

If $0<r<1 /(2 \pi)^{1 / 3}$ then $A^{\prime}(r)<0$ and consequently A is strictly decreasing.
If $r=1 /(2 \pi)^{1 / 3}$ then $A^{\prime}(r)=0$.
If $r>1 /(2 \pi)^{1 / 3}$ then $A^{\prime}(r)>0$ and consequently A is strictly increasing.
The surface area is therefore minimized when $r=1 /(2 \pi)^{1 / 3}$ and $h=2 r$.

Answer: $r=1 /(2 \pi)^{1 / 3}$ and $h=2 /(2 \pi)^{1 / 3}$.

Del B

4. We study the differential equation $y^{\prime \prime}(t)+y(t)=\sin t$.
A. Solve the differential equation.
B. Does there exist a bounded solution to the differential equation?

Solution. A. The solution to the differential equation is $y=y_{h}+y_{p}$ where y_{h} is the general solution to homogeneous equation $y^{\prime \prime}+y=0$, and y_{p} is any particular solution.

First we find y_{h}. The characteristic equation $r^{2}+1=0$ has solutions $\pm i$, and so

$$
y_{h}(t)=A \cos t+B \sin t
$$

where A and B are arbitrary constants.
Then we find y_{p}. Normally we would look for a particular solution of the form $a \cos t+$ $b \sin t$ but this is part of the homogeneous solution and will not work. Instead we look for

$$
y_{p}=t(a \cos t+b \sin t) .
$$

Then

$$
y_{p}^{\prime}=a \cos t+b \sin t+t(-a \sin t+b \cos t)
$$

and

$$
y_{p}^{\prime \prime}=-a \sin t+b \cos t-a \sin t+b \cos t+t(-a \cos t-b \sin t)
$$

We see that $y_{p}^{\prime \prime}+y_{p}=\sin t \Longleftrightarrow a=-1 / 2$ and $b=0$.
We have a particular solution

$$
y_{p}=-\frac{t}{2} \cos t
$$

Putting it all together we see that the full solution to the given differential equation is

$$
y(t)=A \cos t+B \sin t-\frac{t}{2} \cos t, \quad A, B \text { arbitrary costants. }
$$

For $t=n 2 \pi$ we have $y(t)=A-n \pi$ that tends to $-\infty$ when the integer $n \rightarrow \infty$, independent of the choice of constants A and B. Therefore there is no bounded solution.

Answer: A. $y(t)=A \cos t+B \sin t-\frac{t}{2} \cos t, A, B$ arbitrary constants.
B. No.
5. Find the Taylor polynomial of degree 2 about the point $x=100$ to the function $f(x)=\sqrt{x}$ and use this Taylor polynomial to compute an approximate value of $\sqrt{104}$. Also, decide wether the error of your approximation is less than 10^{-4} in absolute value.
Solution. We differentiate and obtain

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, \quad f^{\prime \prime}(x)=-\frac{1}{4 x \sqrt{x}}, \quad f^{\prime \prime \prime}(x)=\frac{3}{8 x^{2} \sqrt{x}}
$$

existing for all $x>0$. The Taylor polynomial of degree 2 to f about $x=100$ is therefore

$$
p(x)=10+\frac{1}{20}(x-100)-\frac{1}{8000}(x-100)^{2}
$$

If we use this for approximating $\sqrt{104}$ we obtain
$\sqrt{104}=f(104) \approx p(104)=10+\frac{1}{20}(104-100)-\frac{1}{8000}(104-100)^{2}=10.198$.
The absolute value of the error in the approximation is for some c between 100 and 104:

$$
\left|\frac{3 /\left(8 c^{2} \sqrt{c}\right)}{3!} 4^{3}\right| \leq \frac{4}{100000} \leq 10^{-4}
$$

Answer: $p(x)=10+\frac{1}{20}(x-100)-\frac{1}{8000}(x-100)^{2}$.
$\sqrt{104} \approx 10.198$ with an error less than 10^{-4}
6. Is the improper integral

$$
\int_{1}^{\infty} \frac{d x}{x^{2}+x}
$$

convergent or divergent? If it is convergent, compute the integral.
Hint: For $x \geq 1$ we have $\frac{1}{x^{2}} \geq \frac{1}{x^{2}+x}=\frac{1}{x}-\frac{1}{x+1}$.
Solution. Since

$$
0 \leq \frac{1}{x^{2}+x} \leq \frac{1}{x^{2}}, \quad \text { för } x \geq 1,
$$

we have

$$
0 \leq \int_{1}^{\infty} \frac{d x}{x^{2}+x} \leq \int_{1}^{\infty} \frac{d x}{x^{2}}=1
$$

and it follows that our integral is convergent. We compute it:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x^{2}+x} & =\int_{1}^{\infty}\left(\frac{1}{x}-\frac{1}{x+1}\right) d x \\
& =\lim _{R \rightarrow \infty} \int_{1}^{R}\left(\frac{1}{x}-\frac{1}{x+1}\right) d x \\
& =\lim _{R \rightarrow \infty}[\ln x-\ln (x+1)]_{1}^{R} \\
& =\lim _{R \rightarrow \infty}\left[\ln \frac{x}{x+1}\right]_{1}^{R} \\
& =\ln 2
\end{aligned}
$$

Answer: The integral is convergent and its value is $\ln 2$.

Del C

7. A. Give the definition of what it means for a function f to be continuous at a point a.
B. Give the definition of what it means for a function f to be differentiable at a point a.
C. Show that a function f differentiable at a point a also must be continuous at a.
D. Give an example showing that a function that is continuous at a point does not have to be differentiable at that point.

Solution. A. The function f is continuous at a if f is defined at a and has a limit when x approaches a and $\lim _{x \rightarrow a} f(x)=f(a)$.
B. f is differentiable at a if the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists as a finite number. This limit is then called the derivative of f at a, written $f^{\prime}(a)$.
C. Suppose f is differentiable at a. We must show that in that case $\lim _{x \rightarrow a} f(x)=f(a)$ or equivalently $\lim _{h \rightarrow 0}(f(a+h)-f(a))=0$. We have

$$
\lim _{h \rightarrow 0}(f(a+h)-f(a))=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot h=f^{\prime}(a) \cdot 0=0
$$

The proof is complete.
D. Let $f(x)=|x|$. Clearly f is continuous at the origin, since $f(0)=0$ and $\lim _{x \rightarrow 0} f(x)=$ 0 . The function f is not differentiable at the origin since

$$
\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

and this limit does not exist (if h is positive and tends to zero we get 1 but if h is negative and tends to zero we get -1).

Answer: See the solution.
8. A hole with radius 1 is drilled through the center of a ball with radius 2 . How great a part (in percent) of the volume of the ball remains?
Solution. Let's choose coordinates so that the origin is the center of the ball and the ball is obtained as a solid of revolution of the curve $x^{2}+y^{2}=4$ around the x-axis. We may assume that the hole is drilled so that the x-axis is the line of symmetry of the drilling cylinder. In that case points of intersections in the $x y$-plane between the cylinder and the ball are $(\pm \sqrt{3}, \pm 1)$. The drilled part then consists of a cylinder with radius 1 and height $2 \sqrt{3}$ plus two solids of revolution at each end of the cylinder.

The volume of the cylinder is $2 \pi \sqrt{3}$. The two solids of revolution are obtained when $x^{2}+y^{2}=4$ is rotated around the x-axis, on the intervals $[\sqrt{3}, 2]$, and $[-2,-\sqrt{3}]$. The volume of these are

$$
2 \pi \int_{\sqrt{3}}^{2}\left(4-x^{2}\right) d x=2 \pi\left(\frac{16}{3}-3 \sqrt{3}\right) .
$$

Since the volume of the ball is $32 \pi / 3$ we see that the percentage of the part that has been removed is

$$
\frac{2 \pi \sqrt{3}+2 \pi\left(\frac{16}{3}-3 \sqrt{3}\right)}{32 \pi / 3}=\frac{32 \pi / 3-4 \pi \sqrt{3}}{32 \pi / 3} \approx 0.35
$$

Approximately 35 percent of the volume of the ball has been removed and hence the remaining part is approximately 65 percent.

Answer: Appox. 65 percent.
9. Show that the function

$$
f(x)=x\left(\frac{\pi}{2}-\arctan x\right)
$$

is increasing.
Solution. First we observe that the function is defined for all x. We differentiate and obtain

$$
f^{\prime}(x)=\frac{\pi}{2}-\arctan x-\frac{x}{1+x^{2}}
$$

existing for all x. We differentiate a second time and get

$$
f^{\prime \prime}(x)=-\frac{1}{1+x^{2}}-\frac{1+x^{2}-2 x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{-2}{\left(1+x^{2}\right)^{2}}
$$

existing for all x and negative for all x.
The fact that $f^{\prime \prime}(x)<0$ for all x implies that $f^{\prime}(x)$ is strictly decreasing for all x. Since $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$ this implies that $f^{\prime}(x)$ is positive for all x. Consequently f is strictly increasing.

Answer: Se lösningen.

