1. We will investigate the function \(f \) given by \(f(x) = xe^{1/x} \).

 A. Find the domain of definition of \(f \).
 B. Compute the four limits \(\lim_{x \to \pm \infty} f(x) \) and \(\lim_{x \to 0^\pm} f(x) \)
 C. Find all local extreme values of \(f \).
 D. Sketch, using the above, the graph \(y = f(x) \)

Solution.

A. The domain of definition consists of all real \(x \) for which \(xe^{1/x} \) is defined, i.e. all \(x \neq 0 \).

B. These are standard limits:

\[
\lim_{x \to \infty} f(x) = \infty, \quad \lim_{x \to -\infty} f(x) = -\infty, \quad \lim_{x \to 0^+} f(x) = \infty, \quad \lim_{x \to 0^-} f(x) = 0.
\]

C. We differentiate and obtain:

\[
f'(x) = e^{1/x} + xe^{1/x} \left(-\frac{1}{x^2} \right) = e^{1/x} \left(1 - \frac{1}{x} \right)
\]

that exists for all \(x \neq 0 \) and is equal to 0 iff \(x = 1 \). We have:

If \(x < 0 \) then \(f'(x) > 0 \). Consequently \(f \) is strictly increasing on this interval. Hence there are no extreme values when \(x < 0 \)

If \(0 < x < 1 \) then \(f'(x) < 0 \). Consequently \(f \) is strictly decreasing on this interval.

If \(x = 1 \) then \(f'(x) = 0 \).

If \(x > 1 \) then \(f'(x) > 0 \). Consequently \(f \) is strictly increasing on this interval.

From the above it follows that \(f \) has exactly one local extreme value, a local minimum when \(x = 1 \), and \(f(1) = e \).

D. Now we can sketch the graph:
Answer: Se lösningen.
2. Compute the integral
\[\int_{\pi/4}^{\pi/2} \cos \sqrt{x} \, dx \]
by doing the following:
A. Perform the substitution \(\sqrt{x} = t \) (don’t forget to change the interval of integration).
B. Compute, using integration by parts, the integral you obtain in A.

Solution. A. Using the substitution \(\sqrt{x} = t \), or \(x = t^2 \), with \(dx = 2t \, dt \) and interval of integration between \(\pi/2 \) and \(\pi \), we get
\[\int_{\pi/4}^{\pi/2} \cos \sqrt{x} \, dx = \int_{\pi/2}^{\pi} 2t \cos t \, dt. \]

B. Using integration by parts on the integral from problem A we get
\[\int_{\pi/2}^{\pi} 2t \cos t \, dt = [2t \sin t]_{\pi/2}^{\pi} - \int_{\pi/2}^{\pi} 2 \sin t \, dt = -\pi - 2. \]

Answer: A. \(\int_{\pi/2}^{\pi} 2t \cos t \, dt \).
B. \(-\pi - 2\).
3. A tin can in the shape of a cylinder, with lid and bottom plate, containing 1 litre, is to be manufactured. Compute the height of the cylinder and the radius of its circular bottom plate in order to minimize the total surface area of the can.

Solution. Let \(r \) be the radius of the bottom plate and \(h \) the height of the cylinder. The volume of the cylinder is \(\pi r^2 h \) and with this equal to 1 we get \(\pi r^2 h = 1 \), i.e. \(h = \frac{1}{\pi r^2} \).

The area of surface of the cylinder, to be minimized, is \(2\pi r^2 + 2\pi rh \). If we substitute \(h = \frac{1}{\pi r^2} \) into this we see that we need to minimize the function

\[
A(r) = 2\pi r^2 + \frac{2}{r}
\]

där \(r > 0 \). We differentiate and obtain

\[
A'(r) = 4\pi r - \frac{2}{r^2}
\]

that exists for all \(r > 0 \). We see that \(A'(r) = 0 \iff 2r = \frac{1}{\pi r^2} = h \). If we study the derivative we see that we have a local and global minimum when \(2r = h \). Argument for this:

- If \(0 < r < \frac{1}{(2\pi)^{1/3}} \) then \(A'(r) < 0 \) and consequently \(A \) is strictly decreasing.
- If \(r = \frac{1}{(2\pi)^{1/3}} \) then \(A'(r) = 0 \).
- If \(r > \frac{1}{(2\pi)^{1/3}} \) then \(A'(r) > 0 \) and consequently \(A \) is strictly increasing.

The surface area is therefore minimized when \(r = \frac{1}{(2\pi)^{1/3}} \) and \(h = 2r \).

\[\square\]

Answer: \(r = \frac{1}{(2\pi)^{1/3}} \) and \(h = \frac{2}{(2\pi)^{1/3}} \).
4. We study the differential equation $y''(t) + y(t) = \sin t$.

A. Solve the differential equation.

B. Does there exist a bounded solution to the differential equation?

Solution. A. The solution to the differential equation is $y = y_h + y_p$ where y_h is the general solution to homogeneous equation $y'' + y = 0$, and y_p is any particular solution.

First we find y_h. The characteristic equation $r^2 + 1 = 0$ has solutions $\pm i$, and so

$$y_h(t) = A \cos t + B \sin t,$$

where A and B are arbitrary constants.

Then we find y_p. Normally we would look for a particular solution of the form $a \cos t + b \sin t$ but this is part of the homogeneous solution and will not work. Instead we look for

$$y_p = t(a \cos t + b \sin t).$$

Then

$$y'_p = a \cos t + b \sin t + t(-a \sin t + b \cos t)$$

and

$$y''_p = -a \sin t + b \cos t - a \sin t + b \cos t + t(-a \cos t - b \sin t).$$

We see that $y''_p + y_p = \sin t \iff a = -1/2$ and $b = 0$.

We have a particular solution

$$y_p = -\frac{t}{2} \cos t.$$

Putting it all together we see that the full solution to the given differential equation is

$$y(t) = A \cos t + B \sin t - \frac{t}{2} \cos t, \quad A, B \text{ arbitrary constants}.$$

For $t = n2\pi$ we have $y(t) = A - n\pi$ that tends to $-\infty$ when the integer $n \to \infty$, independent of the choice of constants A and B. Therefore there is no bounded solution.

Answer: A. $y(t) = A \cos t + B \sin t - \frac{t}{2} \cos t$, A, B arbitrary constants.

B. No.
5. Find the Taylor polynomial of degree 2 about the point \(x = 100 \) to the function \(f(x) = \sqrt{x} \) and use this Taylor polynomial to compute an approximate value of \(\sqrt{104} \). Also, decide whether the error of your approximation is less than \(10^{-4} \) in absolute value.

Solution. We differentiate and obtain

\[
\begin{align*}
 f'(x) &= \frac{1}{2\sqrt{x}}, \\
 f''(x) &= -\frac{1}{4x\sqrt{x}}, \\
 f'''(x) &= \frac{3}{8x^2\sqrt{x}}
\end{align*}
\]

existing for all \(x > 0 \). The Taylor polynomial of degree 2 to \(f \) about \(x = 100 \) is therefore

\[
p(x) = 10 + \frac{1}{20}(x - 100) - \frac{1}{8000}(x - 100)^2.
\]

If we use this for approximating \(\sqrt{104} \) we obtain

\[
\sqrt{104} = f(104) \approx p(104) = 10 + \frac{1}{20}(104 - 100) - \frac{1}{8000}(104 - 100)^2 = 10.198.
\]

The absolute value of the error in the approximation is for some \(c \) between 100 and 104:

\[
\left| \frac{3/(8c^2\sqrt{c})}{3!} \cdot 4^3 \right| \leq \frac{4}{100000} \leq 10^{-4}
\]

Answer: \(p(x) = 10 + \frac{1}{20}(x - 100) - \frac{1}{8000}(x - 100)^2. \)

\(\sqrt{104} \approx 10.198 \) with an error less than \(10^{-4} \).
6. Is the improper integral

\[\int_1^\infty \frac{dx}{x^2 + x} \]

convergent or divergent? If it is convergent, compute the integral.

Hint: For \(x \geq 1 \) we have \(\frac{1}{x^2} \geq \frac{1}{x^2 + x} = \frac{1}{x} - \frac{1}{x+1} \).

Solution. Since

\[0 \leq \frac{1}{x^2 + x} \leq \frac{1}{x^2}, \quad \text{for } x \geq 1, \]

we have

\[0 \leq \int_1^\infty \frac{dx}{x^2 + x} \leq \int_1^\infty \frac{dx}{x^2} = 1 \]

and it follows that our integral is convergent. We compute it:

\[
\int_1^\infty \frac{dx}{x^2 + x} = \int_1^\infty \left(\frac{1}{x} - \frac{1}{x+1} \right) \, dx \\
= \lim_{R \to \infty} \int_1^R \left(\frac{1}{x} - \frac{1}{x+1} \right) \, dx \\
= \lim_{R \to \infty} \left[\ln x - \ln(x+1) \right]_1^R \\
= \lim_{R \to \infty} \left[\ln \frac{x}{x+1} \right]_1^R \\
= \ln 2.
\]

Answer: The integral is convergent and its value is \(\ln 2 \).
7. A. Give the definition of what it means for a function f to be continuous at a point a.

 B. Give the definition of what it means for a function f to be differentiable at a point a.

 C. Show that a function f differentiable at a point a also must be continuous at a.

 D. Give an example showing that a function that is continuous at a point does not have to be differentiable at that point.

Solution. A. The function f is continuous at a if f is defined at a and has a limit when x approaches a and \(\lim_{x \to a} f(x) = f(a) \).

 B. f is differentiable at a if the limit
 \[
 \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
 \]
 exists as a finite number. This limit is then called the derivative of f at a, written $f'(a)$.

 C. Suppose f is differentiable at a. We must show that in that case $\lim_{x \to a} f(x) = f(a)$ or equivalently $\lim_{h \to 0} (f(a + h) - f(a)) = 0$. We have
 \[
 \lim_{h \to 0} (f(a + h) - f(a)) = \lim_{h \to 0} \left(\frac{f(a + h) - f(a)}{h} \cdot h \right) = h' f'(a) \cdot 0 = 0.

 The proof is complete.

 D. Let $f(x) = |x|$. Clearly f is continuous at the origin, since $f(0) = 0$ and $\lim_{x \to 0} f(x) = 0$. The function f is not differentiable at the origin since
 \[
 \lim_{h \to 0} \frac{|0 + h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h}
 \]
 and this limit does not exist (if h is positive and tends to zero we get 1 but if h is negative and tends to zero we get -1).

Answer: See the solution.
8. A hole with radius 1 is drilled through the center of a ball with radius 2. How great a part (in percent) of the volume of the ball remains?

Solution. Let’s choose coordinates so that the origin is the center of the ball and the ball is obtained as a solid of revolution of the curve $x^2 + y^2 = 4$ around the x-axis. We may assume that the hole is drilled so that the x-axis is the line of symmetry of the drilling cylinder. In that case points of intersections in the xy-plane between the cylinder and the ball are $(\pm \sqrt{3}, \pm 1)$. The drilled part then consists of a cylinder with radius 1 and height $2\sqrt{3}$ plus two solids of revolution at each end of the cylinder.

The volume of the cylinder is $2\pi\sqrt{3}$. The two solids of revolution are obtained when $x^2 + y^2 = 4$ is rotated around the x-axis, on the intervals $[\sqrt{3}, 2]$, and $[-2, -\sqrt{3}]$. The volume of these are

$$2\pi \int_{\sqrt{3}}^{2} (4 - x^2) \, dx = 2\pi \left(\frac{16}{3} - 3\sqrt{3} \right).$$

Since the volume of the ball is $32\pi/3$ we see that the percentage of the part that has been removed is

$$\frac{2\pi\sqrt{3} + 2\pi \left(\frac{16}{3} - 3\sqrt{3} \right)}{32\pi/3} = \frac{32\pi/3 - 4\pi\sqrt{3}}{32\pi/3} \approx 0.35.$$

Approximately 35 percent of the volume of the ball has been removed and hence the remaining part is approximately 65 percent.

Answer: Appox. 65 percent.
9. Show that the function
\[f(x) = x \left(\frac{\pi}{2} - \arctan x \right) \]
is increasing.

Solution. First we observe that the function is defined for all \(x \). We differentiate and obtain
\[f'(x) = \frac{\pi}{2} - \arctan x - \frac{x}{1 + x^2} \]
existing for all \(x \). We differentiate a second time and get
\[f''(x) = -\frac{1}{1 + x^2} - \frac{1 + x^2 - 2x^2}{(1 + x^2)^2} = \frac{-2}{(1 + x^2)^2} \]
existing for all \(x \) and negative for all \(x \).

The fact that \(f''(x) < 0 \) for all \(x \) implies that \(f'(x) \) is strictly decreasing for all \(x \). Since \(\lim_{x \to \infty} f'(x) = 0 \) this implies that \(f'(x) \) is positive for all \(x \). Consequently \(f \) is strictly increasing.

Answer: Se lösningen.