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Abstract This paper looks at the processing of skyline
queries on peer-to-peer (P2P) networks. We propose Sky-
frame, a framework for efficient skyline query processing
in P2P systems, which addresses the challenges of quick
response time, low network communication cost and query
load balancing among peers. Skyframe consists of two query-
ing methods: one is optimized for network communication
while the other focuses on query response time. These meth-
ods are different in the way in which the query search space is
defined. In particular, the first method uses a high dominating
point that has a large dominating region to prune the search
space to achieve a low cost in network communication. On
the other hand, the second method relaxes the search space
in order to allow parallel query processing to speed up query
response. Skyframe achieves query load balancing by both
query load conscious data space splitting/merging during the
join/departure of nodes and dynamic load migration. We fur-
ther show how to apply Skyframe to both the P2P systems
supporting multi-dimensional indexing and the P2P systems
supporting single-dimensional indexing. Finally, we have
conducted extensive experiments on both real and synthetic
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data sets over two existing P2P systems: CAN (Ratnasamy
in A scalable content-addressable network. In: Proceedings
of SIGCOMM Conference, pp. 161–172, 2001) and BATON
(Jagadish et al. in A balanced tree structure for peer-to-peer
networks. In: Proceedings of VLDB Conference, pp. 661–
672, 2005) to evaluate the effectiveness and scalability of
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1 Introduction

Skyline queries, which are useful for multi-criterion
decision support, preference answering and continuous sta-
tus monitoring, have been well studied in centralized systems
[25]. A skyline query returns a set of data points that are not
dominated by any other points in a given data set. A point
dominates another point if it is no worse in all concerning
dimensions and better in at least one dimension. As an exam-
ple, a user might want to find hotels with low price and yet
close to beach. A hotel which is worse than another hotel in
both of these criteria will be dominated and thus will not be
considered as part of the answer.

In a P2P system where decisions have to be made based
on distributed data and services, skyline computation can
be very useful. Consider an online scientific data analysis
system in which participating organizations that focus on
different parts of the experiments publish and exchange their
data. In this case, detecting the skyline will help scientists
identify outstanding data and results. Since there may be
large numbers of queries issued by different scientists in a
short time, it is crucial to respond to skyline queries quickly.
At the same time, we want to minimize the communication
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bandwidth and balance the query processing loads among the
peers. However, little work has been done on such efficient
processing of skyline queries in a P2P context.

Adapting a centralized strategy for skyline computation to
a P2P setting is not straightforward. Most, if not all central-
ized strategies, are not easily modified to prune visits to peers
that are not involved in the skyline computation. In [37], the
first attempt was made at progressive processing of skyline
queries on the CAN [29] P2P network. The proposal con-
trols query propagation based on the partial orders of CAN’s
zones. Even though the most irrelevant succeeding zones are
very likely to be pruned, the search boundary of succeeding
zones can only be defined by preceding zones, which may
reduce parallelism. Moreover, its zone replication load bal-
ancing approach is not efficient because of the expensive cost
of replication update, especially when the number of repli-
cas is large. This can happen easily if there are many skyline
queries that seek the results in the whole data space.

In this paper, we propose Skyframe, a framework for sky-
line query processing in structured P2P systems. Skyframe
consists of two querying methods. The first method is called
Greedy Skyline Search (GSS). This method prunes the query
search space by using a high dominating point that has a large
dominating region, as defined in [19]. Compared to existing
methods, the advantage of GSS is that it limits the num-
ber of involved nodes, the number of query messages, and
consequently the bandwidth consumed in the search process.
However, similar to other existing methods, this method takes
approximately O(2 · S) steps for processing a query, where S
is the search time in the overlay network (i.e log N if CHORD
[32] or BATON [20] is used, d · N 1/d if CAN [29] is used,
where N is the number of nodes in the system, d is the data
dimensionality). This is because S steps are taken to find a
high dominating point and another S steps for processing the
query after that.

In some systems, it is desirable to get the query results
as soon as possible. For this purpose, we introduce a second
method, called Relaxed Skyline Search (RSS). This method
relaxes the skyline search space boundaries slightly to speed
up query response. In particular, RSS first searches for all
border nodes which contain skyline points with high prob-
ability. After that, adjacent nodes of these border nodes are
further queried if necessary. In this way, the system can pro-
vide faster query response time at approximately O(S + k)

steps, where k � S. The disadvantage of RSS compared to
GSS is that RSS may return more false skyline points, which
are filtered later at the query initiator node. Consequently,
RSS may consume more network bandwidth.

To achieve query load balancing, Skyframe uses two types
of load balancing: static and dynamic. In static load bal-
ancing, the query loads are balanced based on a predeter-
mined partitioning of the data space at node arrival and depar-
ture. On the other hand, in dynamic load balancing, nodes

periodically sample loads from both neighboring and ran-
dom nodes to detect if an imbalance has occurred and, if it
has, load balancing is triggered. The procedure migrates data
from a heavily loaded node to a lightly loaded node.

We show that Skyframe can be applied to not only the P2P
systems that support multi-dimensional indexing but also
the P2P systems that support single-dimensional indexing
by implementing algorithms on both CAN [29] and BATON
[20]. To apply Skyframe on BATON, we propose a method to
convert regions in a multi-dimensional space to single dimen-
sional values. This method partitions and numbers the data
space among the peer nodes such that the target subspace
(region) number can be derived with good accuracy in order
to control the number of accessed peers and search messages
during skyline query processing.

In summary, we make the following main contributions:

– We propose Skyframe, a framework consisting of two
querying methods for efficient skyline processing on Peer-
to-Peer systems. The first method, Greedy Skyline Search
(GSS), is optimized for network communication while the
second method, Relaxed Skyline Search (RSS), focuses
on query response time.

– We introduce a method to balance the query loads among
the peers in Skyframe through both load induced data
space partitioning and dynamic load migration. For this,
we propose a novel load sampling mechanism that bal-
ances the quality of the samples and the efficiency of the
sampling process by combining direct and random sam-
pling.

– We show how to apply Skyframe to the P2P systems
that support multi-dimensional indexing (represented by
CAN) and single-dimensional indexing (represented by
BATON).

– We make a comparison between the two core search meth-
ods of Skyframe and conduct extensive experimental
studies to evaluate the effectiveness and scalability of
Skyframe.

This paper is an extended version of our previous
paper [36]. In the previous paper, we present only the Greedy
Skyline Search and its implementation on BATON. In this
paper, we have extended it to become a framework, which
can be adapted in different structured P2P systems. Addition-
ally, we introduce a new method, Relaxed Skyline Search that
is optimized for query response time. We present a discus-
sion about the difference between these two methods in terms
of advantages and disadvantages of each method compared
to the other. Extensive experiments have been conducted in
both methods to validate our claims.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 describes the general frame-
work. Section 4 presents the detailed implementation of the
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framework on CAN and BATON. Section 5 shows our
experimental study. Finally, Sect. 6 concludes the paper.

2 Related work

Skyline querying was first discussed in the database field
in [5]. In this work, the authors introduce two basic algo-
rithms Block-Nested-Loops (BNL) and Divide-and-Conquer
(D&C) from which algorithms for computing skyline results
were derived, using standard index structures B-tree and
R-tree. In particular, BNL maintains a self-organized win-
dow for currently incomparable tuples, to compare with every
incoming tuple. D&C partitions the entire data set into mul-
tiple subsets from which local skyline results are computed
and then merged. These two algorithms, BNL and D&C,
set up a basic foundation for skyline computing and have
had a significant impact on later works [8,11,16,21,23,25–
27,33,34,40].

The number of computations in BNL was optimized in
SFS [11] by pre-sorting the input data into the topological
order corresponding to the skyline criteria. The first work to
progressively compute the skyline was proposed in [33] with
two algorithms: Bitmap and Index. Bitmap encodes the input
data into a bitmap structure so that the skyline points can be
identified quickly using bitwise operations. Index transforms
each data point into a single dimensional space and builds a
B+-tree index for each dimension such that skyline points
are most likely to be found on top of the indexes. However,
this method is not efficient when handling skyline points that
are not particularly good in any dimension. As a result, a
different approach was proposed in Nearest Neighbors (NN)
[21] and Branch-and-Bound Skyline (BBS) [25] which con-
vert skyline query to a nearest neighbor query towards the
query reference point. These algorithms employ the R-tree
index to recursively partition the data set and compute the
skyline points. The algorithm in BBS has been proven to
be I/O optimal if we adopt the best-first strategy to minimize
R-tree node accesses and the size of necessary sub-partitions.

Subsequently, some works investigated the semantics of
query by subspace analysis [26,27,34,40], the maintaining
of skylines on data updates [38,39], the processing of sky-
line queries over data streams [23], in subspaces with range
constraints [12], or in high dimensional spaces [8]. Some
other works processed new kinds of skyline queries in more
complicated data environments, such as top−k skyline with
the maximum number of dominated data points [24], spatial
skyline considering a set of query reference points or neigh-
borhood [22,30], skyline with partially ordered domains [7],
skyline with dominance in k dimensions on high-dimensional
data [9] and probabilistic skyline on uncertain data [28].
There was also a study to speed up the maximal vectors

computation [16] combining the benefits of the non-indexing
skyline algorithms BNL and SFS.

Unfortunately, the above centralized algorithms cannot be
directly applied in distributed environments. As a result, effi-
cient processing of a distributed skyline query is still a chal-
lenge. In [3], Balke et al. proposed to use both sorted and
random access to reduce data access on vertically distrib-
uted data, in a web information system. Apparently, their
strategies do not apply to distributed data that is horizontally
partitioned. In [19], Huang et al. defined a filter tuple with
maximum dominating region to prune non-skyline points
transmitted on a peer-to-peer like mobile devices network.
However, their approach is dedicated to small-scale distrib-
uted systems and still needs to visit all nodes to retrieve the
skyline. Consequently, it is not scalable enough to be used
on a large-scale P2P network.

Some recent works process skyline query variants on dis-
tributed networks. In [13], Deng et al. proposed a variant of
skyline query, called multi-source skyline query, which has
several query reference points instead of just one reference
point. In particular, the authors focused on processing such
relative skyline query on the road networks. Another work,
SKYPEER [35], which supports skyline query in a super-peer
P2P network, suggested that subspace skyline queries can be
effectively answered by storing and scanning the super-set
of skyline whose attribute set is the super-set of all subspace
skylines. Similar to [19], the authors also proposed a thresh-
old based algorithm to optimize local skyline computation
at peers and reduce the amount of unnecessary data trans-
mitting on the network. Instead of processing exact skyline
queries, [17] relaxed the definition of skyline to include the
data points within a distance to the actual skyline point, such
that they reduced the network processing cost by using data
summaries and approximate answers.

The closest work to ours is DSL [37]. It parallelizes the
search for skyline and progressively returns skyline answers
by enforcing a partial order on query propagation based on
CAN. But the succeeding nodes have to wait for preced-
ing nodes’ completion to start their computation, so it slows
down the query response time. Furthermore, since the query
search boundary is not refined, DSL incurs unnecessary
return overhead. Additionally, the system emphasizes con-
strained skyline queries that are posed within a query range,
and consequently its skyline search method and zone repli-
cation approach have been designed for such constrained
skyline queries. Instead, we aim to solve skyline queries effi-
ciently in the global range, in which we are faced with a more
serious query load imbalance along the region containing the
skyline.

Another area of the related work consists of works that
inspired us to map multi-dimensional data onto a single
dimensional P2P network. MAAN [6] uses locality preserv-
ing hashing to map data values onto Chord [32] identifier
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space. Mercury [4] attempts to support multi-attribute range
queries by placing values of each attribute contiguously on a
separate routing hub, while performing explicit load balanc-
ing for non-uniform data distribution. However, the separate
attributes structures in MAAN and Mercury are not effective
for processing skyline queries that implicitly specify the con-
straints among the attributes. Instead, we consider the whole
data space in the structure. For this, some works use the
space filling curves as the hash function to build range query
services on Distributed Hash Table networks [2,10]. The
works closest to ours in the multi-dimensional data index-
ing are Murk [15], SkipIndex [41] and ZNet [31]. Murk
indexes multi-dimensional data partitions using the kd-tree.
Like Murk, SkipIndex stores partition information in a binary
tree, while ZNet splits data partitions in a quad-tree manner.
Though SkipIndex and ZNet balance data loads during data
space partitioning, they do not deal with the query load bal-
ancing problem that is present in skyline query processing.

Since the potential skyline may always exist in a small
portion of the whole data space, balancing the query load
among peers is important for the performance of frequent
skyline queries in a P2P system. Many works have explored
data/storage load balancing on P2P networks either by data
replication [1] or data movement/re-partition [14]. The way
they move the data is useful for load balancing in our frame-
work, while the load we look at is not only induced by data,
but also by the queries themselves.

3 Skyframe architecture

In this section, we will start with the problem definition, after
which we will present two core components of our frame-
work (1) the query processing manager, which is in charge of
processing skyline queries, and (2) the query load-balancing
manager, which is responsible for balancing the query load
among participating nodes. We will summarize the frame-
work at the end of the section.

3.1 Problem definition

Without loss of generality, we assume that the data values
of each dimension are in the range [0, 1] and the whole
d-dimensional data space {[0, 1], [0, 1], . . ., [0, 1]} is dis-
tributed on a P2P network with N nodes. Each node main-
tains a non-overlapping d-dimensional data region and the
data points falling inside the region. A data region is con-
structed with one or more hyper-cubes, each of which is con-
fined by 2 points: a lower bound and an upper bound (e.g.
lower left and upper right in a two-dimensional space). In
this data space, our framework processes the skyline query
in the form SQ = (q1, q2, . . . , qd). qi can take one of two

Fig. 1 An example of skyline query on two dimensional space

values: {‘Max ′, ‘Min′}. qi = ‘Min′ if we require a minimal
value on dimension i and ‘Max ′ otherwise.

As an example, Fig. 1 shows a distribution of data regions
in a 2-dimensional space with 8 nodes in the P2P system. In
this example, a skyline query SQ = {‘Min′, ‘′Min′} should
return 4 skyline points, which are hollow points. 2 points
are stored at node A, 1 point is stored at node H , and 1
point is stored at node E . In the rest of the paper, if no other
skyline query is specified, we also use this skyline query
SQ = {‘Min′, ‘Min′}.

3.2 Query processing manager

The query processing manager provides two methods,
Greedy Skyline Search and Relaxed Skyline Search, each
of which is based on a different approach to prune the sky-
line search space. We define the skyline search space to be
the ranges of the data space or the data regions that need to
be examined to answer a skyline query.

3.2.1 Greedy skyline search

While it is costly to find the optimal skyline search space, it is
possible to employ a greedy strategy to find a greedy search
space, which is not optimal but is good, in a much lower cost.
The basic idea of the Greedy Skyline Search (GSS) method
is that we start the search from the node whose local results
are guaranteed to be in the final skyline. We denote such
a node as SQ-Starter. This node can be located by search-
ing the most dominating boundary point that dominates all
other points in the data space. For instance, we would take
point (0.0, 0.0) in the two dimensional space if SQ is the
(‘Min′, ‘Min′) skyline query. After finding the SQ-Starter
node, we use local skyline points on SQ-Starter to delimit
the skyline search boundaries when we continue to process
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Fig. 2 Greedy Skyline search

the query.1 In particular, we compute local skyline results
and select the most dominating point that has the largest
dominating region [19] from local data set on SQ-Starter.
Let this point be pmd(a1, a2, . . . , ad). Even though pmd is
not the global most dominating point, pmd should be a high
dominating point, which has a large dominating region, and
hence it can be used to prune the search space to get a greedy
skyline search space, which is defined in the following def-
inition. Note that, to avoid incurring unnecessary network
bandwidth, we use only pmd for pruning irrelevant nodes
and refining the search space instead of using all intermedi-
ate skyline results as is done in [37].

Definition 1 Let pmd be the point that has the largest dom-
inating region among the data points on SQ-Starter. The
greedy skyline search space is the set of all data points that are
not dominated by pmd. It is the union of d hyper-cubic search
ranges (S R), each of whose boundary is limited only by one
coordinate of pmd along one axis, such as {[0,1], . . . , [0, ai ),
. . . , [0, 1]}.

We define a dominated node as follows:

Definition 2 A node is dominated (and should be pruned)
i.f.f. the single ideal point with the best value in each dimen-
sion within its ranges, denoted as pbest, is dominated by pmd.

For the example query SQ, the shadowed part in Fig. 2
indicates its skyline search space. Here, the high dominating
point pmd is stored at the SQ-Starter node H . Dominated
nodes are B, C , D, and F .

Now we prove we can find the correct answers by visiting
only the non-dominated (unpruned) nodes inside the skyline
search space. Without loss of generality, we will formalize
the proofs for the situation where the query requires minimal
values on all dimensions.

Lemma 1 All nodes outside the skyline search space are
dominated nodes.

1 Note that, through the load balancing process, we can always
guarantee that the SQ-Starter node should contain data for computation.

Proof Since the data space outside the greedy skyline search
space (i.e. {(a1, 1], (a2, 1], . . . , (ad , 1])}) has the worse val-
ues in all dimensions than pmd, pbest of any node within this
space must be dominated by pmd. Hence, any node in this
space is dominated by pmd.

Lemma 2 Any dominated node cannot contain skyline
points.

Proof Given any dominated node, any of its data points must
have at least one inferior attribute value compared to pbest.
Since pbest is dominated by pmd, any data point of the node
is dominated by pmd, and cannot be a skyline point.

Lemma 3 Any final skyline points cannot be dominated by
any points of the dominated nodes.

Proof For the sake of brevity, let us consider, w.l.o.g.,
a two dimensional space and SQ = {‘Min′, ‘Min′}. Sup-
pose ps(s1, s2) is a skyline point and is dominated by a
point pd(v1, v2) on a certain dominated node, then we have
s1 ≥ v1, s2 ≥ v2. According to Definition 2, pd is dominated
by pmd: v1 ≥ a1, v2 ≥ a2. Thus, we have s1 ≥ a1, s2 ≥ a2,
meaning ps is dominated by pmd and cannot appear as a
final skyline point. This contradicts with the assumption, so
ps cannot be dominated by pd .

Based on the above lemmas, we draw the following con-
clusion:

Theorem 1 The non-dominated (unpruned) nodes in the
greedy skyline search space constitute the complete skyline
set and only the skyline set.

In general, the algorithm for GSS is executed in two
phases. At first, the system looks up the SQ-Starter node.
When the SQ-Starter node is found, that node computes the
high dominating point from which the greedy search region
is formed. The SQ-Starter node then routes the query to the
nodes covering the search region. These nodes compute their
local skyline points, refine the skyline search space and return
the result to the query initiator. At the end of the process, the
query initiator computes global skyline points from the local
skylines points which it has received.

3.2.2 Relaxed Skyline search

Although GSS prunes the search space as much as possible,
it is necessary to find the SQ-Starter node in the first phase
before actually executing the skyline query in the second
phase. To optimize the query response time, we introduce
the second method, Relaxed Skyline Search (RSS) method,
which speeds up the search process by relaxing the bound-
aries of the search space of GSS. RSS is based on the obser-
vation that most of the time, the greedy search space involves
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Fig. 3 Relaxed Search space

skyline border nodes, which are at the border of the skyline
search space (we call them SQ-Border nodes).2 As a result,
we can directly search skylines at the SQ-Border nodes to
save look up time, since SQ-Border nodes can be targeted
directly from the skyline query. For example, in Fig. 3, if
SQ = {‘Min′, ‘Min′} is used, A, H , E , and G are the bor-
der nodes while if SQ = {‘Max ′, ‘Max ′} is used, the border
nodes are A, B, C , F and G. Now, we define the relaxed sky-
line search space as follows.

Definition 3 The relaxed skyline search space is the union
of the regions covered by the border nodes and the greedy
skyline search space.

From this definition, it is clear that the relaxed skyline
search space covers the greedy skyline search space, and
hence from Theorem 1, we can infer that the relaxed skyline
search space returns the complete skyline set and only the
skyline set.

In general, in RSS, instead of finding the pmd first and
pruning the search space from that point as in GSS, we can
find all SQ-Border nodes in parallel. These nodes process
the query locally to find their local skyline points to return
to the query initiator. Upon receiving results from the border
nodes, the query initiator can compute the greedy skyline
search space (since the SQ-Starter must also be a border
node) and the regions covered by the border nodes. Two cases
can happen here.

In the first case, the regions covered by the border nodes
also cover the greedy search space. In this case, the query
initiator simply computes the final answer from the skyline
points that were returned in the previous step. For example,
assume that we have a skyline query SQ = {‘Min′, ‘Min′} in
a two dimensional space as in Fig. 3. The system first finds
nodes A, H , E , G since they are the border nodes. Since
regions covered by these nodes also cover the greedy search

2 Note that, this statement holds true whenever pmd is not situated in
the border of any dimension.

Fig. 4 Relaxed search space with additional steps

region, the query initiator, upon receiving results from A, H ,
E , G, can compute the final set of skyline points. From this
example, we can see that this method also expands the same
number of nodes as the previous method. However, this only
incurs S steps while the previous method incurred 2S steps
for processing the query. This is because in this case, this
method takes a maximum of S steps to find border nodes
to process query and the process stops after that. On the
other hand, the previous method required S steps to find the
SQ-Starter node in the first phase and S steps to find other
nodes in the search space in the second phase. Nevertheless,
this method may return additional false skyline points, which
are pruned later at the query initiator.

In the second case, the regions covered by the border nodes
do not cover the greedy search space. Therefore, the system
needs additional steps for processing the query. However, this
does not take as many steps as in the previous method, where
only the SQ-Starter is known after the first phase. Since these
additional nodes, which need to process the skyline query, are
all adjacent nodes of the border nodes, it takes only a number
of k steps for further processing, where k � S. Consider the
example shown in Fig. 4. There, in addition to processing
the skyline query SQ at the border nodes A, H , E , and G,
we also need to process the query at node I since the regions
covered by the border nodes do not totally cover the greedy
search space and the greedy skyline search space intersects
with the region covered by I . However, only one additional
step is needed since I is an adjacent node of a known node
E . Furthermore, node I only needs to search skyline points
in the shaded region bounded by the greedy search space.
After this step, the process stops since all regions covered by
A, H , E , G, and I have already covered the greedy skyline
search space.

In conclusion, the overall relaxed skyline search also con-
sists of two phases. In the first phase, the system searches
for SQ-Border nodes. These nodes compute and return local
skyline results to the query initiator. The first phase ends
when the query initiator receives results from all SQ-Border
nodes. At this time, the query initiator computes the high
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dominating point and the greedy query search region to deter-
mine if additional regions need to be searched. If there are
additional search regions, the second phase starts in which the
system routes the query to the nodes covering these regions
via known border nodes. These nodes compute their local
skyline points and return the result to the query initiator.
When no further regions need to be searched, the query ini-
tiator computes the global result from received results and
the process terminates.

3.3 Query load-balancing manager

In our framework, we assume that the query load of a node
is proportional to the data load of that node.3 To balance the
load among nodes in the system, the following two steps are
adopted. First, the data space is partitioned based on query
load and node join/departure procedures are redesigned for
load balancing. Second, a novel mechanism is proposed for
sampling and dynamically balancing load during query proc-
essing. We start with the definition of query load.

Definition 4 The query load of a node is the sum of (1) the
number of data points retrieved from local data set to answer
a query and (2) the number of messages that are routed by
the node but which do not lead to executing a query locally.

3.3.1 Query load balanced partition

This section presents the first part of our query load bal-
ancing solution. We split load equally in data space parti-
tions and select the best candidates to share load during the
node join/departure process. We observe that allocating rela-
tively smaller space to the “hot” regions facilitates load bal-
ancing. Therefore, we partition the data space by dividing
a hyper-cubic region into two equally loaded sub-regions.
Correspondingly, when necessary, we combine two buddy
regions or the regions of adjacent nodes.

– Node join. We seek better query load balance during node
join by selecting a node with the heaviest load among
neighbor nodes to forward the join request. Additionally,
instead of contacting only one node, we let the new node
contact several nodes at different places and select the
heaviest loaded node among the contacted nodes to join.

– Node departure. When a node leaves, two cases are
considered. In the first case, if the departing node has
a neighbor whose load is light, that neighbor node takes
over the region of the departing node. On the other hand,
if all neighbor nodes of the departure node have heavy
load, the node tries to find a lightly loaded node L , which

3 Our load balancing technique can be used together with replication
techniques to avoid bottleneck at nodes holding popular items.

also has a lightly loaded neighbor node. Since there is a
neighbor node of L , whose load is also light, L can pass
the region it covers to that neighbor node and then take
over the position of the departing node.

3.3.2 Dynamic query load balancing

The load balancing process during query processing works
as follows. First, each node checks whether there is an imbal-
ance in load. If yes, a data migration process is triggered to
balance the load. To check the load imbalance, query loads
are either periodically gathered by each node from the neigh-
bor nodes in its routing tables and adjacent nodes or with
query load changing notification from these nodes. The load
imbalance is determined by the difference δ of the node’s
local load and sampled query loads. If δ is larger than a prede-
fined threshold σ , an imbalance is detected.4 However, load
sampled from the linked nodes may not reflect the global load
distribution. To compensate, we start random sampling when
the first step does not detect imbalance and yet local load is
heavier than the average of the gathered loads. Our random
sampling strategy is similar to [4]. A number of log N nodes
that are not linked to are sampled by sending probes that are
attached through a small length limit of routing hops (log N )
following an existing link randomly at each hop. The hop
where the probe terminates sends back its load and the load
data it has gathered directly.

Once the load imbalance is detected, load balancing can
be performed in two ways. First, the node can simply try to
balance its load with a neighbor node by repartitioning the
data space between itself and its left/right neighbor nodes to
make the query load on the neighboring nodes approximately
equal. In particular, if the node is heavily loaded, it passes
the extra data after data space repartition to a lightly loaded
neighbor node while if the node is lightly loaded, it steals the
extra data from a heavily loaded neighbor node. Second, if
the first attempt cannot balance the load, the node needs to
balance its load with a node from the sampling process. In this
case, if the node is a lightly loaded node, the heaviest loaded
node among sampled nodes is selected for the load balancing
process. This node is considered as a heavily loaded node.
On the other hand, if the node is a heavily loaded node, the
lightest loaded node among sampled nodes is selected as a
lightly loaded node for the load balancing process. To balance
the load, the lightly loaded node will force-leave its position
to rejoin next to the heavily loaded node.

3.4 Skyframe

To summarize, our general framework as described in Fig. 5,
comprises three components built on top of the basic over-

4 The imbalance ratio is computed according to [14].
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Fig. 5 The Skyframe

lay network. The first component contains supplementary
methods, which are used by the other two components, the
Query Processing Manager and the Query Load-Balancing
Manager. These two components contain concrete methods
for query processing and load balancing as discussed above.

There are not major differences to instantiate our frame-
work on different structured P2P networks, as long as that
overlay network has a way to represent a data region on
a node, and utilizes its underlying routing structure to (1)
forward the query to nodes in the search region once a sky-
line search region is defined and (2) look up the SQ-Starter
node for the Greedy Skyline Search or border nodes for the
Relaxed Skyline Search given a query.

In the following section, we will present the instantiation
of Skyframe on two typical structured P2P networks CAN
[29] and BATON [20].

4 Implementing Skyline query algorithms
and instantiating Skyframe

In this section, we discuss in more details the implementa-
tion of the algorithms and how to instantiate Skyframe on a
multi-dimensional indexing P2P structure (CAN [29]), and
a single-dimensional indexing P2P structure (BATON [20]).
We begin with a quick introduction to the original structure,
and then present the implementation issues of the skyline
query algorithms.

4.1 Implementation of the greedy Skyline search

The algorithm for GSS is illustrated in Algorithm 1. As pre-
sented in Sect. 3.2.1, in the first phase (p = 1), whenever
a node receives the query request, if it is not the SQ-Starter
node, it forwards the query towards the SQ-Starter node via
a neighbor node (lines 14–15). On the other hand, if the node
is the SQ-Starter node, it first computes local skyline points,

Algorithm 1 GSS(node n, query q, search_region sr, phase p)
Define: RT(n) routing table of node n
Define: Region(n) the region maintained by node n
1: if p = 1 then
2: if n is SQ-STARTER of q then
3: local_skyline_points = Compute_Skyline_Points
4: pmd = Compute_Pmd
5: SR = Compute_Search_Region
6: Partition SR into a disjoint set of subSRs for neighbor nodes in

RT(n)
7: for all nodes m in RT(n) do
8: if m is in charge of a subSR then
9: GSS(m, q, subSR, 2)
10: end if
11: end for
12: Return local_skyline_points, pmd, and the region the node is in

charge of to the query initiator.
13: else
14: x = a node in RT(n) nearer towards SQ-STARTER
15: GSS(x, q, null, 1)
16: end if
17: else {p = 2}
18: local_skyline_points = Compute_Skyline_Points
19: Return local_skyline_points and the region the node is in charge

of to the query initiator
20: if Region(n) � sr then
21: SR = sr \ Region(n)
22: Partition SR into a disjoint set of subSRs for neighbor nodes

in RT(n)
23: for all nodes m in RT(n) do
24: if m is in charge of a subSR then
25: GSS(m, q, subSR, 2)
26: end if
27: end for
28: end if
29: end if

calculates pmd from these points and determines the greedy
search region from pmd (lines 3–5). After that, the search
region is partitioned into sub search regions to forward to
neighbor nodes, which process the skyline query in the sec-
ond phase (lines 6–11). Finally, the node returns locally com-
puted skyline points, pmd, and the region the node is in charge
of, to the query initiator (line 12).

In the second phase (p = 2), whenever a node receives a
query, it also receives a search region that is determined by
the sender node. This node first computes the local skyline
points and returns them together with the region the node is
in charge of to the query initiator (lines 18–19). If the region
the node is in charge of does not cover the whole specified
search region, the node continues to partition the search space
into smaller search regions and forwards the query towards
the neighbor nodes corresponding to these subregions (lines
20–28).

When the query initiator receives all local skyline points
from the greedy search regions, it recomputes these skyline
points to get the final skyline set. Note that, in order to let the
query initiator know when all local skyline points are returned
to it, the SQ-Starter needs to return to the query initiator
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Algorithm 2 RSS(node n, query q, dimension d, search_
region sr, phase p)
Define: RT(n) routing table of node n
Define: Region(n) the region maintained by node n
Define: Border(q, d) the boundary of search region of query q at

dimension d
1: if p = 1 then
2: if n is QUERY INITIATOR then
3: for each dimension d in q do
4: x = a node in RT(n) nearer towards Border(q, d)
5: RSS(x, q, d, null, 1)
6: end for
7: else
8: if n is a Border Node at dimension d then
9: local_skyline_points = Compute_Skyline_Points
10: Return local_skyline_points and the region the node is in

charge of to the query initiator
11: for all neighbor Border Node nn at dimension d do
12: if nn does not exist in the search path from the QUERY

INITIATOR to n then
13: RSS(nn, q, d, null, 1)
14: end if
15: end for
16: else
17: x = a node in RT(n) nearer towards Border(q, d)
18: RSS(x, q, d, null, 1)
19: end if
20: end if
21: else {p = 2}
22: if n is not a Border Node then
23: local_skyline_points = Compute_Skyline_Points
24: Return local_skyline_points and the region the node is in charge

of to the query initiator
25: end if
26: if Region(n) � sr then
27: SR = sr\Region(n)
28: Partition SR into a disjoint set of subSRs for neighbor nodes

in RT(n)
29: for all nodes m in RT(n) do
30: if m is in charge of a subSR then
31: RSS(m, q, d, subSR, 2)
32: end if
33: end for
34: end if
35: end if

pmd so that the greedy search region can be determined at
the query initiator. Additionally, all nodes which return local
skyline points also send to the query initiator the region they
are in charge of. Another important point to note is that,
since sub search regions are disjoint regions and the query is
always forwarded via neighbor nodes, we can guarantee that
duplicate query messages are avoided in the system.

4.2 Implementation of the relaxed Skyline search

The algorithm for the relaxed skyline search is illustrated
in Algorithm 2. There are also two phases for this algo-
rithm. In the first phase, the query initiator creates a query
for each dimension of the skyline query in which each query

is responsible for finding a border node on one dimension
(parameter d) (lines 3–6). After that, when a node receives a
skyline query, if it is a border node of the specified dimension
d of the query, it computes local skyline points and returns
the result together with the region it is in charge of to the
query initiator (lines 9–10). Additionally, the node forwards
the query to neighbor border nodes on the specified dimen-
sion, which have not been visited in the search path from the
query initiator to the node (lines 11–15). On the other hand,
if the node receiving the query is not the border node, it con-
tinues to forward the query towards the search boundary of
the query on the specified dimension (lines 17–18). In this
way, the process of searching border nodes first starts at the
query initiator, then propagates through the most direct path
to the border nodes, which are perpendicular to the query
initiator at different dimensions, and finally propagates from
these first border nodes to the remaining border nodes.

When the query initiator receives local skyline points and
search regions from the border nodes, it checks to see if it has
received results from all border nodes or not by checking the
regions which have been searched. Once the query initiator
receives all results from the border nodes, it also knows the
SQ-Starter node, pmd and the greedy search region. There-
fore, the node can check to see if additional regions need
to be searched. The border nodes, whose zone is adjacent
to these additional search regions, are sent the query in the
second phase of this algorithm to help locate the nodes in
charge of the additional search regions. Finally, the system
behaves in a similar way to the previous algorithm, and the
process stops when no further nodes or search regions need
to be explored (lines 22–34).

4.3 Instantiating Skyframe on CAN

4.3.1 Background of CAN

CAN (Content Addressable Network) [29] is based on a
logical d-dimensional Cartesian coordinate space. Each data
record is mapped into a point in the coordinate space using
a hash function. Each node stores all the points in a distinct
zone for which it is responsible, and a routing table to all
the neighbors in the coordinate space. Two nodes are neigh-
bors if their coordinate spans overlap along d-1 dimensions
and abut along one dimension. To search data, the request is
forwarded through neighbor nodes towards the node whose
zone contains the data. When a new node joins the system,
it tries to find a node whose zone is large. That node then
gives half of its zone to the new node. When a node leaves
the system, if there is a neighbor node whose zone can be
merged with the zone of the departure node to produce a
valid single zone, then it is done. If not, the zone is handled
by the neighbor whose zone is the smallest among neighbor
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Fig. 6 A two dimensional space CAN system with 5 nodes

nodes’ zones. Figure 6 shows an example of a CAN system
with five nodes on a two dimensional space.

4.3.2 Implementing Skyline query algorithms on CAN

Using the coordinate space of CAN as the multi-dimensional
data space naturally, implementing the proposed skyline
query algorithms on CAN is quite straightforward accord-
ing to Algorithms 1 and 2.

Theorem 2 The maximum number of steps required to
answer a skyline query based on CAN is O(2 · d · N 1/d).

Proof In both solutions, the first phase takes maximum
O(d ·N 1/d) steps while the second phase requires maximum
O(d · N 1/d) steps for processing. Adding up these costs, it
is O(2 · d · N 1/d).

4.4 Instantiating Skyframe on BATON

Compared to a natural multi-dimensional indexing system
like CAN, the challenges in instantiating Skyframe on a
single-dimensional indexing P2P system like BATON [20]
are mainly about the representation of a data region: (1)
how to map data in a multi-dimensional space into a single-
dimensional space, and (2) how to adapt the algorithms to
process skyline queries on the single-dimensional space.
While the advantage in BATON compared to CAN is smaller
search hops to reach a target node for processing certain
search regions. This section introduces a solution for the chal-
lenges. In particular, we employ the Z-curve method to map
data in a multi-dimensional space to a single-dimensional
space. For query processing purposes, we number the data
region and record its split history. As a result, we can estimate
the target region number for supporting efficient search.

4.4.1 Background of BATON

BATON (BAlanced Tree Overlay Network) [20] is based on
a binary balanced tree structure in which each node of the tree
is maintained by a peer. The position of a node is defined by a

Fig. 7 BATON structure

(a)

(b)

Fig. 8 Mapping nodes on BATON

(level, number) pair, in which level starts from 0 at the root ,
and number starts from 1 at the leftmost node at each level.
Each tree node stores links to its parent, children, adjacent
nodes, and selected nodes at the distance of power of two on
its left/right side at the same level in left/right routing tables.
BATON maintains the tree structure balanced by forcing each
node to have both its left and right routing tables full before
it has a child node, which is crucial for effective routing. It
takes O(log N ) cost for joining/leaving of nodes and exact
search. An example of BATON structure is shown in Fig. 7.

4.4.2 Multi-dimensional data region mapping for search

We employ the Z-curve method to map the multi-dimensional
data space onto the one-dimensional BATON. Figure 8b
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describes the mapping of the data regions in Fig. 8a, in which
each tree node maintains a data region.

A data region is represented by the following meta data:
(1) Region number: a binary string RNum that identifies the
region and is consistent with the Z-order of the region, in
which the bit values of 0, 1 at certain bit locations indicate
the region is in a lower or upper part in the corresponding
space split. (2) Data range: pairs of Lower Bound (bottom
left point) and U pper Bound (top right point). (3) Split his-
tory: a list of entries of split value and dimension (Spli t Pos,
Spli t Dim). (4) Next partition dimension: a bit indicating the
next split dimension. An example for the region information
of node 6 is given in Fig. 8a.

Our search mechanism relies on the relationships of the
regions and the operations of region numbers. So the term
“region” not only represents a data partition held by a node,
but also can refer to a region superset that a search range
or target falls inside. Given a region m, let RNum(m) be
its region number, RNum(m).length be the number of bits
in RNum(m), and RNum(m)[i] be the i th bit of RNum(m)

(1 ≤ i ≤ RNum(m).length). We define the following region
operations.

Definition 5 (Region Succession, �) Region m “Succeeds”
n, or m � n, i.f.f. RNum(m)[b]= 1, RNum(n)[b] = 0 and
RNum(m)[i] = RNum(n)[i] for 1 ≤ i < b, 1 ≤ b ≤
min(RNum(m).length, RNum(n).length). The “precedes”
or ≺ relationship is defined similarly.

Definition 6 (Region Cover, ⊇) Region m “Covers” n, or
m is the superset of n, or m ⊇ n, i.f.f. RNum(m).length ≤
RNum(n).length and RNum(m)[i] = RNum(n)[i] for 1 ≤
i ≤ RNum(m).length. The “isCovered” or ⊆ relationship is
defined in the same way.

To route a query on the mapped BATON, a node delimits
the region of the searched target by computing its region
number based on local split history, and then passes the query
to a linked node whose region is covered by, or is nearest to,
the delimited region. Algorithm 3 describes the process of
computing the target region number. By “estimation”, we
mean we can only compute the region number of a superset
of the target region. The accuracy depends on how many

Algorithm 3 estimate_num(node n, target p, bit b)

1: if (Region(p) ⊇ Region(n)) then
2: for b to RNum(n).length do
3: if (p[b%d] ∈ HistoryRange(n)[b]) then
4: RNum(p)[b] ← RNum(n)[b]
5: else
6: RNum(p)[b] ← 1− RNum(n)[b]
7: break
8: end if
9: end for
10: end if

Fig. 9 Routing process

times the searched point p falls in the same range with local
region after a history split (lines 3–4).

For example, suppose node 3 wants to locate a point in
node 8 as shown in Fig. 8a. Node 3 first computes the target
point’s region number as 0, because it is in the lower part
in the first space split on the x-axis. Then node 3 routes the
query to its nearest left neighbor node 2 whose region the
delimited target region covers. The same process is executed
on node 2 and node 4 subsequently until the query is routed
to the target node 8 as illustrated in Fig. 9. The maximum
number of routing hops is approximately the number of bits
in the accurate region number of the searched target. For the
uniformly distributed loads and corresponding equal space
partitions, the average routing path length is O(log N ).

4.4.3 Implementing Skyline query algorithms on BATON

Implementing the proposed skyline query algorithms on
BATON needs to take care of two subtle aspects: partitioning
a search region S R and routing a query, both of which are
based on the above mapping mechanism.

The partitioning of an S R into subS Rs is based on the his-
tory ranges which are stored in local split history. By assign-
ing each subS R a region number, we can compare its position
with the regions of the linked nodes to decide outward query
forwarding. This procedure is detailed in Algorithm 4. Sim-
ilar to Algorithm 3, we scan the split history sequentially
(line 1), compute the next unknown bit of the region num-
ber for S R (line 3), and partition S R into two subS Rs on
each history split position not exceeding S R (lines 4–8). The
computing stops once the current node cannot partition S R
further. This happens when the updated S R falls out of a
certain history range of the current node (lines 10–11).

For example, as for the search space of SQ, after sub-
tracting the range of SQ-Starter as shown in Fig. 10a, we
refine the remaining part S R into a single S R estimated as
01, for it falls out of the history range of region 8 in the sec-
ond time split. The right part S R is partitioned into two parts
upon the first space split: the one overlapping region 1 and
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Algorithm 4 partition(node n, range S R)

Define: subSRSet disjoint sub search range set of SR
1: for b from RNum(SR).length to RNum(n).length do
2: if (SR ⊆ HistoryRange(n)[b]) then
3: RNum(SR)[b] ← RNum(n)[b]
4: if (HistoryRange(n)[b] is lower part) then
5: UpperBound(SR)[b] ← SplitPos(n)[b]
6: else
7: LowerBound(SR)[b] ← SplitPos(n)[b]
8: end if
9: Add SR’s buddy subSR to subSRSet
10: else
11: RNum(SR)[b] ← 1− RNum(n)[b]
12: break
13: end if
14: end for

(a) (b)

(d)(c)

Fig. 10 Skyline query solving process

region 5 is assigned an estimated region number 1, and the
one overlapping region 4 is estimated as 001.

Routing a query associated with a search region on
BATON is different from that on CAN because of the tree
structure. As described in Algorithm 5, each subS R is for-
warded to a non-dominated neighbor, child or adjacent node
whose region is covered by subS R (lines 7–11 in
Algorithm 5). If such a node is not found, the subS R is
forwarded to the farthest neighbor in the case it succeeds
(precedes) the rightmost (leftmost) neighbor (lines 13–14),
or just passed to the adjacent node (line 16). Skyline search
at each of the next hops (line 21) is parallelized.

For the example of answering SQ, in the first step
(Fig. 10a), we promote subS R estimated as 001 to node

Algorithm 5 GSS (node n, query SQ, search_range SR)
Define: RRT(n) right routing table of node n
Define: RChild(n) right child of node n
Define: RAdj(n) right adjacent of n
Define: subSRSet disjoint search range set of SQ
Define: Dominated(m) if node m is dominated by pmd
1: if (Range(n)

⋂
SR �= ∅) then

2: Compute local skyline not dominated by pmd and report to
SQ-Starter

3: SR← Range(SR)− Range(n)

4: end if
5: subSRSet ← partition(n, SR)

6: for all sub-range subSR in subSRSet do
7: if (LowerBound(subSR) > UpperBound(n)) then
8: m ← NodeWhoseRegionCoveredBy

(Region(subSR)) in RRT(n)

9: if ((m not exist or Dominated(m)) and
(RChild(n) not processed subSR) and
(Region(subSR) ⊇ Region(RChild(n)))) then

10: m ← RChild(n)

11: end if
12: if ((m not exist || Dominated(m)) and

(RAdj(n) not processed subSR) and
(Region(subSR) ⊇ Region(RAdj(n)))) then

13: m ← RAdj(n)

14: end if
15: if (m not exist || Dominated(m)) then
16: if (Region(subSR) �

Region(FarthestNodeInRRT(n))) then
17: m ← FarthestNodeInRRT(n)

18: else
19: m ← RAdj(n)

20: end if
21: end if
22: Map m to subSR in subSRSet
23: else
24: // A similar process executes towards the left
25: end if
26: end for
27: for all (m, subSR) in subSRSet do
28: GSS(m, SQ, subSR)

29: end for

4 that can fully resolve it, pass subS R 01 to the covering
right neighbor node 10 (line 9), and also send subS R 1 to
the rightmost neighbor node 10 for further forwarding (line
14). In the second step shown in Fig. 10b, node 10 refines
subS R 01 to subS R 0100(line 3), then promotes it to the left
adjacent node 2 who can fully resolve it, and passes subS R
1 to the right adjacent node 6 (line 16). Figure 10c illustrates
the skyline search space after local processing of node 2. The
only remaining subS R 1 is then forwarded to the covering
right neighbor node 5 (line 9), which solves the part 101 and
sends the updated subS R to its left adjacent node 1. From
Fig. 10d, we can see node 1 is the last hop for processing
subS R 1. Figure 11 demonstrates the corresponding process
of query forwarding.

Theorem 3 Skyframe based on BATON answers a skyline
query in O((1 + 2d(1 − 1/

d
√

N )) log N ) steps for uniform
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Fig. 11 Skyline query

load distribution, and O((1 + (m + d)/2)m) steps in the
worst case.

Proof The total number of steps for both solutions consists of
the routing hops of locating a SQ-Starter/SQ-Border in phase
1 and processing an S R in phase 2. Let m be the number of
bits in the region number of the farthest region from SQ-
Starter. Then, phase 1 takes O(log N ) hops for uniform load
distribution and O(m) in the worst case. For phase 2, let’s
consider an S R whose boundary is limited by the coordinate
of pmd on dimension i . The number of split history entries for
dimension i is around |m/d|, so the number of the partitioned
subS R is |m/d|, and the known number of bits in the region
number of subS R decreases by d each time when a subS R
falls out of the history range of SQ-Starter. Since the maxi-
mum number of hops to solve a subS R is the number of bits in
its region number, the maximum number of hops to process
an S R is the arithmetic progression of the former, namely
O(d + 2d + · · · + |m/d|d) and asymptotically O(m(1 +
m/d)/2). In uniform load distribution, the query range is
always partitioned in halves, so the cost for processing a
subS R always reduces in halves. Since the average routing
path length to locate the farthest region that subS R overlaps
is O(log N ), the average number of steps for processing

S R is O(log N + 1
2 log N + · · · + 1

2
log N/d

log N ), namely
O(2(1 − 1/

d
√

N ) log N ). By adding the number of steps in
phase 1 and phase 2 we get O((1+ 2d(1− 1/

d
√

N )) log N )

for uniform load distribution and O((1+ (m + d)/2)m) for
the worst case.

5 Experiment evaluation

We evaluate our proposed framework by instantiating it on
both CAN [29] and BATON [20]. We compare our systems
to the distributed skyline query algorithm DSL [37], which is
implemented on CAN, in terms of network size, dimension-
ality, cardinality and query load balance. The performance
measures are the number of nodes involved in the search
process, the number of skyline search messages, the number

Table 1 Experimental settings

Parameter Domain Default

Number of peers 27, . . . , 210, . . . , 214 210

Dimensionality 2, 3, 4, 5 2

Cardinality (210, . . . , 214)× 100 214 × 100

of search hops, the amount of consumed bandwidth measured
by the number of points transmitted in a query following the
definition in [37], and the query load distribution.

We conduct simulation experiments on a Linux box with
Intel Xeon 3.0 GHz processor and 2 GB of RAM. The res-
ponse time is tested in real deployment of 80 peers on a
cluster consisting of 20 computing nodes, each of which has
an Intel Xeon 3.0 GHz processor and 4 GB of RAM. We use
three kinds of datasets: one is a real dataset of NBA play-
ers’ season statistics from 1949 to 2003 containing 19,000
records downloaded from [18] that represents a typical cor-
related data distribution in practice. The other two are syn-
thetic independent and synthetic anti-correlated datasets with
a maximal data size of 1,638,400 multi-dimensional points.
Note that (1) since many real datasets are correlated in prac-
tice and the experimental results of them are similar to those
of synthetic correlated datasets, we just use this real NBA
dataset instead of a synthetic correlated dataset in our exper-
iments to demonstrate that our methods would work as well
in practice as in synthetic data environment; (2) for the syn-
thetic datasets, we show only one set of results in cases where
both exhibit similar performance. The experimental settings
are summarized in Table 1. Each experiment is repeated 10
times and the average is taken. Each test issues 1,000 sky-
line queries, which have the same dimensionality as the data
space, and the average cost is taken. Each query prefers a
smaller or larger value randomly in each interested dimen-
sion. It starts from a random node and asks for the answers
in the whole data space.

5.1 Effects of network size

We first study the effects of network size using both
independent and anti-correlated datasets. Figures 12 and 13,
respectively, illustrate the results on the independent and anti-
correlated datasets. Note that in Fig. 12a, b, the y-axis is
displayed in log-scale. In these figures, Greedy-Can (Baton)
and Relaxed-Can (Baton), respectively, represent the Greedy
Skyline Search (GSS) and Relaxed Skyline Search (RSS)
algorithms on CAN (BATON). The results on both datasets
show that in both systems, our algorithms outperform DSL in
all aspects. That is because our algorithms prune the search
space more efficiently than DSL does (DSL only prunes
the search space naively using the top right corner of the
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Fig. 12 Effect of network size
on independent dataset

(a) (b)

(d)(c)

Fig. 13 Effect of network size
on anti-correlated dataset

(a) (b)

(d)(c)

SQ-Starter node). In all testing aspects, our algorithms only
incur approximately half of the cost required by DSL. In par-
ticular, since the number of skyline points in the independent
dataset is much less than those in the anti-correlated dataset,
our algorithms can significantly prune the search space to
bring a big improvement in the number of involved nodes
and the number of search messages used in query processing
compared to DSL (see Fig. 12a, b). On the other hand, since
DSL does not define the search space at the SQ-Starter node,
skyline points have to be carried in the query for pruning at

subsequence nodes. As a result, in the anti-correlated dataset,
since the number of skyline points is enormous, DSL con-
sumes much more bandwidth compared to our algorithms
(Fig. 13d).

Making a comparison between our algorithms, GSS and
RSS, we observe that in both CAN and BATON, RSS has a
faster query response time than GSS (the response time in
this case is simply measured by the number of search hops),
while GSS is better than the RSS in all remaining aspects.
This is because, in order to achieve a faster query response
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Fig. 14 Effect of
dimensionality on
anti-correlated dataset

(a) (b)

(c) (d)

time, RSS parallelizes the search process in the first phase
by replacing the process of finding the SQ-Starter node with
independent processes at the border nodes. This processing
strategy makes skyline queries affect a slightly larger region.
As a result, RSS produces more false skyline points, which
consumes more bandwidth, than GSS does. Additionally, by
parallelizing the border node search process, a small number
of additional nodes are involved. This causes RSS to have
a slightly higher number of involved nodes and search mes-
sages. Nevertheless, these extra costs are insignificant com-
pared to the overall costs because the number of involved
nodes and the number of search messages required for query
processing mainly depend on the number of nodes involved
in the search region, which is approximately equal in most
of cases in both methods even though search regions in these
methods may slightly differ.

5.2 Effects of dimensionality

We investigate the effects of dimensionality by fixing the
number of peers and the cardinality while varying the dimen-
sionality from 2 to 5 [25]. The results are displayed in Fig. 14.
Figure 14a shows that the number of nodes involved in the
DSL method increases drastically with the increase of the
dimensionality. In particular, the system visits more than
three quarters of nodes for a dimensionality larger than 4, and
incurs more than 10,000 messages in 5 dimensions (Fig. 14b).
In contrast, the performance of our algorithms remains steady
and is far better than DSL in larger dimensions, owing to its
effective controlling and partitioning of the skyline search
space. It is interesting to realize that when our algorithms are

instantiated on CAN, they inherit a special property of CAN:
the reduction of query search hops when the dimensionality
of the space increases. This is due to the fact that, when the
dimensionality increases, the routing path length on CAN
decreases. Note that even though DSL is also implemented
on CAN, it seems that this algorithm does not benefit from
the reducing of query search hops.

5.3 Effects of data size

In this experiment, we would like to study the effects of data
size. We fix the other parameters and change the total car-
dinality from 1,024,00 to 1,638,400, in which the average
data size per node increases from 100 to 1,600. Figure 15
witnesses that all systems are not very sensitive to data size,
but our algorithms are more stable than DSL. Furthermore,
except consumed bandwidth cost, we see all other costs taken
by our systems decline a little bit in the larger data. This is
because the average load per node is more likely to be dis-
tributed uniformly when increasing data size without chang-
ing the number of queries, in which case it is possible to
get the skyline answers by visiting fewer nodes. The con-
sumed bandwidth cost does not decrease as other costs sim-
ply because with more data points, there are more skyline
points, which need to be transferred in the search results.

5.4 Results on the real dataset

We now test the three systems on the real dataset of NBA
players’s season statistic from 1949 to 2003 distributed in
a small network of 128 peers. For this dataset, we identify
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Fig. 15 Effect of
anti-correlated data size

(a) (b)

(d)(c)

Table 2 Results on the real
NBA dataset Metrics DSL Greedy-Baton Relaxed-Baton Greedy-Can Relaxed-Can

Average involved nodes 110 84 81 88 79

Average search messages 2491 272 313 265 297

Average search hops 78 51 41 45 36

Average bandwidth per node 204 13 23 14 25

6 attributes, such as playoff, gained points, assists, etc. The
conditions of all skyline queries are set the same according to
the real meanings of these attributes. The comparison results
are summarized in Table 2. The results confirm again that
our algorithms are better than DSL in all aspects. Note that
here we see the large portion of involved nodes in the result.
This is caused by (1) the large dimensionality specified in
skyline query and (2) frequent invocation of the query load
balancing process which aims to assuage the high load skew
caused by large amounts of the same skyline queries.

5.5 Query load balancing

To evaluate the different effects of load balanced partition-
ing and the dynamic balancing discussed in Sect. 3.3, we
compare our systems with both load balancing mechanisms
enabled (Scheme-1) and dynamic balancing disabled
(Scheme-2) to DSL on default settings. We only demonstrate
results on the independent dataset because query load is eas-
ier to be balanced on the anti-correlated dataset. Furthermore,
to make figures clear, we only show results of the GSS on
BATON and RSS on CAN since the effects are similar to the
others. The result is shown in Fig. 16b in which GB1, GB2,
RC1, RC2, respectively, represent GSS on BATON using

scheme 1 and 2 and RSS on CAN using scheme 1 and 2.
The results show that query load in DSL has a larger vari-
ance than in any of the other systems. Moreover, some of
its nodes hold a very small number of data points and have
no query visiting. The advantage of our dynamic balanc-
ing process may not be clearly shown in this figure because
the figure only displays the results at the end of the experi-
ment. However, during the experiment, the advantage of the
dynamic load balancing is shown by two factors. On the one
hand, the sorted load distribution of nodes in the system with
dynamic load balancing has not changed as much as that of
nodes in the system without dynamic load balancing. On the
other hand, the maximum imbalance load ratio, which is the
load ratio between the heaviest loaded node and the lightest
loaded node in the system, is much smaller in the system
with dynamic load balancing than in the system without it.

5.6 Response time

We evaluate the progressiveness and the response time of
our algorithms in real deployment using both independent
and anti-correlated datasets. Figure 17 presents the returning
time of executing a three-dimensional skyline queries in these
two datasets. While the systems return all answers within 1
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Fig. 16 Effect of load
balancing on independent
dataset

(a) (b)

Fig. 17 Response time

(a) (b)

Table 3 Time average and variance

Dimension= 2 Dimension= 3 Dimension= 4 Dimension= 5

GB RB GC RC GB RB GC RC GB RB GC RC GB RB GC RC

D1 Average 0.43 0.33 0.51 0.35 0.58 0.40 0.53 0.36 0.63 0.51 0.52 0.36 1.04 0.80 0.54 0.40

Variance 0.17 0.24 0.25 0.22 0.19 0.21 0.27 0.18 0.24 0.29 0.25 0.22 0.32 0.26 0.22 0.28

D2 Average 2.17 1.82 2.19 1.68 3.81 2.87 3.36 2.53 4.53 3.12 4.18 2.97 5.67 3.84 5.53 3.58

Variance 0.52 0.47 0.72 0.62 0.48 0.69 0.63 0.71 0.93 0.73 0.81 0.64 1.67 1.08 1.25 0.97

second for the independent dataset, it takes a longer time
(3–4 s) to return all answers for the anti-correlated dataset
simply because this dataset has more skyline points than the
previous dataset. In particular, the systems return the first 100
results at around 0.5 s (for the independent dataset) and 0.7 s
(for the anti-correlated datasets). Table 3 further shows the
total response time varying with dimensionality, in which the
response time generally increases with the size of skyline in
both datasets. In this table, D1 and D2 respectively represent
the independent dataset and anti-correlated dataset; GB, RB,
GC and RC respectively represent GSS on BATON, RSS on
BATON, GSS on CAN and RSS on CAN; Time is measured
in seconds.

6 Conclusion

In this paper, we have addressed the efficient processing of
traditional centralized skyline querying on P2P networks by
introducing Skyframe, a framework consisting of two meth-
ods for efficient and effective skyline query processing. The

first method uses the high dominating point to prune the
search space to achieve a low cost for network communica-
tion. The second method, on the other hand, processes skyline
queries in parallel at the border nodes to increase the query
processing speed. Besides the two query processing methods,
we have also devised approaches for effective query load bal-
ancing in the framework. We have presented the instantiation
of the Skyframe framework on both CAN [29] and BATON
[20]. In particular, for the implementation using BATON we
have proposed a method to map the multi-dimensional space
into one-dimensional space. By numbering the data regions
and keeping their split histories, we can efficiently infer the
target node of the search region. The correctness and effec-
tiveness of our proposed framework were formally proved
and validated by experiments.
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