

DH2323 DGI15

INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION

MATHEMATICS

For Computer Graphics

Christopher Peters
HPCViz, KTH Royal Institute of Technology,
Sweden

chpeters@kth.se

http://kth.academia.edu/ChristopherEdwardPeters

Broad Area

- We will just 'scratch the surface' today
- Example of a good reference text book:

Mathematics for 3D Game Programming and Computer Graphics (3rd ed.) Eric Lengyel

There are quite a few others...

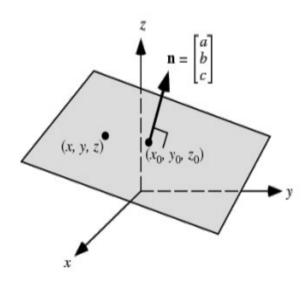
What is a 'Light Ray'?

- Concept
 - Idealised narrow beam of light (optics)
 - Discrete, particles
- Geometrically speaking:
 - Similar in some ways to a straight line
 - Has a starting point and direction
 - But extends infinitely in defined direction
- Mathematically:

$$\mathbf{r}_0 = [x_0, y_0, z_0]^{\mathrm{T}}$$
 $\mathbf{r}_d = [x_d, y_d, z_d]^{\mathrm{T}}, ||\mathbf{r}_d|| = 1$
 $\mathbf{r}_t = \mathbf{r}_0 + t \cdot \mathbf{r}_d$
One degree-of-freedom

Ray-plane Intersection

- Plane defined as:
- Plane normal $\mathbf{n} = [a, b, c]$
- Unit normal $||n||_2 = 1$
- d offset to origin
- Equation $a \cdot x + b \cdot y + c \cdot z + d = 0$
- Two degrees-of-freedom



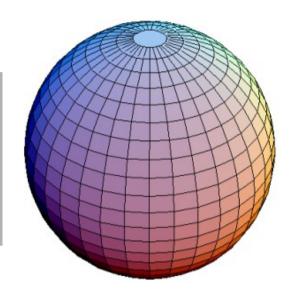
Intersection point:

$$\mathbf{p}_i = \mathbf{r}_0 - \frac{\mathbf{n}^{\mathrm{T}} \mathbf{r}_0 + d}{\mathbf{n}^{\mathrm{T}} \mathbf{r}_d} \cdot \mathbf{r}_d$$

Ray-sphere Intersection

- Sphere defined as:
- Center of sphere $\mathbf{x}_c = [x_c, y_c, z_c]^T$
- Radius r

•
$$(x-x_c)^2 + (y-y_c)^2 + (z-z_c)^2 = r^2$$



Intersections:

$$\mathbf{p}_i = -\mathbf{r}_d^{\mathrm{T}}(\mathbf{r}_0 - \mathbf{r}_c) \pm \sqrt{\mathbf{r}_d^{\mathrm{T}}(\mathbf{r}_0 - \mathbf{r})_c - (\mathbf{r}_0 - \mathbf{x}_c)^{\mathrm{T}}(\mathbf{r}_0 - \mathbf{x}_c) + \mathbf{r}^2}$$

Worked Example

(recommend to work this out later using a pen and paper)

Find the intersections, if any, between the Ray with $r_0 = (0,2,0)^T$, $r_d = (0,-1,0)^T$ and the Sphere with $x_0 = (0,0,0)^T$, r = 1

Apply the quadratic formula $t = -b +/- \sqrt{b^2-4ac}/(2a)$ to find two solutions, where:

$$a = r_d r_d$$

$$b = 2r_d \cdot (r_0 - x_c)$$

$$c = (r_0 - x_c) \cdot (r_0 - x_c) - r^2$$

The value of b²-4ac indicates how many roots the equation has, where negative number indicates no intersections between the ray and sphere, a zero indicates a single intersection on the edge of the sphere and a positive number indicates two intersections where the ray enters and exits the sphere. In this example, b²-4ac is positive indicating **two intersections**.

Apply formula; $r_a.r_dt^2+2r_d.(r_0-x_c)t+(r_0-x_c).(r_0-x_c)-r^2=0$

Entering the above value gives t2-4t+3=0

$$=> t = 3$$
 and $t = 1$

Recalling ray equation: r₀+t.r_d

t=1: (0,2,0)+(0,-1,0) = (0,1,0) ... first intersection point

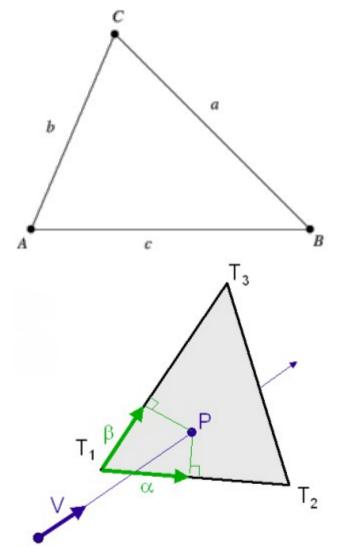
 $t=3: (0,2,0)+(0,-3,0) = (0,-1,0) \dots$ second intersection point

Ray-triangle Intersection

- Triangle defined as:
 - Three vertices

▶
$$\mathbf{t}_i = [x, y, z]^T$$
, $i = 1...3$

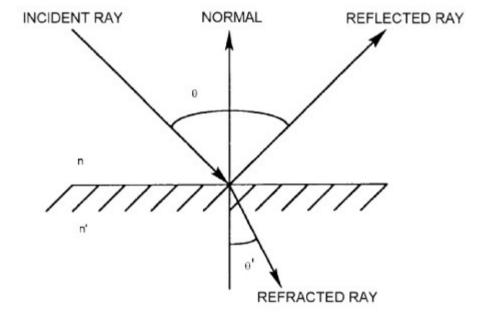
- Intersection:
 - 1. Check collision with plane
 - Check if inside triangle
 - \bullet 0 $\leq \alpha, \beta \leq$ 1
 - $\alpha + \beta \leq 1$



Surfaces

Must also consider rays hitting and bouncing off surfaces

- 1. Incoming ray hits surface
- 2. Divided into,
 - reflected component
 - refracted component



Nice Results

"Pebbles" by Jonathan Hunt

Basis and Coordinate Systems

In any scene, we need a way to be able to position and orientate points, vectors, objects, etc: We do this be defining a *basis*

The basis is defined by an o*rigin* and a number of *basis* vectors

Can think of the basis as a 'starting point'

We employ a Cartesian basis

The basis vectors are *mutually orthogonal* and *unit* length

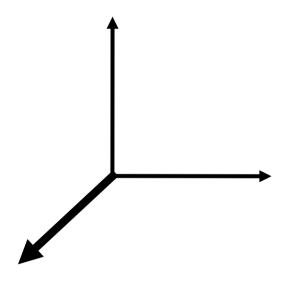
- Unit length: have a length of 1
- Mutually Orthogonal: each vector is at a right angle to the others

Basis vectors for 3 dimensions

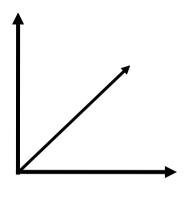
Named x,y and z

Position in *Cartesian coordinates:* tuple (x,y,z)

Coordinate Systems

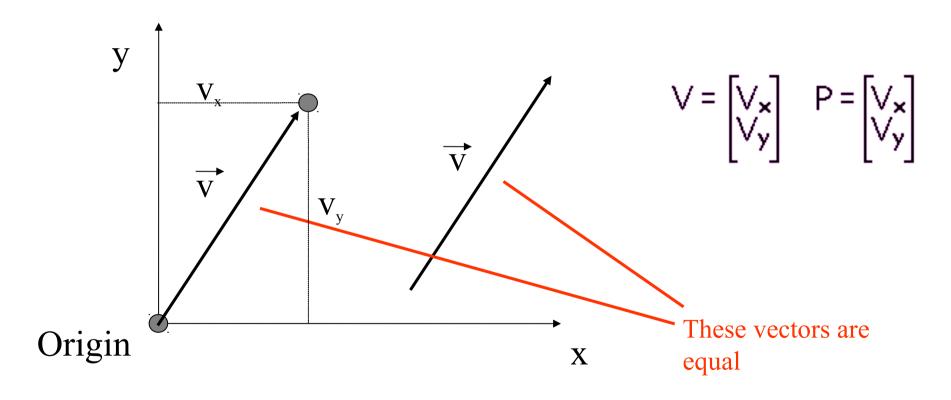


Right handed system Z comes out of the page



Left handed system Z goes into the page

Vectors are not the same as positions!



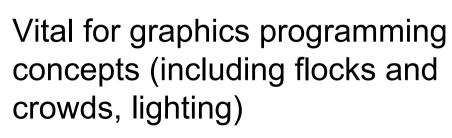
Here, x and y are our basis vectors

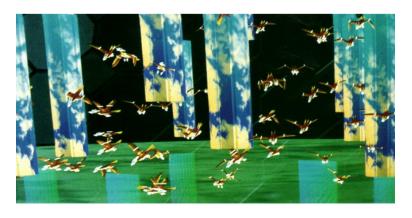
Vector Operations

Addition
Subtraction
Scaling
Magnitude
Normalisation
Dot Product
Cross Product

Fish, © Tu and Terzopoulos, 1994

Pedestrians, © Shao and Terzopoulos 2005





Boids, © Reynolds, 1987

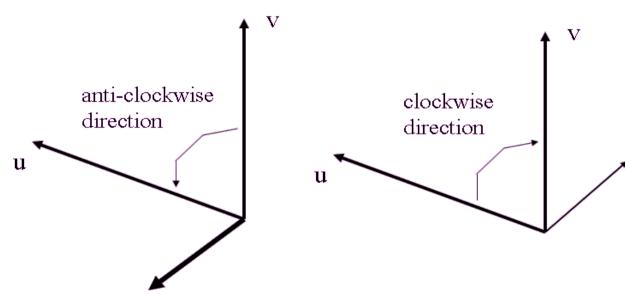
Cross Product

Calculated as:

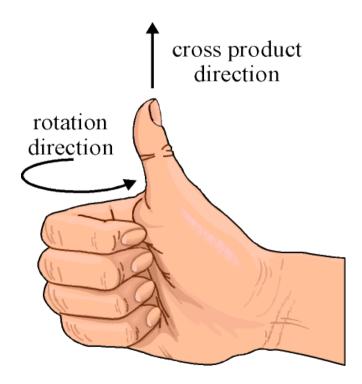
$$U \times V = \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} \times \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} U_2 V_3 - U_3 V_2 \\ U_3 V_1 - U_1 V_3 \\ U_1 V_2 - U_2 V_1 \end{bmatrix}$$

Uses the 'x' operator

Result of v x u is a vector, perpendicular to the plane defined by v and u



A handy way to remember...



Transformations

Allow us to move, orientate and change the primitives in our scene

Move, Rotate, Stretch, Squash, Shear

Represented as matrices:

"A matrix is a rectangular array of numbers. The numbers in the array are called the entries in the matrix"

Change of basis: transformation matrix allows us to transform a vector from one basis to another

Be careful: row vs. column format matrices!!

Row Vs. Column Format

Remember this?

$$\mathbf{r}_0 = [x_0, y_0, z_0]^{\mathrm{T}}$$
 $\mathbf{r}_d = [x_d, y_d, z_d]^{\mathrm{T}}, ||\mathbf{r}_d|| = 1$
 $\mathbf{r}_t = \mathbf{r}_0 + t \cdot \mathbf{r}_d$
One degree-of-freedom

Row Vs. Column Format

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \neq \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \quad \left(= \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^T \right)$$

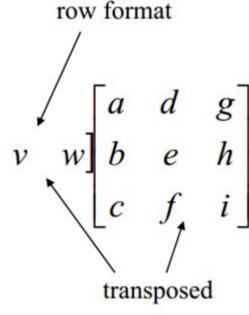
column format

$$\mathbf{M}\mathbf{v} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$\mathbf{v}^T \mathbf{M}^T = \begin{bmatrix} u & v & w \end{bmatrix} \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

$$\mathbf{v}^T \mathbf{M}^T = [u]$$

$$\mathbf{M}\mathbf{v} = (\mathbf{v}^T \mathbf{M}^T)^T$$



Transformations

Example:

Store a translation and a rotation in a matrix When we apply this matrix to an object, it will be translated and rotated as specified by the matrix

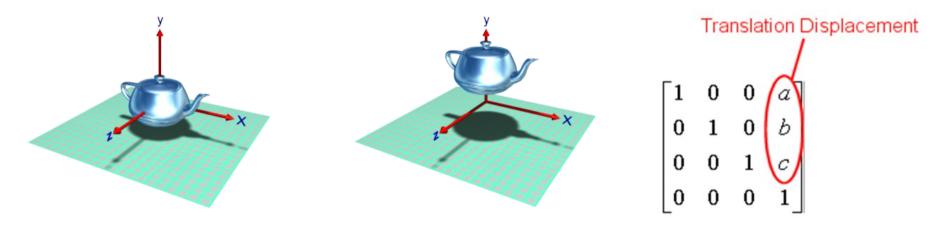
So:

Moving and orientating primitives is a matter of creating the proper matrices and applying them at the correct time

Translation

Think of translations as 'moving' without rotating Translation only applies to points

Doesn't apply to vectors, since vectors are just directions



These correspond to the displacements in the x, y and z directions

So 12th position is the translation in the x direction

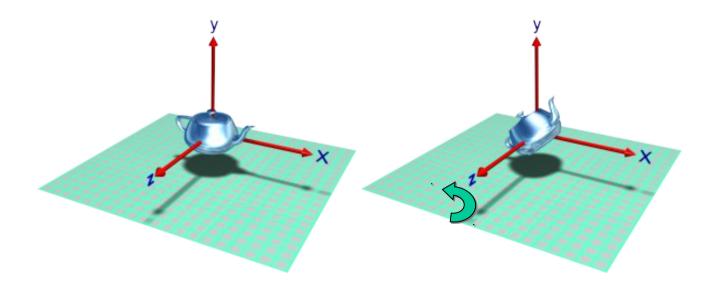
Rotation

Change the orientation of a primitive, without affecting its position

Rotation applies to both points and vectors

Rotating a vector will change its direction

Rotations are conducted anti-clockwise about the origin



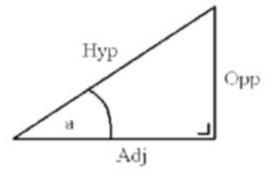
Rotation

Remember:

Sin a = Opp / Hyp

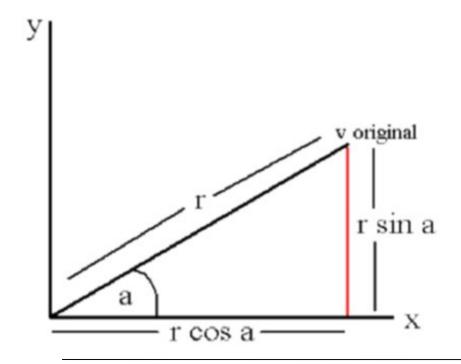
Cos a = Adj / Hyp

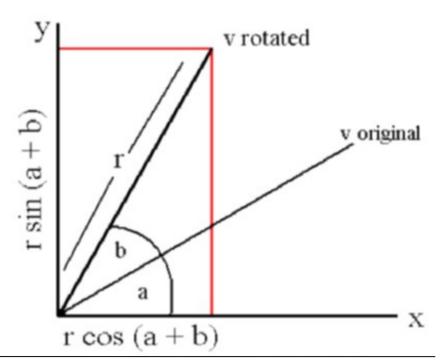
Tan a = Opp / Adj



original
$$v = \begin{bmatrix} r \cos a \\ r \sin a \end{bmatrix}$$

rotated v =
$$\left[\frac{r \cos (a+b)}{r \sin (a+b)} \right]$$





Rotation

Derivation:

Expanding (a + b) from log tables:

Rotated $x = r \cos a \cos b - r \sin a \sin b$

Rotated $y = r \cos a \sin b + r \sin a \cos b$

But:

Original $x = r \cos a$

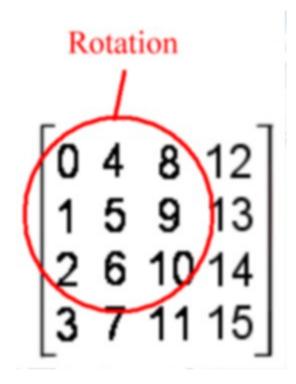
Original $y = r \sin a$

So:

Rotated x = original x cos b - original y sin b

Rotated y = original x sin b + original y cos b

Elements 0, 1, 2, 4, 5, 6, 8, 9, 10 define any rotations in our transformation matrix More on all this later...



The Rotation Matrix

Rotations around the: x-axis (Rx), y-axis (Ry) and z-axis (Rz)

$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{R}_{y} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{y} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

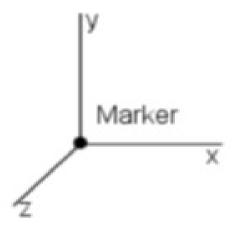
$$\mathbf{R}_{z} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Thinking about Transformations

- Transformation matrix is used for both the camera transformation and model transformation
 - Rotating a model in one direction is equivalent to rotating the camera in the opposite direction
 - Applying a translation along the x axis to this matrix could be interpreted as:
 - 1. Moving the scene to the right
 - 2. Moving the camera to the left
- Two ways of looking at transformations: grand, fixed coordinate system, and <u>local coordinate system</u>

Local Coordinate Marker

Helps us visualise how objects will be placed



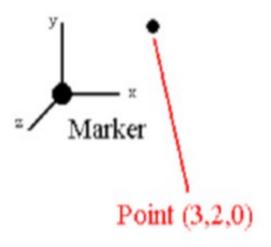
Imagine such a marker existing in 3d space:
Marker starts in the same position/orientation as the **worldspace** coordinate system origin/basis vectors
All transformations are applied to the marker

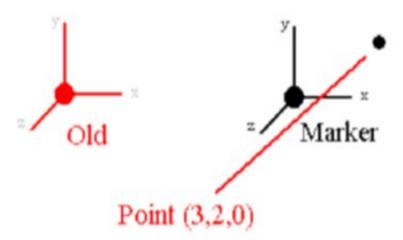
- Translate: we move this marker
- Rotate: we rotate the marker

Local Coordinate Marker

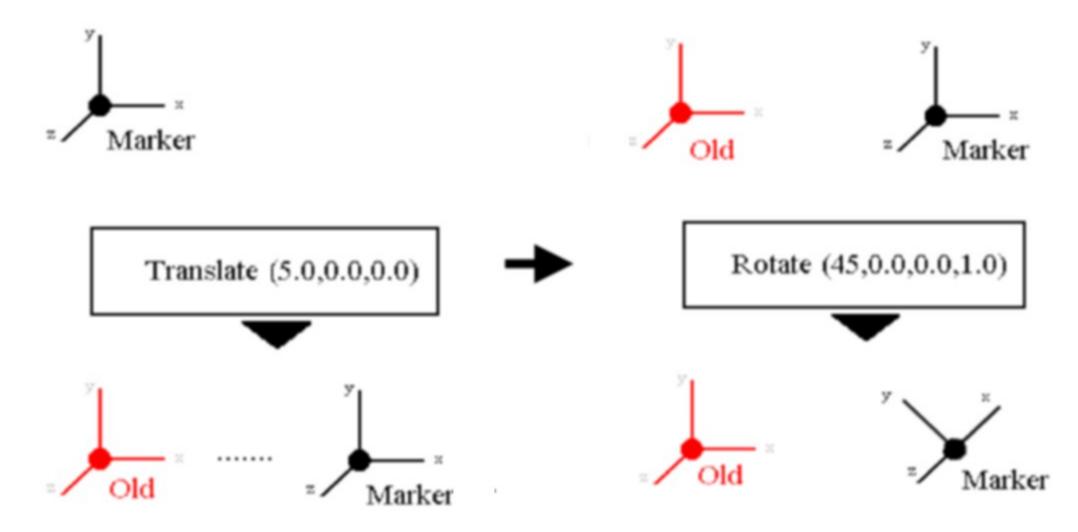
This shows the different between the world-space coordinates of a point before and after the model-view matrix has undergone a translation of 5,0,0

Before we Translate (5.0,0.0,0.0) After we Translate (5.0,0.0,0.0)





Local Coordinate Marker



A Note on Hierarchies

Tree of objects

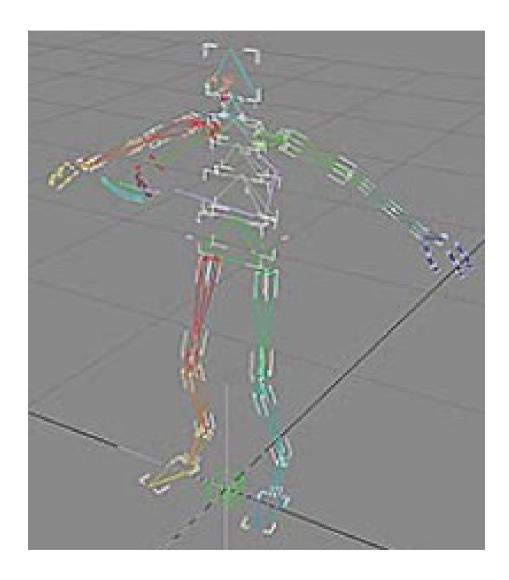
- The positions and orientations of objects further down the tree are dependent on those higher up
- Parent and child objects

Examples:

- A human arm
 - the position and orientation of the hand depends on the position and orientation of the elbow, which in turn depends on that of the shoulder, and so on...
- The Solar system
 - Solar bodies rotate about their own axes as well as orbiting around the Sun, which itself travels relative to our galaxy

A Note on Hierarchies

```
right_eyebrow
      right_eyelid
       right_mouth
      right_upper_lip
left collar
  left_shoulder
    left elbow
      left_low_arm
         joint19
           left_wrist1
                 left index1
                   left_index2
                     left index3
                left_ring1
                   left_ring2
                     left ring3
                left_thumb1
                   left_thumb2
                     left_thumb3
mesh16
right_collar
 right shoulder
    right_elbow
      right_low_arm
right_ullna
           mesh2
           mesh3
           mesh4
           mesh5
           mesh6
           mesh7
           mesh8
           R wrist
             right_index1
                right_index2
                  right_index3
              right_ring1
                right_ring2
              right_ring3
right_thumb1
                right_thumb2
                  right_thumb3
```



A Note on Hierarchies

How do we do this?

In order to position an object, the marker should first be:

- positioned at the world-space origin
- orientated to match the world-space basis vectors

Once the marker is in this position, any coordinates we give correspond to world-space coordinates

WS coordinates are relative to the 3D scene

Things are different in a hierarchy

Objects depend on another object for their position (parent object)

- These objects need to be placed relative to their parent objects' coordinates, rather than relative to the 3D scene
- In practice, applying a sequence of transformations

Links

OpenGL tutorials

More on matrices (with OpenGL and GLM source)

GLM

C++ maths library for graphics programming

Swift3D

Hierarchical animation example

Next lecture

- Lighting and Shading
- This week (15th April)
- 15:00 17:00 L1

- Lab support session
- Thursday 16th April
- 10:00 12:00 VIC Studio