
 TLS session resumption impact on HTTP performance 1 (12)
Åsa Pehrsson – asap@kth.se

1 Abstract
This report is written as part of the assignment given in the course 2G1305 Internetworking. The aim of the
assignment is by practical experience gain deeper knowledge within a chosen topic. The topic is investigate
the TLS session resumption impact of HTTP performance.

2 Introduction
Secured Socket Layer (SSL) and Transport Layer Security (TLS) are protocol used in the Internet for
securing communications. In this paper, we analyze the performance impact of HTTP terms of TLS session
resumption.

We begin with an overview of the HTTP and SSL/TLS protocols, then we present the findings from our tests,
and finish with some conclusions.

3 Transport Layer Security (TLS)
HTTP messages are in plain text, the increased use of HTTP for sensitive applications has required security
measures. SSL, and its successor TLS were designed to provide privacy over the Internet. They act as a
separate protocol, inserted between HTTP and TCP.

A TLS session is an association between a client and a server, and consists of two phases: the initial
handshake (using the handshake protocol) and the data transfer (using the application data protocol). During
the handshake phase, the client and server use a public-key encryption algorithm to determine secret-key
parameters. During the data transfer phase, both sides use the secret key to encrypt and decrypt successive
data transmissions. At any time during the transmission, both client and server can change ciphering
strategies (by using the change cipher spec protocol). The next figure shows the message flow for the full
TLS handshake.

Figure 1. Plain HTTP and HTTP over TLS protocol stacks

HTTP

TCP

IP

SSL/TLS

TCP

IP

HTTP

mailto:asap@kth.se

TLS session resumption impact on HTTP performance 2 (12)

The handshake protocol involves the following steps (the numbers within parenthesis corresponds to a
message in the figure above):

1. Exchange hello messages to agree on algorithms, exchange random values, and check for session
resumption. When a client first connects to a server it must send the ClientHello (1) with an cipher
suite list, a random number and optional session identifier. The server will respond with a
ServerHello(2) with the selected cipher suite list, a random number and session identifier that is
equal to the clients if the server accepts session resume.

2. Exchange the necessary cryptographic parameters to allow the client and server to agree on a pre-
master secret. If the server certificate message did not contain information to build a pre-master
secret, the ServerKeyExchange (4) message is sent. The ClientKeyExchange (8) message, carrying
the pre-master secret, is always sent.

3. Exchange certificates (3, 5, 7) and cryptographic information. If the agreed-upon key exchange
method is not an anonymous one, the server must send the ServerCertificaten (3) message. The
server have the option to authenticate the user by sending the CerificateRequest (5) message. If
client authentication is not used, the CerificateRequest (5), Certificate (7) and CertificateVerify (9)
messages are omitted.

4. The server finishes its contribution to the handshake phase by sending the ServerHelloDone
message.

The ability to resume a sessions is very useful, the time consuming negotiation of security parameters can be
omitted. A resumed session starts with the “abbreviated handshake”. See figure below (messages marked
with ** belongs to the change cipher spec protocol).

1 Hypertext Transfer Protocol (HTTP)
HTTP is a stateless application-level protocol. HTTP operates over TCP, the default port is 80. There are
two versions defined: 1.0 [2] and 1.1[3]. The protocol is based on a request/response paradigm. A client

Figure 3. Message flow for an abbreviated handshake

Client Server
1. ClientHello

2. ServerHello

5. ChangeCipherSpec**

6. Finished

3. ChangeCipherSpec**

4. Finished

Figure 2. Message Flow in a Full Handshake

Client Server
1. ClientHello

2. ServerHello

3. ServerCertificate

4. ServerKeyExchange

5. CertificateRequest

6. ServerHelloDone

7. ClientCertificate

8. ClientKeyExchange

9. CertificateVerify

10. ApplicationData

TLS session resumption impact on HTTP performance 3 (12)

establishes a connection with a server and sends a request to the server in the form of a protocol version,
request method and URI. The server responds with a status line, followed by a MIME-like message
containing server information, entity meta information, and possible body content.

Under version 1.0, the browser opens a new TCP connection to a server for every URL it fetches. If an HTML
document contains three unique in line graphics or pages (as the case when using frames), the browser will
open a total of four TCP connections: one for each image file, and one for the HTML document itself. Each
new TCP connection incurs a series of delays: the initial TCP handshake when the connection is opened and
another handshake when closing the connection. In addition, there's a slowdown at the beginning of each
connection as the TCP/IP protocol adjusts its transmission speed to match the available bandwidth (“slow
start”).

Version 1.1 addresses the TCP overhead issue by keeping the initial connection open for subsequent
requests. There is no need to open more that one TCP connections since HTTP 1.1 allows several URL
requests to be piggybacked on top of a single TCP session. When the browser first contacts the server and
downloads an HTML document, the connection remains open. The browser can then use the connection to
request additional documents from the server; for example, the URL for each in line image.

Browsers can also "pipeline" requests for a new URL, submitting a request without waiting for the previous
one to complete.

The agent acting as HTTP client also act as the TLS client. It initiates the connection, and then begin the TLS
handshake. When the TLS handshake has finished, the client continue with the first HTTP request. All HTTP
data is sent as TLS "application data".

Figure 4. HTTP 1.0

Client Server

TCP SYN
TCP SYN, ACK

TCP ACK

HTTP REQUEST

TCP FIN

TCP FIN, ACK

HTTP RESPONSE

Figure 5. HTTP 1.1 Persistent Connection

Client Server
TCP SYN

TCP SYN, ACK

TCP ACK

HTTP REQUEST

TCP FIN

TCP FIN, ACK

HTTP RESPONSE

HTTP REQUEST

HTTP RESPONSE

TLS session resumption impact on HTTP performance 4 (12)

Common practice has been to run HTTP/TLS over a separate port (default 443) in order to distinguish which
protocol is being used.

4 Performance Evaluation

4.1 Testbed and Configurations
Two computers connected to the same subnetwork where used, one acting as server and the other as client.

The server, “iguana” (192.168.0.105) is a desktop PC with Linux, Fedora Core 3, Linux 2.6.11-1.14. 256M
memory. OpenSSL provides TLS/SSL support, and Apache was used as the web server. The needed CA
and supporting keys and certificates are created. Details on server configuration and installation procedure
can be found at the end of this document.

The client, “chameleon” (192.168.0.102) is a laptop with Microsoft's Windows XP SP2. 512M memory.
Microsoft's Internet Explorer, Netscape's Firefox and Opera are used as clients (browsers). Default settings
on all browsers are used, except for cache size that is set to zero.

As for TLS configuration, we assumed that client authentication was not needed.

4.2 Tests and Data
We measured the performance as the elapsed time from the initial TCP SYN request to the last HTTP
response (the most meaningful measurement point since some clients used persistent connections). The test
was started by entering the URL to the test file (see Appendix) in the browser.

Test case 1: Plain HTTP request. The purpose of this test case was to simplify the analysis of the HTTP
client behavior.

Test case 2: TLS protected HTTP request when TLS session resume is enabled.

Test case 3. TLS protected HTTP request when TLS session resume is disabled (see Appendix).

4.3 Explorer

4.3.1 Test case 1: Plain HTTP request
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 Broadcast ARP Who has 192.168.0.104?
 2 0.000222 192.168.0.104 192.168.0.102 ARP 192.168.0.104 is at 00:0a:e6:a1:2c:88
 3 0.000231 192.168.0.102 192.168.0.104 TCP 1160 > http [SYN]
 4 0.000425 192.168.0.104 192.168.0.102 TCP http > 1160 [SYN, ACK]
 5 0.000455 192.168.0.102 192.168.0.104 TCP 1160 > http [ACK]
 6 0.000655 192.168.0.102 192.168.0.104 HTTP GET /secure/index.htm HTTP/1.1
 7 0.000881 192.168.0.104 192.168.0.102 TCP http > 1160 [ACK]
 8 0.001492 192.168.0.104 192.168.0.102 HTTP HTTP/1.1 200 OK
...
27 0.122687 192.168.0.102 192.168.0.104 HTTP GET /secure/c1.htm HTTP/1.1
28 0.123592 192.168.0.104 192.168.0.102 HTTP HTTP/1.1 200 OK (text/html)
29 0.123658 192.168.0.102 192.168.0.104 HTTP GET /secure/c2.htm HTTP/1.1
30 0.124528 192.168.0.104 192.168.0.102 HTTP HTTP/1.1 200 OK (text/html)
31 0.144789 192.168.0.102 192.168.0.104 HTTP GET /secure/c3.htm HTTP/1.1
32 0.145706 192.168.0.104 192.168.0.102 HTTP HTTP/1.1 200 OK (text/html)
33 0.285482 192.168.0.102 192.168.0.104 TCP 1160 > http [ACK]
34 0.285518 192.168.0.102 192.168.0.104 TCP 1161 > http [ACK]
...
A detailed examination of the Ethereal capture reveals that the client opened two persistent connections to
the server, using source ports 1160 and 1161. Pipelining is not used.

The total time to get the web pages is 0.146s.

TLS session resumption impact on HTTP performance 5 (12)

4.3.2 Test Case 2: TLS protected HTTP request and session resumption
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 192.168.0.104 TCP 1181 > https [SYN]
 2 0.000226 192.168.0.104 192.168.0.102 TCP https > 1181 [SYN, ACK]
 3 0.000252 192.168.0.102 192.168.0.104 TCP 1181 > https [ACK]
 4 0.000690 192.168.0.102 192.168.0.104 TLS Client Hello
 5 0.000902 192.168.0.104 192.168.0.102 TCP https > 1181 [ACK]
 6 0.001767 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate,
 Server Hello Done
[...]
 32 0.041504 192.168.0.102 192.168.0.104 TLS Client Hello
 33 0.041683 192.168.0.104 192.168.0.102 TCP https > 1184 [ACK]
 34 0.041899 192.168.0.104 192.168.0.102 TLS Server Hello, Change Cipher Spec,
 Encrypted Handshake Message
 35 0.042004 192.168.0.102 192.168.0.104 TLS Client Hello
 36 0.042195 192.168.0.104 192.168.0.102 TCP https > 1185 [ACK]
 37 0.042685 192.168.0.102 192.168.0.104 TLS Change Cipher Spec,
 Encrypted Handshake Message
 38 0.042908 192.168.0.104 192.168.0.102 TLS Server Hello, Change Cipher Spec,
 Encrypted Handshake Message
[...]
144 0.147250 192.168.0.104 192.168.0.102 TLS Application Data
145 0.147381 192.168.0.104 192.168.0.102 TLS Application Data
146 0.147411 192.168.0.102 192.168.0.104 TCP 1190 > https [ACK]
147 0.147729 192.168.0.104 192.168.0.102 TCP https > 1190 [FIN, ACK]
A closer look at the Ethereal capture reveals that the there are ten parallel connections to the server (source
ports 1181 to 1190). First one is opened, the initial full TLS handshake is completed, data transferred and the
connection is closed. Then all the remaining nine connections are opened simultaneously, the abbreviated
handshake (as expected) completed, data transferred and finally connections are closed. Persistent
connections are not used.

The total time to get the web pages is 0.147s.

4.3.3 Test Case 3: TLS protected HTTP request and no session resumption
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 Broadcast ARP Who has 192.168.0.104? Tell 192.168.0.102
 2 0.000225 192.168.0.104 192.168.0.102 ARP 192.168.0.104 is at 00:0a:e6:a1:2c:88
 3 0.000235 192.168.0.102 192.168.0.104 TCP 1229 > https [SYN]
 4 0.000438 192.168.0.104 192.168.0.102 TCP https > 1229 [SYN, ACK]
 5 0.000467 192.168.0.102 192.168.0.104 TCP 1229 > https [ACK]
 6 0.001011 192.168.0.102 192.168.0.104 TLS Client Hello
 7 0.001239 192.168.0.104 192.168.0.102 TCP https > 1229 [ACK]
 8 0.003157 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate,
 Server Hello Done
[...]
 15 0.042058 192.168.0.102 192.168.0.104 TLS Client Hello
 16 0.042261 192.168.0.104 192.168.0.102 TCP https > 1230
 17 0.044349 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate,
 Server Hello Done
 18 0.045588 192.168.0.102 192.168.0.104 TLS Client Key Exchange,
 Change Cipher Spec,
 Encrypted Handshake Message
 19 0.052753 192.168.0.104 192.168.0.102 TLS Change Cipher Spec, Finished
[...]
154 0.305903 192.168.0.102 192.168.0.104 TLS Application Data
155 0.306849 192.168.0.104 192.168.0.102 TLS Application Data
156 0.306945 192.168.0.104 192.168.0.102 TLS Application Data
157 0.306976 192.168.0.102 192.168.0.104 TCP 1239 > https [ACK]
158 0.307311 192.168.0.104 192.168.0.102 TCP https > 1239 [FIN, ACK]
The TCP connections have the same behaviors as in the previous test case. As expected, each connection
must do the full TLS handshake.

The total time to get the web pages is 0.307s

TLS session resumption impact on HTTP performance 6 (12)

4.4 Opera

4.4.1 Test Case 1: Plain HTTP request
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 Broadcast ARP Who has 192.168.0.104? Tell 192.168.0.102
 2 0.000223 192.168.0.104 192.168.0.102 ARP 192.168.0.104 is at 00:0a:e6:a1:2c:88
 3 0.000232 192.168.0.102 192.168.0.104 TCP 1849 > http [SYN]
 4 0.000417 192.168.0.104 192.168.0.102 TCP http > 1849 [SYN, ACK]
 5 0.000449 192.168.0.102 192.168.0.104 TCP 1849 > http [ACK]
 6 0.019242 192.168.0.102 192.168.0.104 HTTP GET /secure/index.htm HTTP/1.1
 7 0.019562 192.168.0.104 192.168.0.102 TCP http > 1849 [ACK]
 8 0.020721 192.168.0.104 192.168.0.102 HTTP HTTP/1.1 200 OK
[...]
84 0.128123 192.168.0.102 192.168.0.104 HTTP GET /secure/c3.htm HTTP/1.1
85 0.128392 192.168.0.104 192.168.0.102 TCP http > 1857 [ACK]
86 0.129160 192.168.0.104 192.168.0.102 HTTP HTTP/1.1 200 OK (text/html)
87 0.289463 192.168.0.102 192.168.0.104 TCP 1857 > http [ACK]
Web standards suggest a browser should use no more than two persistent connections per server, but
Opera's default is 8 connections per server, where half of the "max connections per server" are persistent.
Opera uses pipelining by default [5].

The Ethereal capture shows that nine connections are opened (source ports 1849 to 1847). All TCP
signaling seems to be handled in lock-step – first the initial handshake is done in turn on all channels, next
the HTTP request on all channels and finally the close handshake.

The total time to get the web pages is 0.129s.

4.4.2 Test Case 2: TLS protected HTTP request and session resumption
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 Broadcast ARP Who has 192.168.0.104? Tell 192.168.0.102
 2 0.000214 192.168.0.104 192.168.0.102 ARP 192.168.0.104 is at 00:0a:e6:a1:2c:88
 3 0.000222 192.168.0.102 192.168.0.104 TCP 1941 > https [SYN]
 4 0.000423 192.168.0.104 192.168.0.102 TCP https > 1941 [SYN, ACK]
 5 0.000454 192.168.0.102 192.168.0.104 TCP 1941 > https [ACK]
 6 0.022420 192.168.0.102 192.168.0.104 TLS Client Hello
 7 0.022682 192.168.0.104 192.168.0.102 TCP https > 1941 [ACK]
 8 0.043632 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate,
 Server Key Exchange, Server Hello Done
 9 0.154863 192.168.0.102 192.168.0.104 TCP 1941 > https [ACK]
 10 0.350160 192.168.0.102 192.168.0.104 TLS Client Key Exchange
 11 0.390380 192.168.0.104 192.168.0.102 TCP https > 1941 [ACK]
 12 0.390452 192.168.0.102 192.168.0.104 TLS Change Cipher Spec,
 Encrypted Handshake Message
 13 0.390623 192.168.0.104 192.168.0.102 TCP https > 1941 [ACK]
 14 0.391184 192.168.0.104 192.168.0.102 TLS Change Cipher Spec,
 Encrypted Handshake Message
 15 0.394637 192.168.0.102 192.168.0.104 TLS Application Data
[...]
 61 0.462955 192.168.0.102 192.168.0.104 TLS Client Hello
 62 0.463107 192.168.0.104 192.168.0.102 TCP https > 1949 [ACK]
 63 0.463186 192.168.0.104 192.168.0.102 TLS Server Hello, Change Cipher Spec,
 Encrypted Handshake Message
 64 0.464693 192.168.0.102 192.168.0.104 TLS Change Cipher Spec
[...]
166 0.648339 192.168.0.102 192.168.0.104 TLS Encrypted Handshake Message,
 Application Data
167 0.648597 192.168.0.104 192.168.0.102 TCP https > 1950 [ACK]
168 0.649513 192.168.0.104 192.168.0.102 TLS Application Data
The TCP connections have the same behaviors as in the plain HTTP case, except that one more channel is
set up.

The first connection do the full TLS handshake, the following the abbreviated handshake. The total time to
get the web pages is 0.650s.

TLS session resumption impact on HTTP performance 7 (12)

4.4.3 Test Case 3: TLS protected HTTP request and no session resumption
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 192.168.0.104 TCP 1244 > https [SYN]
 2 0.000247 192.168.0.104 192.168.0.102 TCP https > 1244 [SYN, ACK]
 3 0.000279 192.168.0.102 192.168.0.104 TCP 1244 > https [ACK]
 4 0.021871 192.168.0.102 192.168.0.104 TLS Client Hello
 5 0.022117 192.168.0.104 192.168.0.102 TCP https > 1244 [ACK]
 6 0.040686 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate,
 Server Key Exchange, Server Hello Done
 7 0.171995 192.168.0.102 192.168.0.104 TCP 1244 > https [ACK]
 8 0.338912 192.168.0.102 192.168.0.104 TLS Client Key Exchange
 9 0.378466 192.168.0.104 192.168.0.102 TCP https > 1244 [ACK]
 10 0.378529 192.168.0.102 192.168.0.104 TLS Change Cipher Spec,
 Encrypted Handshake Message
 11 0.378692 192.168.0.104 192.168.0.102 TCP https > 1244 [ACK]
 12 0.379267 192.168.0.104 192.168.0.102 TLS Change Cipher Spec,
 Encrypted Handshake Message
[...]
 44 0.450395 192.168.0.102 192.168.0.104 TLS Client Hello
 45 0.450570 192.168.0.104 192.168.0.102 TCP https > 1245 [ACK]
 46 0.469163 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate,
 Server Key Exchange, Server Hello Done
 47 0.573282 192.168.0.102 192.168.0.104 TCP 1245 > https [ACK]
 48 0.779757 192.168.0.102 192.168.0.104 TLS Client Key Exchange
 49 0.819350 192.168.0.104 192.168.0.102 TCP https > 1245 [ACK]
 50 0.819424 192.168.0.102 192.168.0.104 TLS Change Cipher Spec,
 Encrypted Handshake Message
 51 0.819588 192.168.0.104 192.168.0.102 TCP https > 1245 [ACK]
 52 0.820159 192.168.0.104 192.168.0.102 TLS Change Cipher Spec,
 Encrypted Handshake Message
[...]
194 4.226310 192.168.0.102 192.168.0.104 TLS Application Data
195 4.227693 192.168.0.104 192.168.0.102 TLS Application Data
The TCP connections are handled as in test case 2.

All connections do the full TLS handshake. The total time to get the web pages is 4.228s.

4.5 Firefox

4.5.1 Test Case 1: Plain HTTP request
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 192.168.0.104 TCP 1152 > http [SYN]
 2 0.000269 192.168.0.104 192.168.0.102 TCP http > 1152 [SYN, ACK]
 3 0.000302 192.168.0.102 192.168.0.104 TCP 1152 > http [ACK]
 4 0.027932 192.168.0.102 192.168.0.104 HTTP GET /secure/index.htm HTTP/1.1
 5 0.028221 192.168.0.104 192.168.0.102 TCP http > 1152 [ACK]
 6 0.028808 192.168.0.104 192.168.0.102 HTTP HTTP/1.1 200 OK
...
33 0.295476 192.168.0.102 192.168.0.104 HTTP GET /favicon.ico HTTP/1.1
34 0.296465 192.168.0.104 192.168.0.102 HTTP HTTP/1.1 404 Not Found (text/html)
35 0.339371 192.168.0.102 192.168.0.104 TCP 1152 > http [ACK]
36 0.439683 192.168.0.102 192.168.0.104 TCP 1153 > http [ACK]
...
Two persistent TCP connections are used (source ports 1152 and 1153). Pipelining is not used.

The total time to get the web pages is 0.296s.

TLS session resumption impact on HTTP performance 8 (12)

4.5.2 Test Case 2: TLS protected HTTP request and session resumption
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 Broadcast ARP Who has 192.168.0.104? Tell 192.168.0.102
 2 0.000225 192.168.0.104 192.168.0.102 ARP 192.168.0.104 is at 00:0a:e6:a1:2c:88
 3 0.000234 192.168.0.102 192.168.0.104 TCP 2012 > https [SYN]
 4 0.000435 192.168.0.104 192.168.0.102 TCP https > 2012 [SYN, ACK]
 5 0.000462 192.168.0.102 192.168.0.104 TCP 2012 > https [ACK]
 6 0.000830 192.168.0.102 192.168.0.104 TLS Client Hello
 7 0.001028 192.168.0.104 192.168.0.102 TCP https > 2012 [ACK]
 8 0.021983 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate, Server Key
Exchange, Server Hello Done
9 0.039220 192.168.0.102 192.168.0.104 TLS Client Key Exchange, Change Cipher Spec,
Encrypted Handshake Message
10 0.052956 192.168.0.104 192.168.0.102 TLS Change Cipher Spec, Client Key Exchange
[...]
23 0.171934 192.168.0.102 192.168.0.104 TLS Client Hello
24 0.172145 192.168.0.104 192.168.0.102 TCP https > 2013 [ACK]
25 0.172584 192.168.0.104 192.168.0.102 TLS Application Data
26 0.172752 192.168.0.104 192.168.0.102 TLS Application Data
27 0.172776 192.168.0.102 192.168.0.104 TCP 2012 > https [ACK]
28 0.174294 192.168.0.104 192.168.0.102 TLS Server Hello, Change Cipher Spec,
Encrypted Handshake Message
29 0.181015 192.168.0.102 192.168.0.104 TLS Change Cipher Spec, Encrypted Handshake
Message, Application Data
[...]
61 0.382208 192.168.0.102 192.168.0.104 TLS Application Data
62 0.383326 192.168.0.104 192.168.0.102 TLS Application Data
63 0.383408 192.168.0.104 192.168.0.102 TLS Application Data
64 0.383438 192.168.0.102 192.168.0.104 TCP 2012 > https [ACK]
The TCP connections are handled as in the plain HTTP test case.

The first connection do the full TLS handshake, the second the abbreviated handshake. The total time to get
the web pages is 0.383s.

4.5.3 Test Case 3: TLS protected HTTP request and no session resumption
No. Time Source Destination Protocol Info
 1 0.000000 192.168.0.102 192.168.0.104 TCP 2072 > https [SYN]
 2 0.000252 192.168.0.104 192.168.0.102 TCP https > 2072 [SYN, ACK]
 3 0.000280 192.168.0.102 192.168.0.104 TCP 2072 > https [ACK]
 4 0.000777 192.168.0.102 192.168.0.104 TLS Client Hello
 5 0.000995 192.168.0.104 192.168.0.102 TCP https > 2072 [ACK]
 6 0.023493 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate, Server Key
Exchange, Server Hello Done
 7 0.041907 192.168.0.102 192.168.0.104 TLS Client Key Exchange, Change Cipher Spec,
Encrypted Handshake Message
 8 0.055869 192.168.0.104 192.168.0.102 TLS Change Cipher Spec, Encrypted Handshake
Message
[...]
17 0.184936 192.168.0.102 192.168.0.104 TLS Client Hello
18 0.185119 192.168.0.104 192.168.0.102 TCP https > 2073 [ACK]
19 0.185909 192.168.0.104 192.168.0.102 TLS Application Data, Application Data
20 0.193301 192.168.0.102 192.168.0.104 TLS Application Data
21 0.202659 192.168.0.104 192.168.0.102 TLS Application Data, Application Data
22 0.203341 192.168.0.102 192.168.0.104 TLS Application Data
23 0.208000 192.168.0.104 192.168.0.102 TLS Server Hello, Certificate, Server Key
Exchange, Server Hello Done
24 0.208838 192.168.0.104 192.168.0.102 TLS Application Data, Application Data
25 0.225254 192.168.0.102 192.168.0.104 TLS Client Key Exchange, Change Cipher Spec,
Encrypted Handshake Message
[...]
40 0.418995 192.168.0.104 192.168.0.102 TLS Application Data, Application Data
41 0.537393 192.168.0.102 192.168.0.104 TCP 2073 > https [ACK]
42 0.537426 192.168.0.102 192.168.0.104 TCP 2072 > https [ACK]
The TCP connections are handled as in the plain HTTP test case.

All connections do the full TLS handshake. The total time to get the web pages is 0.419s.

TLS session resumption impact on HTTP performance 9 (12)

4.6 Test Result Summary
TC1 - plain

HTTP
TC2 – HTTP

over TLS
TC3 - HTTP over
TSL, no cache

Difference cache-no
cache

Internet Explorer 0.146s 0.147s 0.307s 109%
Opera 0.129s 0.650 4.228s 550%
Firefox 0.296s 0.383 0.419s 9%

5 Conclusion
In this paper, TLS session resumption impact on HTTP performance has been presented and analyzed by
using and comparing three different web clients, Microsoft's Internet Explorer, Netscape's Firefox and Opera.

As expected, disabling session resumption affects performance in a negative way. However, it seems like
that the specific implementation of the HTTP client has the most influence on the overall performance.

6 References
[1] Ralf S. Engelschall: “User Manual mod_ssl ver 2.8” [homepage on the Internet] Available from:
http://www.modssl.org/docs/2.8/ [cited September 2005]

[2] T. Berners-Lee, R. Fielding and H. Frystyk. “Hypertext Transfer Protocol -- HTTP/1.0”, RFC 1945. IETF
May 1996

[3] R. Fielding et al. “Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2616. IETF, June 1999

[4] E. Rescorla. “HTTP Over TLS”, RFC 2818. IETF, May 2000

[5] Opera Browser Wiki [homepage on the Internet] Available from: http://nontroppo.org/wiki/HttpProtocol
[cited September 2005]

[6] T. Dierks and C. Allen, "The TLS Protocol - Version 1.0", RFC 2246, IETF, January 1999.

http://nontroppo.org/wiki/HttpProtocol

TLS session resumption impact on HTTP performance 10 (12)

7 Appendix

7.1 Test Object
The test file is a simple HTML file named index.htm. It have a frame set of 3x3 frames, each of them include
a tiny HTLM file. In total 10 files that must be fetched when the test page is requested.

<html>
<FRAMESET COLS="33%,33%,33%">
 <FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="a1.htm">
 <FRAME SRC="a2.htm">
 <FRAME SRC="a3.htm">
 </FRAMESET>
 <FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="b1.htm">
 <FRAME SRC="b2.htm">
 <FRAME SRC="b3.htm">
 </FRAMESET>
 <FRAMESET ROWS="33%,33%,33%">
 <FRAME SRC="c1.htm">
 <FRAME SRC="c2.htm">
 <FRAME SRC="c3.htm">
 </FRAMESET>
</FRAMESET>
</html>
One of the included files (a1.htm) is shown below (all are designed in the same way):

<html>
<head>
<title>A1</title>
</head>
<body>
A1
</body>
</html>

7.2 Server Configuration

7.2.1 OpenSSL, CA and Certificates
OpenSSL is a open source cryptographic library. It provides implementations of encryption algorithms as well
as message digest algorithms and message authentication codes. We installed OpenSSL simply by using
yum:

[root@localhost ca]#yum install openssl.i386
[root@localhost ca]#yum install openssl-devel.i386 //needed by Apache
OpenSSL supports several certificate formats. Certificates are based on the DSA signature algorithm and the
RSA algorithm for public-key cryptography according to PKCS algorithms. Certificate format depends on the
application, but available formats are Privacy Enhanced Mail (PEM) and Distinguished Encoding
Rules(DER).and PKCS12

OpenSSL supports two standard formats for storing and exchanging key pairs, PEM and DER.

Certificate files are ASN.1-encoded objects that may be encrypted according to DES (Data Encryption
Standard). The files can optionally be encrypted using a symmetric cipher algorithm, such as 3DES.

First we create a RSA private key for the server. It will be Triple-DES encrypted and in PEM format.

$ openssl genrsa -des3 -out server.key 1024

[root@localhost ca]# openssl genrsa -des3 -out server.key 1024
Generating RSA private key, 1024 bit long modulus
...++++++
................++++++
e is 65537 (0x10001)
Enter pass phrase for server.key:
Verifying - Enter pass phrase for server.key:
[root@localhost ca]#

TLS session resumption impact on HTTP performance 11 (12)

Then we create a Certificate Signing Request (CSR) using the server RSA private key:

[root@localhost ca]# openssl req -new -key server.key -out server.csr
Enter pass phrase for server.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:SE
State or Province Name (full name) [Berkshire]:n/a
Locality Name (eg, city) [Newbury]:Stockholm
Organization Name (eg, company) [My Company Ltd]:KTH
Organizational Unit Name (eg, section) []:2G1305
Common Name (eg, your name or your server's hostname) []:chikchak.homeip.net
Email Address []:asap@kth.se

Please enter the following 'extra' attributes to be sent with your certificate request
A challenge password []:
An optional company name []:
[root@localhost ca]#
The Certificate Signing Request (CSR) must be signed by a Certifying Authority (CA):

[root@localhost ca]# ./sign.sh server.csr
CA signing: server.csr -> server.crt:
Using configuration from ca.config
Enter pass phrase for ./ca.key:
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
countryName :PRINTABLE:'SE'
stateOrProvinceName :PRINTABLE:'n/a'
localityName :PRINTABLE:'Stockholm'
organizationName :PRINTABLE:'KTH'
organizationalUnitName:PRINTABLE:'2G1305'
commonName :PRINTABLE:'chikchak.homeip.net'
emailAddress :IA5STRING:'asap@kth.se'
Certificate is to be certified until Aug 28 17:05:12 2006 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
CA verifying: server.crt <-> CA cert
server.crt: OK
[root@localhost ca]#

7.2.2 Apache
We selected Apache as web server. There are two open-source choices when it comes to using SSL with
Apache – either the mod_ssl module or the Apache-SSL distribution (both require OpenSSL). In version 2.0
and later mod_ssl is shipped with the source code distribution. We download, unzip and build the code:

[root@localhost ca]#./configure –enable-ssl
[root@localhost ca]#make
[root@localhost ca]#make install
Apache is installed at the default location, /usr/local/apache2.

Next, we modified /usr/local/apache_ssl/conf/ssl.conf (modifications are in bold). Line 6 was uncommented to
disable session resumption.

 1 <IfDefine SSL>
 2 Listen 443
 3 [...]
 4 # Inter-Process Session Cache: Configure the SSL Session Cache: First the mechanism
 5 # to use and second the expiring timeout (in seconds).
 6 # We will modify thereparameters later when evaluating performance.
 7 #SSLSessionCache none
 8 SSLSessionCache dbm:/usr/local/apache2/logs/ssl_scache

mailto:'asap@kth.se

TLS session resumption impact on HTTP performance 12 (12)

 9 SSLSessionCacheTimeout 60
10 <VirtualHost _default_:443>
11 # General setup for the virtual host
12 DocumentRoot "/usr/local/apache2/htdocs"
13 ServerName chikchak.homeip.net:443
14 ServerAdmin asap@kth.se
15 ErrorLog /usr/local/apache2/logs/error_log
16 TransferLog /usr/local/apache2/logs/access_log
17
18 # SSL Engine Switch: Enable SSL for this virtual host.
19 SSLEngine on
20
21 # SSL Cipher Suite: Lists the ciphers that the client is permitted to negotiate.
21 SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL
22
23 # Server Certificate: Point SSLCertificateFile at a PEM encoded certificate.
24 # Server Private Key: If the key is not combined with the certificate, use this
25 # directive to point at the key file.
26
27 SSLCertificateFile /usr/local/apache2/conf/ca/server.crt
28 SSLCertificateKeyFile /usr/local/apache2/conf/ca/server.key
29
30 #There is no need to have client authentication in this test.
31 SSLVerifyClient none
32 </VirtualHost>
33 </IfDefine>

Apache was started:

[root@localhost conf]# /usr/local/apache2/bin/apachectl -D SSL -k start
Apache/2.0.54 mod_ssl/2.0.54 (Pass Phrase Dialog)
Some of your private key files are encrypted for security reasons.
In order to read them you have to provide us with the pass phrases.
Server chikchak.homeip.net:443 (RSA)
Enter pass phrase:
Ok: Pass Phrase Dialog successful.
[root@localhost conf]#

	1Abstract
	2Introduction
	3Transport Layer Security (TLS)
	1Hypertext Transfer Protocol (HTTP)
	4Performance Evaluation
	4.1Testbed and Configurations
	4.2Tests and Data
	4.3Explorer
	4.3.1Test case 1: Plain HTTP request
	4.3.2Test Case 2: TLS protected HTTP request and session resumption
	4.3.3Test Case 3: TLS protected HTTP request and no session resumption

	4.4Opera
	4.4.1Test Case 1: Plain HTTP request
	4.4.2Test Case 2: TLS protected HTTP request and session resumption
	4.4.3Test Case 3: TLS protected HTTP request and no session resumption

	4.5Firefox
	4.5.1Test Case 1: Plain HTTP request
	4.5.2Test Case 2: TLS protected HTTP request and session resumption
	4.5.3Test Case 3: TLS protected HTTP request and no session resumption

	4.6Test Result Summary

	5Conclusion
	6References
	7Appendix
	7.1Test Object
	7.2Server Configuration
	7.2.1OpenSSL, CA and Certificates
	7.2.2Apache

