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An impedance which contain inductors and capacitors have,
depending on the frequency, either inductive character IND, or
capacitive character CAP.

An important special case occurs at the frequency where
capacitances and inductances are equally strong, and their effects
cancel each other out. The impedance becomes purely resisistiv.
The phenomenon is called the resonance and the frequency on
which this occurs Is the resonant frequency.
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Reactance frequency dependency
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R L C impedances
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e At a certain frequence X, and X has the same amount.
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William Sandgvist william@kth.se



William Sandgvist william@kth.se



How bigis U ? (13.1)

The three volt meters show the same, 1V, how much is the
alternating supply voltage U ? (Warning, teaser)
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How bigis U ? (13.1)

The three volt meters show the same, 1V, how much is the
alternating supply voltage U ? (Warning, teaser)

-

______

_— e —

_____

U=1vT U,
~ ) L 1V ‘
1 .,‘

_____

______

William Sandgvist william@kth.se



How bigis U ? (13.1)

The three volt meters show the same, 1V, how much is the
alternating supply voltage U ? (Warning, teaser)
/

-

_— e —

U=1vT U,
~ ) L 1V L
1 .,‘

_____

_____ UC
i 1
§|nce Yolt meters show the R — |XL| _ |Xc| R =l —
same" and the current I is C
common;
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If X, |=[Xc|=2R ?

Suppose the AC voltage U still 1 V, but the reactances are twice as big.

What will the voltmeters show? 1
oL = E =2-R
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If X, |=[Xc|=2R ?

Suppose the AC voltage U still 1 V, but the reactances are twice as big.

What will the voltmeters show? 1
oL = E =2-R
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If X, |=[Xc|=2R ?

Suppose the AC voltage U still 1 V, but the reactances are twice as big.

What will the voltmeters show? 1
oL = E =2-R

-

_____

At resonance, the voltage over the reactances can be many
times higher than the AC supply voltage.
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Tesla coll

Many builds "Tesla" coils to gain some excitement in life...

AC mains

Secondary

High voltage
transformer

Modern

TESLA GOIL

Theory

Duane A. Bylund
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Inductor quality factor Q

Usually it is the internal resistance

of the coil which is the resistor in
the RLC circuit. The higher the coll
AC resistance oL is in relation to
the DC resistance r, the larger the Un
voltage across the coil at a _
resonance get. This ratio is called

the coil quality factor Q.

+

( or Q-factor ). ©

X, ol
r I

Q=

— UUT zQ'UlN
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Series resonance

U=I-(r+ja)L+jal)Cj:I-(r+j(a)L—w1C))
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Series resonance

=0

/
U=I-(r+ja)L+ja];Cj:I-(r+4(a)L—wt)|j '
NORT
The Impedance is real when the imaginary -
part is ”0”. This will happen at angular T

frequency w, ( frequency f, ).
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Series resonance

=0
. 1 ] 1
U=1l:r+joL+—— :I_-(r+ jt_a)L——))
JaC @C
U, f
The Impedance is real when the imaginary part is ”0”. "

This will happen at angular frequency o, (frequency f,).

1 1 1
IMmZ|=oL—=0 =»> w,=— |f, =
2] e ' T

JLC
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Series resonance phasor diagram

u=1-(r+j(wL—£>j
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Series resonance phasor diagram

u=1-(r+j(wL—£)j
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Series resonance phasor diagram

u=1-(r+j(wL—£)j
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/ IND r
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Series resonance circuit Q

It is the resistance of the resonant circuit, usually coil
Internal resistance, which determines how pronounced
resonance phenomenon becomes. It is customary to
"normalize” the relationship between the different
variables by introducing the resonance angular
frequency @, together with the peak current .. in
the function 1(w) with parameter Q :

1.0~

1 oL

Cf)ozﬁ Q= ; , 0_2701 \

R /I
- T NS

PERCENT CHANGE FROM
RESONANT FREQUENCY

o
[

¢
@

RELATIVE CURRENT
=]
o

o
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Normalized
chart of the
series resonant
circuit. A high Q
corresponds to a
narrow
resonance peak.



Bandwidth BW

At two different angular
frequencies becomes imaginary
Im and real part Re in the
denominator equal. | is then
|, /N2 (=71%).

The Bandwidth BW=Aw is the
distans between those two
angular frequencies.

max

| =
(I} jQ(”—‘”O)J
W, O
Re

= Im

BW [rad/s]= Aw = o, — a0, =2

o : T
1F | | ]
N
0,8 I | 1
0.707 !
0.6F : ! !
1 1 : -\-“-\-\""!-\.
0.4} -/ : : : e
/ ! 1 1 e —
/ | | 1
ozt /o !
J |
0 0.5 i 1.5 2 2.8 3 3.5 4
W1 Wg W5

The equations give :

2__ _
Wo= W, W, a)zla)ra)o[
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e More convenient formulas

1

0.8} VAR N\ BW [HZ]:Af
0.707 ; \D\
0.6t . ]
NS I
R T
2T :

0.4

— |
0,2

ﬂo 0.5 i 1,5 o 2.5 z 3.5 4
Wi Wy 0P

AW
1 27, L Ao 1 Af 1
f = = 0 —_— = —_— =
Tomic| |0 0o, O | 0
- T Tt T === I
If Q is high, no significant error is done if the |1 ¢  _  Af !
bandwidth is divided equally on both sides of f,. |, ° = ° 2 |
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Example, series resonance circuit

o O 0 y 100kHz

C=25nF c=o5nE  100% /f\\
fo = 100 kHz 12,5kHz 0
BW=Af=125kHz :_ _: Q=? N | 1%

I <1 LF? s0% ] \
Q=?L=?r=? N L

| =7 /

I _/

0%
f—o
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Example, series resonance circuit

C=25nF O mos e 100% /[".\QOORHZ
fo = 100 kHz 12,5kHz 0
BW = Af =125 kHz :' ": Q=7 - | —11%
L=? .
_ _ _ | | 50 % l \

Q=?L=?r=7? L ] \

f ir= Y
oo fo 100 T L

Af 12,5 f
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Example, series resonance circuit

C=25nF
fo =100 kHz
BW=Af=125kHz
Q=?L=2r=7?
~f, 100
Q_Af 125
1

27+ LC

f, =

= L=

y 100kHz

O \ce2snF  100% M
[\
R - » 12,5kHz<_71%
! ! =? 0 \
: : L 50 % ] \
| =7 /
[ L/
0%
f— >
1 1

=01mH

(24f,)2C  (27-100-10°)?-25.10°°
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Example,

C=25nF
fo =100 kHz

BW = Af=12,5 kHz

Q=?L=?r=?

~f, 100
Q_Af 125

1

27+ LC

f, =

—

L= 2~ 312 9
(27f,)°C (27-100-10%)°-25-10

series resonance circuit

y 100kHz

O o=25nF  190% M
1\
T g 12,5kHz<_ 71%
| ' =2 . \
: : 50 % / \
| | / \
| =7 /
I i
0%
f—

1 1

=01mH

__2df,-L _27-100-10°-01-10° _

8 Q
Q 8
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How bigis | ? (13.2)

The three ammeters show the same, 1A, how much is the AC supply
current 1 ? ( Warning, teaser)

| =7
-
U 1A 1A 1A
A A
T
~
Ly R L ——=¢C
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How bigis | ? (13.2)

The three ammeters show the same, 1A, how much is the AC supply
current 1 ? ( Warning, teaser)
[ =1A

S TUTLTH
C
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How bigis | ? (13.2)

The three ammeters show the same, 1A, how much is the AC supply
current 1 ? ( Warning, teaser)

I =1A
-

U 1A

Ic
ty
C

|, and |- becomes a circulating current decoupled from I¢. 1, I can be
many times bigger than the supply current | = 1. This is parallel
resonance.
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ldeal parallel resonance circuit

1 1

L
Z=R]|L|C= = c
L, jec Leje-t)) MO T

R JoL R wl

=0
The resonance frequency has exactly the same expression as for the series
resonant circuit, but otherwise the circuit has reverse character, IND at
low frequencies and CAP at high. At resonance, the impedance is real = R.

1
f__ -
° 274JLC
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ldeal parallel resonance circuit

Z=R|L|IC=g—g =

LU
1. 1 . 1 r@":a L
—+—+]JoC —+](pwC——+

R oL T1C RTIPCT L)

=0
The resonance frequency has exactly the same expression as for the series
resonant circuit, but otherwise the circuit has reverse character, IND at
low frequencies and CAP at high. At resonance, the impedance is real = R.

f, = L

27+ LC

Actual parallel resonant circuit

Actual parallel resonant circuits has a series resistance
Inside the coil. The calculations become more
complecated and the resonance frequency will also
differ slightly from our formula.
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Example, actual circuit (13.3)

lZI_C+I_LR: J + U '(r_J.a)L)ZU‘ 'CUC'*‘ zr_Ja)Lz -
1 r+joL (r-jol) r+(wl)
Jot / IR
r ) ol e
=U- 2 2+J((0C_ 2 7 ) U
r-+(wl) r-+(wl) ]
Y -
=0
I
%[ cl
5 S
L
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Example, actual circuit (13.3)

Il=1c+1 = J + U '(r_J-a)L):U' joC + 2r_Ja)L2 =
1 r+joL (r-jol) r+(wl)
JoC / /
r ) ol e
U 2 2+J((0C_ 2 2. U
r-+(wl) r-+(wl) ]
Y -
=0
I
¥ E—
L
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Metal Detector

Any "losses" (even
eddy-current losses

in all kinds of
f 1 1 metals) are
0 ~ T summarized by the
27T LC L symbol r!

Iron objecMeas

the magnetic field
and thus also L !

The parallel resonant ;
frequency is affected by
the coil losses. That’s
how hidden treasures are
found!

losses
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Series or parallel resistor

In manual computation for simplicity one usually uses the formulas of
the ideal resonant circuit. At high Q and close to the resonance
frequency f, the deviations becomes insignificant.

At Q >10 are the two circuits "interchangeable”.

Alternative
definition of Q
with Rp

LU TN LU
lf_ :G Q
c ! Cc
SR ST CE LI
CU ‘
/ N\
Q:COOL:{RP) = [Re=Q% 1
I \g)OL
A

(applies approximately for Q >10)
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Example, parallel circult

Parallel circuit.
C=25nF

fo =100 kHz
BW = 1250 Hz

L=?r=7?
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Example, parallel circult

Parallel circuit.
C=25nF

fo =100 kHz
BW = 1250 Hz

L=?r=7?
3
0- f, _100-10°
Af 1250

William Sandgvist william@kth.se



Example, parallel circult

Parallel circuit.

C=25nF LU
fO =100 kHz ’1‘:)@ °l RU L
BW = 1250 Hz
L=?r="?
f, 100-10° 80 > 10 justifying
Q= Af 1250 =80 counting with the ideal
model.
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Example, parallel circult

Parallel circuit.

C=25nF e
f, = 100 kHz =]
BW = 1250 Hz
L=?r=7

f, 100-10° 80> 10 JUStlfylng
Q=2 ~""1om0 0  counting with the ideal

model.

S L L =01mH

= L= =
27+ LC (27zf0)2C (27:-100-103)2-25-10‘9
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Example, parallel circult

Parallel circuit.

C=25nF Lo .
f, = 100 kHz 1 A 3
BW = 1250 Hz
L=?r=7?

f100-10° 80 > 10 justifying
Q=—%= =80 counting with the ideal

Af 1250 g with the 1dea

model.
1 1 1
f = L= = =01 mH
'Todic (2,)’C  (27-100-10%)?.25.10°°

Q= R = Re = R :27sz'L-Q:27z-100-103—0,1°10_3~80z5027Q

X, 2d,-L
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Example, parallel circult

Parallel circuit.

T f_ 1
C=25nF _ _ bt '3 '
f, =100 kHz Answer with a series f@ el D
BW = 1250 Hz resistor! ~ | n
CY
L=?r=7?
f100-10° 80 > 10 justifying
Q=—%= =80 counting with the ideal
Af 1250 g with the 1dea
model.
1 1 1
f, = = L= = =0,1mH
° 2z4LC (2,)’C  (27-100-10%)?.25.10°°
Q= R = Re = R =27szoL~Q:27z-1OO~1O3—O,1-1O‘3~8Oz5027Q
X, 2f,-L
1 1

2

rS :_RP :W5027z0,8g
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Example, parallel circult

Parallel circuit.

T f_ 1
C=25nF _ _ bt '3 '
f, =100 kHz Answer with a series f@ el D
BW = 1250 Hz resistor! A e
CY
L=?r=7?
f100-10° 80 > 10 justifying
Q=—%= =80 counting with the ideal
Af 1250 g with the 1dea
model.
1 1 1
f, = = L= = =01mH
[0 27z«/Lc} (2,)’C  (27-100-10%)?.25.10°°
Q= Re = R = R =27sz-L-Q:27z-100-103-0,1-10‘3-8Oz5027Q
X, 2A,-L
4 A

I =i2RP =i25027 ~08Q | Luckily we did not have 1 1 2
80 to use this formulato  fo = > r —

C (U
% calculate the L y
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Nowdays there are help ...

¥ Wolfram

solve L f=(1/(2*pi))*sgrt(1/(L*C) - r~2/L"~2)

solve = — L—lc -% L
Even if the transformation of Rto r
R L IS not necessary, by computational
s cf resons, anymore — so these are still
G} Vi- lf; f;;ff r? 41 Important concepts when engineers
‘ “reason".

We chose the positive solution ...
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Nowdays there are help ...

| _A1-167°CPr* 41

- 87°Cf -
- J1-1672(25-10°)? - (100-10°)?-0,87 +1
- 872-25-107° - (100-10%)?

=01mH
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| oaded resonance circuit

R
Usually the Load | Q
resonance circuit T
is loaded! Iy

If the loaded resonance circuit is to
become the wanted Q value one has to
have an inductor with a much better Q,!

' e Q, unloaded Q-value

-1
A,
T
|

]

|
O;UI
=0

r
|
|
m
|
L - —— - _
A
)
Pu)
Il
Q,
r
|
IL
|
©
|
|
V
O
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| oaded resonance circuit

% B
- oommy | N = :
| N S We will need an
L"'F’J | 0 jnductor with Q,!
Rigas | Q  When the circuit is loaded
E— = with R, .4 the Q-value will

r, change from Q, to Q!
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The inductive sensor Is a rugged sensor type available
In many types.




Cyclists who request green? &

p—————
—

T0 REQUEST
GREEN

WAIT
ON

Inductive sensor
for bicycle
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Sorry! The
Sensor does not
work for all
bicycles?
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