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PIC-block Documentation, Seriecom Pulse sensors 
I, U, R, P, serial and parallel 

Ex2 
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Kirchhoffs laws Node analysis Two-terminals R2R AD 

Trafo, Ethernet contact Le13 

Pulse sensors, Menu program 

Le4 
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Ex3 Le5   KC2  LAB2   Two-terminals, AD, Comparator/Schmitt 

Step-up, RC-oscillator 

Le10 Ex6 LC-osc, DC-motor, CCP PWM 

LP-filter Trafo Le12 Ex7 Display 

Le11 

• Start of programing task 

• Display of programing task 
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R  L  C 

An impedance which contain inductors and capacitors have, 
depending on the frequency, either inductive character IND, or 
capacitive character CAP. 
An important special case occurs at the frequency where 
capacitances and inductances are equally strong, and their effects 
cancel each other out. The impedance becomes purely resisistiv. 
The phenomenon is called the resonance and the frequency on 
which this occurs is the resonant frequency. 

CAP 
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Reactance frequency dependency 
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R L C impedances 
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• At a certain frequence  XL and XC has the same amount. 
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How big is U ? (13.1) 
The three volt meters show the same, 1V, how much is the 
alternating supply voltage U ?   (Warning, teaser) 
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How big is U ? (13.1) 

C
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ω
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CL ====Since volt meters show the 
"same" and the current I is 
common: 

The three volt meters show the same, 1V, how much is the 
alternating supply voltage U ?   (Warning, teaser) 
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If |XL|=|XC|=2R ? 
Suppose the AC voltage U still 1 V, but the reactances are twice as big. 
What will the voltmeters show? 

R
C

L ⋅== 21
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If |XL|=|XC|=2R ? 

R
C

L ⋅== 21
ω

ω

Suppose the AC voltage U still 1 V, but the reactances are twice as big. 
What will the voltmeters show? 
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If |XL|=|XC|=2R ? 

R
C

L ⋅== 21
ω

ω

At resonance, the voltage over the reactances can be many 
times higher than the AC supply voltage. 

Suppose the AC voltage U still 1 V, but the reactances are twice as big. 
What will the voltmeters show? 
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Tesla coil 
Many builds "Tesla" coils to gain some excitement in life… 
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Inductor quality factor Q 
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Usually it is the internal resistance 
of the coil which is the resistor in 
the RLC circuit. The higher the coil 
AC resistance ωL is in relation to 
the DC resistance r, the larger the 
voltage across the coil at a 
resonance get. This ratio is called 
the coil quality factor Q.  
( or Q-factor ). 
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Series resonance 
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Series resonance 
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The Impedance is real when the imaginary 
part is ”0”. This will happen at angular 
frequency ω0 ( frequency f0 ). 
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Series resonance 







 −+⋅=








++⋅= )1(j

j
1j

C
LrI

C
LrIU

ω
ω

ω
ω

The Impedance is real when the imaginary part is ”0”. 
This will happen at angular frequency ω0 (frequency f0). 

=0 

[ ]
LC

f
LCC

LZ
π

ω
ω

ω
2

1101Im 00 ==⇒=−=

r 



William Sandqvist  william@kth.se 

Series resonance phasor diagram 
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Series resonance phasor diagram 
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Series resonance phasor diagram 
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Series resonance circuit Q 
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It is the resistance of the resonant circuit, usually coil 
internal resistance, which determines how pronounced 
resonance phenomenon becomes. It is customary to 
"normalize" the relationship between the different 
variables by introducing the resonance angular 
frequency ω0  together with  the peak current Imax  in 
the function  I(ω) with parameter Q :  

Normalized 
chart of the 
series resonant 
circuit. A high Q 
corresponds to a 
narrow 
resonance peak. 

r 
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Bandwidth BW 
At two different angular 
frequencies becomes imaginary 
Im and real part Re in the 
denominator equal.  I  is then 
Imax/√2   (≈71%). 
The Bandwidth BW=∆ω is the 
distans between those two 
angular frequencies. 
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The equations give : 
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• More convenient formulas 
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Example, series resonance circuit 
C = 25 nF  
f0 = 100 kHz  
BW = ∆f = 12,5 kHz 

Q = ?  L = ?  r = ? 
r =? 

%71

f
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Example, series resonance circuit 
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Example, series resonance circuit 
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Example, series resonance circuit 
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How big is I ? (13.2) 
The three ammeters show the same, 1A, how much is the AC supply 
current I ?   ( Warning, teaser ) 
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How big is I ? (13.2) 

IL and IC becomes a circulating current decoupled from IR.  IL, IC can be 
many times bigger than the supply current I = IR.   This is parallel 
resonance.  

The three ammeters show the same, 1A, how much is the AC supply 
current I ?   ( Warning, teaser ) 
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Ideal parallel resonance circuit 
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The resonance frequency has exactly the same expression as for the series 
resonant circuit, but otherwise the circuit has reverse character, IND at 
low frequencies and CAP at high. At resonance, the impedance is real = R. 
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Ideal parallel resonance circuit 
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Actual parallel resonant circuit 
Actual parallel resonant circuits has a series resistance 
inside the coil. The calculations become more 
complecated and the resonance frequency will also 
differ slightly from our formula. 

The resonance frequency has exactly the same expression as for the series 
resonant circuit, but otherwise the circuit has reverse character, IND at 
low frequencies and CAP at high. At resonance, the impedance is real = R. 
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Example, actual circuit  (13.3) 
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Example, actual circuit  (13.3) 
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Metal Detector 
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Any "losses" (even 
eddy-current losses 
in all kinds of 
metals) are 
summarized by the 
symbol  r !  

Eddy current 
losses 

The parallel resonant 
frequency is affected by 
the coil losses. That’s 
how hidden treasures are 
found! 

Iron objects affects 
the magnetic field 
and thus also L ! 

http://www.google.se/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=nWP5cTeIjs_cVM&tbnid=QehDDp5MiEgV4M:&ved=0CAUQjRw&url=http%3A%2F%2Felectronics.howstuffworks.com%2Fgadgets%2Fother-gadgets%2Fmetal-detector.htm&ei=VfV0UZjkCoOVtAb8t4HwCg&bvm=bv.45512109,d.Yms&psig=AFQjCNH5vzyOo8J0_p9cLHBZziMXTQLTmw&ust=1366705738400136
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Series or parallel resistor 
In manual computation for simplicity one usually uses the formulas of 
the ideal resonant circuit. At high Q and close to the resonance 
frequency  f0 the deviations becomes insignificant. 

At Q >10  are the two circuits "interchangeable". 
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Example, parallel circuit 
Parallel circuit. 
C = 25 nF 
f0 = 100 kHz 
BW = 1250 Hz 

L = ?  r = ? 
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Example, parallel circuit 

80
1250

10100 3
0 =

⋅
=

∆
=

f
fQ

Parallel circuit. 
C = 25 nF 
f0 = 100 kHz 
BW = 1250 Hz 

L = ?  r = ? 
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Example, parallel circuit 
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fQ

80 > 10 justifying 
counting with the ideal 
model. 

Parallel circuit. 
C = 25 nF 
f0 = 100 kHz 
BW = 1250 Hz 

L = ?  r = ? 
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Example, parallel circuit 
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Parallel circuit. 
C = 25 nF 
f0 = 100 kHz 
BW = 1250 Hz 

L = ?  r = ? 
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Example, parallel circuit 
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Parallel circuit. 
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f0 = 100 kHz 
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L = ?  r = ? 
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Example, parallel circuit 
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Answer with a series 
resistor! 

Parallel circuit. 
C = 25 nF 
f0 = 100 kHz 
BW = 1250 Hz 

L = ?  r = ? 
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Example, parallel circuit 
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Luckily we did not have 
to use this formula to 
calculate the L 

Parallel circuit. 
C = 25 nF 
f0 = 100 kHz 
BW = 1250 Hz 

L = ?  r = ? 



William Sandqvist  william@kth.se 

Nowdays there are help … 

Even if the transformation of  R to  r 
is not necessary, by computational 
resons, anymore – so these are still 
important concepts when engineers 
"reason". 

We chose the positive solution … 
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Nowdays there are help … 
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Loaded resonance circuit 

≡ 
Usually the 
resonance circuit 
is loaded! 

LoadR
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If the loaded resonance circuit is to 
become the wanted Q value one has to 
have an inductor with a much better Q0! 
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•  Q0  unloaded Q-value 
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Loaded resonance circuit 

0Q
0R

2
0

0
0 Q

Rr =0Q
0R

0r

LoadR

0r

Q • When the circuit is loaded 
with RLoad the Q-value will 
change from Q0 to Q! 

We will need an 
inductor with Q0! 
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The inductive sensor is a rugged sensor type available 
in many types. 
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Cyclists who request green? 

Inductive sensor 
for bicycle 

Sorry! The 
Sensor does not 
work for all 
bicycles? 
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