IE1206 Embedded Electronics

William Sandqvist william@kth.se

$R L C$

An impedance which contain inductors and capacitors have, depending on the frequency, either inductive character IND, or capacitive character CAP.
An important special case occurs at the frequency where capacitances and inductances are equally strong, and their effects cancel each other out. The impedance becomes purely resisistiv. The phenomenon is called the resonance and the frequency on which this occurs is the resonant frequency.

Reactance frequency dependency

$$
\begin{gathered}
\left|X_{L}\right|=\omega \cdot L \quad\left|X_{C}\right|=\frac{1}{\omega \cdot C} \\
\omega=2 \pi f
\end{gathered}
$$

$R L C$ impedances

- At a certain frequence X_{L} and X_{C} has the same amount.

$$
\begin{gathered}
\left|X_{L}\right|=\omega \cdot L \quad\left|X_{C}\right|=\frac{1}{\omega \cdot C} \\
\omega=2 \pi f
\end{gathered}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

How big is U ? (13.1)

The three volt meters show the same, 1 V , how much is the alternating supply voltage U ? (Warning, teaser)

William Sandqvist william@kth.se

How big is U ? (13.1)

The three volt meters show the same, 1 V , how much is the alternating supply voltage U ? (Warning, teaser)

William Sandqvist william@kth.se

How big is U ? (13.1)

The three volt meters show the same, 1 V , how much is the alternating supply voltage U ? (Warning, teaser)

Since volt meters show the "same" and the current I is

$$
R=\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right| \quad R=\omega L=\frac{1}{\omega C}
$$ common:

If $\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right|=2 R$?

Suppose the AC voltage U still 1 V , but the reactances are twice as big. What will the voltmeters show?

$$
\omega L=\frac{1}{\omega C}=2 \cdot R
$$

William Sandqvist william@kth.se

If $\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right|=2 R ?$

Suppose the AC voltage U still 1 V , but the reactances are twice as big. What will the voltmeters show?

$$
\omega L=\frac{1}{\omega C}=2 \cdot R
$$

William Sandqvist william@kth.se

If $\left|X_{\mathrm{L}}\right|=\left|X_{\mathrm{C}}\right|=2 R$?

Suppose the AC voltage U still 1 V , but the reactances are twice as big. What will the voltmeters show?

$$
\omega L=\frac{1}{\omega C}=2 \cdot R
$$

At resonance, the voltage over the reactances can be many times higher than the AC supply voltage.

Tesla coil

Many builds "Tesla" coils to gain some excitement in life...

[^0]

William Sandqvist william@kth.se

Inductor quality factor Q

Usually it is the internal resistance of the coil which is the resistor in the RLC circuit. The higher the coil AC resistance ωL is in relation to the DC resistance r, the larger the voltage across the coil at a resonance get. This ratio is called the coil quality factor Q. (or Q-factor).

$$
Q=\frac{X_{\mathrm{L}}}{r}=\frac{\omega L}{r} \Rightarrow U_{\mathrm{UT}} \approx Q \cdot U_{\mathrm{IN}}
$$

Series resonance

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j} \omega L+\frac{1}{\mathrm{j} \omega C}\right)=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

Series resonance

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j} \omega L+\frac{1}{\mathrm{j} \omega \mathrm{C}}\right)=\underline{I} \cdot\left(r+\mathrm{j}\left(\left(\omega L-\frac{1}{\omega C}\right)\right)\right.
$$

The Impedance is real when the imaginary part is " 0 ". This will happen at angular
 frequency ω_{0} (frequency f_{0}).

Series resonance

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j} \omega L+\frac{1}{\mathrm{j} \omega C}\right)=\underline{I} \cdot\left(r+\mathrm{j}\left(\frac{=0}{\omega L-\frac{1}{\omega C}}\right)\right)
$$

The Impedance is real when the imaginary part is "0". This will happen at angular frequency ω_{0} (frequency f_{0}).

$$
\operatorname{Im}[\underline{Z}]=\omega L-\frac{1}{\omega C}=0 \Rightarrow \omega_{0}=\frac{1}{\sqrt{L C}} f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Series resonance phasor diagram

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

Series resonance phasor diagram

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

$$
\omega=\omega_{0}
$$

Series resonance phasor diagram

$$
\underline{U}=\underline{I} \cdot\left(r+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right)\right)
$$

Series resonance circuit Q

It is the resistance of the resonant circuit, usually coil internal resistance, which determines how pronounced resonance phenomenon becomes. It is customary to "normalize" the relationship between the different variables by introducing the resonance angular frequency ω_{0} together with the peak current $\boldsymbol{I}_{\max }$ in the function $I(\omega)$ with parameter \boldsymbol{Q} :

$$
\begin{aligned}
& \omega_{0}=\frac{1}{\sqrt{L C}} \quad Q=\frac{\omega_{0} L}{r} \\
& \underline{I}=\frac{I_{\max }}{\left(1+\mathrm{j} Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right)}
\end{aligned}
$$

Normalized chart of the series resonant circuit. A high Q corresponds to a narrow resonance peak.

Bandwidth BW

At two different angular frequencies becomes imaginary Im and real part Re in the denominator equal. I is then $I_{\text {max }} / \sqrt{2} \quad(\approx 71 \%)$.
The Bandwidth $B W=\Delta \omega$ is the distans between those two angular frequencies.

$$
\begin{gathered}
\underline{I}=\frac{I_{\max }}{\left(\sqrt{1}+\sqrt{Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)}\right)} \\
\operatorname{Re}=\mathrm{Im}
\end{gathered}
$$

The equations give :

$$
B W[\mathrm{rad} / \mathrm{s}]=\Delta \omega=\omega_{2}-\omega_{1}=\frac{\omega_{0}}{Q} \quad \omega_{0}^{2}=\omega_{2} \cdot \omega_{1} \quad \omega_{2}, \omega_{1}=\omega_{0}\left(\pm \frac{1}{2 Q}+\sqrt{\frac{1}{(2 Q)^{2}}+1}\right)
$$

- More convenient formulas

William Sandqvist william@kth.se

Example, series resonance circuit

$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=\Delta f=12,5 \mathrm{kHz}$
$Q=$? $L=$? $r=$?

William Sandqvist william@kth.se

Example, series resonance circuit

$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=\Delta f=12,5 \mathrm{kHz}$
$Q=$? $L=$? $r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100}{12,5}=8$

William Sandqvist william@kth.se

Example, series resonance circuit

$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=\Delta f=12,5 \mathrm{kHz}$
$Q=$? $L=$? $r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100}{12,5}=8$

$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$

Example, series resonance circuit

$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=\Delta f=12,5 \mathrm{kHz}$
$Q=$? $L=$? $r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100}{12,5}=8$

$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$
$Q=\frac{X_{L}}{r}=\frac{2 \pi f_{0} \cdot L}{r} \Rightarrow r=\frac{2 \pi f_{0} \cdot L}{Q}=\frac{2 \pi \cdot 100 \cdot 10^{3} \cdot 0,1 \cdot 10^{-3}}{8} \approx 8 \Omega$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

How big is I ? (13.2)

The three ammeters show the same, 1A, how much is the AC supply current I ? (Warning, teaser)

William Sandqvist william@kth.se

How big is I ? (13.2)

The three ammeters show the same, 1A, how much is the AC supply current I ? (Warning, teaser)

William Sandqvist william@kth.se

How big is I ? (13.2)

The three ammeters show the same, 1 A , how much is the AC supply current I ? (Warning, teaser)

I_{L} and I_{C} becomes a circulating current decoupled from $I_{\mathrm{R}} . I_{\mathrm{L}}, I_{\mathrm{C}}$ can be many times bigger than the supply current $I=I_{\mathrm{R}}$. This is parallel resonance.

Ideal parallel resonance circuit

$$
\underline{Z}=R\|L\| C=\frac{1}{\frac{1}{R}+\frac{1}{\mathrm{j} \omega L}+\mathrm{j} \omega C}=\frac{1}{\frac{1}{R}+\mathrm{j}\left(\underset{\left(\omega C-\frac{1}{\omega L}\right.}{ }\right)}
$$

The resonance frequency has exactly the same expression as for the series resonant circuit, but otherwise the circuit has reverse character, IND at low frequencies and CAP at high. At resonance, the impedance is real $=R$.

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Ideal parallel resonance circuit

$$
\underline{Z}=R\|L\| C=\frac{1}{\frac{1}{R}+\frac{1}{\mathrm{j} \omega L}+\mathrm{j} \omega C}=\frac{1}{\frac{1}{R}+\mathrm{j}\left(\underset{=0}{\omega C-\frac{1}{\omega L}}\right)}
$$

The resonance frequency has exactly the same expression as for the series resonant circuit, but otherwise the circuit has reverse character, IND at low frequencies and CAP at high. At resonance, the impedance is real $=R$.

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Actual parallel resonant circuit

Actual parallel resonant circuits has a series resistance inside the coil. The calculations become more complecated and the resonance frequency will also differ slightly from our formula.

William Sandqvist william@kth.se

Example, actual circuit (13.3)

$$
\begin{aligned}
& \underline{I}=\underline{I}_{\mathrm{C}}+\underline{I}_{\mathrm{LR}}=\frac{U}{\frac{1}{\mathrm{j} \omega C}}+\frac{U}{r+\mathrm{j} \omega L} \cdot \frac{(r-\mathrm{j} \omega L)}{(r-\mathrm{j} \omega L)}=U \cdot\left(\mathrm{j} \omega C+\frac{r-\mathrm{j} \omega L}{r^{2}+(\omega L)^{2}}\right)= \\
& =U \cdot\left(\frac{r}{r^{2}+(\omega L)^{2}}+\mathrm{j}\left(\omega C-\frac{\omega L}{r^{2}+(\omega L)^{2}}\right)\right.
\end{aligned}
$$

Example, actual circuit (13.3)

$$
\begin{aligned}
& \underline{I}=\underline{I}_{\mathrm{C}}+\underline{I}_{\mathrm{LR}}=\frac{U}{\frac{1}{\mathrm{j} \omega C}}+\frac{U}{r+\mathrm{j} \omega L} \cdot \frac{(r-\mathrm{j} \omega L)}{(r-\mathrm{j} \omega L)}=U \cdot\left(\mathrm{j} \omega C+\frac{r-\mathrm{j} \omega L}{r^{2}+(\omega L)^{2}}\right)= \\
& =U \cdot\left(\frac{r}{r^{2}+(\omega L)^{2}}+\mathrm{j}\left(\begin{array}{l}
\omega C-\frac{\omega L}{r^{2}+(\omega L)^{2}}
\end{array}\right)\right. \\
& =0 \\
& \omega_{0} C=\frac{\omega_{0} L}{r^{2}+\left(\omega_{0} L\right)^{2}} \Rightarrow \omega_{0}{ }^{2}=\frac{1}{L C}-\frac{r^{2}}{L^{2}} \quad \omega_{0}=2 \pi f \Rightarrow f_{\mathrm{LR}}
\end{aligned}
$$

William Sandqvist william@kth.se

Metal Detector

Any "losses" (even

The parallel resonant frequency is affected by the coil losses. That's how hidden treasures are found!

Iron objects affects the magnetic field and thus also L !

Eddy current losses

William Sandqvist william@kth.se

Series or parallel resistor

In manual computation for simplicity one usually uses the formulas of the ideal resonant circuit. At high Q and close to the resonance frequency f_{0} the deviations becomes insignificant.

At $\mathbf{Q}>\mathbf{1 0}$ are the two circuits "interchangeable".

Example, parallel circuit

Parallel circuit.
$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=1250 \mathrm{~Hz}$
$L=$? $r=$?

Example, parallel circuit

Parallel circuit.
$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=1250 \mathrm{~Hz}$
$L=$? $r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80$

Example, parallel circuit

Parallel circuit.
$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=1250 \mathrm{~Hz}$

$L=$? $r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80$
$80>10$ justifying
counting with the ideal model.

Example, parallel circuit

Parallel circuit.
$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=1250 \mathrm{~Hz}$

$L=$? $r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80 \quad \begin{aligned} & 80>10 \text { justifying } \\ & \text { counting with the ideal }\end{aligned}$ model.
$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$

Example, parallel circuit

Parallel circuit.
$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=1250 \mathrm{~Hz}$

$L=$? $r=$?
$Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80 \quad \begin{aligned} & 80>10 \text { justifying } \\ & \text { counting with the ideal }\end{aligned}$ model.
$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$
$Q=\frac{R_{\mathrm{P}}}{X_{\mathrm{L}}}=\frac{R_{\mathrm{P}}}{2 \pi f_{0} \cdot L} \Rightarrow R_{\mathrm{P}}=2 \pi f_{0} \cdot L \cdot Q=2 \pi \cdot 100 \cdot 10^{3} \cdot 0,1 \cdot 10^{-3} \cdot 80 \approx 5027 \Omega$

Example, parallel circuit

Parallel circuit.
$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=1250 \mathrm{~Hz}$
Answer with a series resistor!

$L=$? $r=$?

$$
80>10 \text { justifying }
$$

$Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80$ counting with the ideal model.
$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$
$Q=\frac{R_{\mathrm{P}}}{X_{\mathrm{L}}}=\frac{R_{\mathrm{P}}}{2 \pi f_{0} \cdot L} \Rightarrow R_{\mathrm{P}}=2 \pi f_{0} \cdot L \cdot Q=2 \pi \cdot 100 \cdot 10^{3} \cdot 0,1 \cdot 10^{-3} \cdot 80 \approx 5027 \Omega$
$r_{\mathrm{S}}=\frac{1}{Q^{2}} R_{\mathrm{P}}=\frac{1}{80^{2}} 5027 \approx 0,8 \Omega$

Example, parallel circuit

Parallel circuit.
$C=25 \mathrm{nF}$
$f_{0}=100 \mathrm{kHz}$
$B W=1250 \mathrm{~Hz}$
Answer with a series resistor!

$L=$? $r=$?
$80>10$ justifying
$Q=\frac{f_{0}}{\Delta f}=\frac{100 \cdot 10^{3}}{1250}=80$ counting with the ideal model.
$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow \quad L=\frac{1}{\left(2 \pi f_{0}\right)^{2} C}=\frac{1}{\left(2 \pi \cdot 100 \cdot 10^{3}\right)^{2} \cdot 25 \cdot 10^{-9}}=0,1 \mathrm{mH}$
$Q=\frac{R_{\mathrm{P}}}{X_{\mathrm{L}}}=\frac{R_{\mathrm{P}}}{2 \pi f_{0} \cdot L} \Rightarrow R_{\mathrm{P}}=2 \pi f_{0} \cdot L \cdot Q=2 \pi \cdot 100 \cdot 10^{3} \cdot 0,1 \cdot 10^{-3} \cdot 80 \approx 5027 \Omega$
$r_{\mathrm{S}}=\frac{1}{Q^{2}} R_{\mathrm{p}}=\frac{1}{80^{2}} 5027 \approx 0,8 \Omega\left(\begin{array}{l}\begin{array}{l}\text { uckily we did not have } \\ \text { to use this formula to } \\ \text { calculate the } L\end{array}\end{array} f_{0}=\frac{1}{2 \pi} \sqrt{\left(\frac{1}{(L C}-\frac{r^{2}}{L^{2}}\right)}\right.$

Nowdays there are help ...

WolframAlpha

```
solve Lf=(1/(2*pi))*sqrt(1/(L*C) - r^2/L^2)
```

\square

퐆 (
三 Examples 准 Random

Input interpretation:

$$
\text { solve } \quad f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{r^{2}}{L^{2}}} \quad \text { for } \quad L
$$

Results:

$L=\frac{1-\sqrt{1-16 \pi^{2} C^{2} f^{2} r^{2}}}{8 \pi^{2} C f^{2}}$

$$
L=\frac{\sqrt{1-16 \pi^{2} C^{2} f^{2} r^{2}}+1}{8 \pi^{2} C f^{2}}
$$

Even if the transformation of R to r is not necessary, by computational resons, anymore - so these are still important concepts when engineers "reason".

We chose the positive solution ...

Nowdays there are help ...

$$
\begin{aligned}
& L=\frac{\sqrt{1-16 \pi^{2} C^{2} f_{0}^{2} r^{2}}+1}{8 \pi^{2} C f_{0}^{2}}= \\
& =\frac{\sqrt{1-16 \pi^{2}\left(25 \cdot 10^{-9}\right)^{2} \cdot\left(100 \cdot 10^{3}\right)^{2} \cdot 0,8^{2}}+1}{8 \pi^{2} \cdot 25 \cdot 10^{-9} \cdot\left(100 \cdot 10^{3}\right)^{2}}=0,1 \mathrm{mH}
\end{aligned}
$$

William Sandqvist william@kth.se

Loaded resonance circuit

$$
\begin{aligned}
& Q=\frac{X_{L}}{r}=\frac{R}{X_{L}} \quad R=Q^{2} \cdot r
\end{aligned}
$$

If the loaded resonance circuit is to become the wanted Q value one has to have an inductor with a much better Q_{0} !

- Q_{0} unloaded Q-value

$$
Q_{0}=\frac{R_{0}}{X_{L}}>Q
$$

Loaded resonance circuit

- When the circuit is loaded with $R_{\text {Load }}$ the Q-value will change from Q_{0} to Q !

William Sandqvist william@kth.se

The inductive sensor is a rugged sensor type available in many types.

Cyclists who request green?

Inductive sensor for bicycle

William Sandqvist william@kth.se

Sorry! The
Sensor does not work for all bicycles?

William Sandqvist william@kth.se

William Sandqvist william@kth.se

[^0]: Duane A. Bylund

