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PIC-block Documentation, Seriecom, Pulse sensor 
I, U, R, P, series and parallel 

Ex2 

Ex5 

Kirchhoffs laws Node analysis Two terminals R2R AD 

Trafo, Ethernet contact Le13 

Pulse sensors, Menu program 

Le4 

KC1  LAB1   

KC3  LAB3   

KC4  LAB4   

Ex3 Le5   KC2  LAB2   Two terminals, AD, Comparator/Schmitt 

Step-up, RC-oscillator 

Le10 Ex6 LC-osc, DC-motor, CCP PWM 

LP-filter Trafo + Guest lecturer Le12 Ex7 presentation 

Le11 

• Start of program task 

• presentation of program task 
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Phasor - vector 
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Complex phasors,  jω-method 
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• Complex OHM’s law for  R  L  and  C. 
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ω for half the voltage? (12.3) 
U1 is a sine voltage with the angular 
frequency ω. Decide the product R⋅C.  
(No current is consumed at  U2). 
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ω for half the voltage? (12.3) 
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U1 is a sine voltage with the angular 
frequency ω. Decide the product R⋅C.  
(No current is consumed at  U2). 
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ω for half the voltage? (12.3) 
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U1 is a sine voltage with the angular 
frequency ω. Decide the product R⋅C.  
(No current is consumed at  U2). 
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ω for half the voltage? (12.3) 
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U1 is a sine voltage with the angular 
frequency ω. Decide the product R⋅C.  
(No current is consumed at  U2). 
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ω for half the voltage? (12.3) 
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U1 is a sine voltage with the angular 
frequency ω. Decide the product R⋅C.  
(No current is consumed at  U2). 
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ω for half the voltage? (12.3) 
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U1 is a sine voltage with the angular 
frequency ω. Decide the product R⋅C.  
(No current is consumed at  U2). 
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Try yourself ...  (12.1) 
Set up the complex expression 
for current I expressed with U R 
C ω.  Let U be reference phase, 
real.  Answer with a expression 
of the form  a+jb.  
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Try yourself ...  (12.1) 
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Set up the complex expression 
for current I expressed with U R 
C ω.  Let U be reference phase, 
real.  Answer with a expression 
of the form  a+jb.  
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Compare serial with parallel (12.5) 

When a resistor R and a capacitor C is connected in parallel 
to a voltage source U each of them get the current 2A. 

How big would the current in the resistor be if the two were 
series connected to the voltage source? 
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Compare serial with parallel (12.5) 

• Parallell connection: 
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Compare serial with parallel (12.5) 
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• Series connected: 
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Compare serial with parallel (12.5) 

• Serial connection: as before … 
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Paralell IR= 2A 
Serial IR= 1,4A 
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AC circuit with inductor (12.11) 
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a)  Calculate IL  (12.11) 
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b)  Calculate UR  (12.11) 
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c)  Calculate UIN  (12.11) 
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d)  Calculate I  (12.11) 
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Series resonance 
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If Q is high, no significant error is done if the 
bandwidth is divided equally on both sides of f0. 
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Parallel resonance 
The parallel resonance circuit in manual computation for simplicity 
one usually uses the formulas of the ideal resonant circuit. At high Q 
and close to the resonance frequency  f0 the deviations becomes 
insignificant. At Q >10  are the two circuits "interchangeable". 
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Loaded parallel resonance 
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Usually the 
resonance circuit 
is loaded! 
If the loaded resonance circuit is to 
become the wanted Q value one has to 
have an inductor with a much better Q0! 

•  Q0  unloaded Q-value 
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Loaded parallel resonance 
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We will need an 
inductor with Q0! 

• When the circuit is loaded 
with RLoad the Q-value will 
change from Q0 to Q! 
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To measure Q-value (13.9) 

Radio controled clock is a clock that is automatically 
synchronized with a time code from a radio transmitter in 
Germany, on longvawe 77,5 kHz. The time signal consists of 
pulses encoded digitally. The signal strength is weak so such 
a receiver uses a tuned resonant circuit with L and C. The 
coil has a ferrite core, and this is also used as an antenna.  
In a project we have to measure the Q-value this resonance 
circuit. How will this be done? Other values: 
 
L = 1,5 mH 
C = 2,8 nF 
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To measure Q-value (13.9) 

UIN = 15V is a sine voltage with the frequency 77,5 kHz (the 
resonance frequency) which is voltage divided to 15 mV. Over the 
capacitor we then measures the much bigger voltageUUT = 1,73 V. 

This is how to measure the inductor’s Q-value. 

a) What is the inductor’s Q-value? 
b) What is the value of the inductor’s internal resistance r (will 
also include other losses)? 

V15=INU V73,1=UTU
mV15=U
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To measure Q-value (13.9) 
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Check of resonance frequency 77,5 KHz 

Big compared with 
0,1Ω from voltage 
divider. 

The voltage divider: 

a) 

b) 
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SL’s access card (13.7) 
?0 =r
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L
C

SL access-card contains a RFID-tag that communicates with 
the turnstyle reader on the frequency 13,56 MHz and uses the 
data transfer speed of 70 KHz. 
To be able to read data in that speed then the resonance 
circuits inside the reader and the card must have a bandwidth 
at least twice this data speed, eg.  200 kHz. 



SL’s access card (13.7) 

f0 = 13,56 MHz 
BW = 200 kHz 
L = 2,5 µH 
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L
C

C = 55 pF  
RL= 30000 Ω 

RFID-tag in the card concists of a 
parallel resonance circuit 
C||(L+r0)||RLoad. The processor in 
the card consumes current from the 
resonance circuit. This is 
symbolized with the resistance  
RLoad= 30000 Ω.    

?0 =r



SL’s access card (13.7) 
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• Wanted Q-value: 
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SL’s access card (13.7) 
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•  The inductor Q-value: 131! 

•  The inductor resistance r0 

•  The loaded resonance circuit 
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Thevenine equivalent with inductor (12.4) 

Determine the value of the 
current I.  

Use Thevenine equivalent. 
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Thevenine equivalent with inductor (12.4) 

Determine the value of the 
current I.  

Use Thevenin equivalent. 
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Calculate the 
Thevenin 
equivalent E0  
and RI of this 
circuit. 

Thevenin equivalent with inductor (12.4) 
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Calculate the 
Thevenin 
equivalent E0  
and RI of this 
circuit. 

Thevenine equivalent with inductor (12.4) 
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The emf and resistors – this time as with DC circuits … 

Thevenine equivalent with inductor (12.4) 

Calculate the 
Thevenin 
equivalent E0  
and RI of this 
circuit. 

The inductor – now it must be considered an AC circuits … 
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Active power in impedance 
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Set up an expression of the active 
power P for this impedance.  
There will only be 
power in the resistors. 



Example. Complex equivalent 

a) Derive the equivalent complex circuit with E0+ZI. 

b) Suppose that we can load the circuit with an arbitrary 
chosen impedance – how should this be composed if one 
wishes the power in the load to be the maximum? 
(Maximum power transfer theorem). 

f = 1000 Hz 
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Example. Complex equivalent, E0 

2 2
0 0

j j2 1000 0,0112 6 6j 6 6 8,48 V
j 63 j2 1000 0,01
LE U E

R L
ω π
ω π

⋅
= = = + = + =

+ + ⋅

E0 is calculated as the divided voltage. If U is the reference 
phase we get E0 8,47 V and gets the phase 45° to U.  
If there are no other voltage sources or current sources in 
the circuit then we don’t have to keep track on the phase, as 
E0 might as well become the network's new reference 
phase! 

f = 1000 Hz 
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Example. Complex equivalent, ZI 
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ZI is the impedance we see if we turn down U.  
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Maximum power, X 
The equivalent circuit is 8,57 V an 
emf with internal impedance 
ZI = 31,4+31,5j. 

At resonance inductance and capacitance cancel each other. This 
will maximize the power in the load. Therefore, the load this time 
should be capacitive (-31,5j). 

When the two reactances cancel each other the circuit becomes 
completely resistive. What load resistance will give the maximum 
power? 
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• Maximum power. 



William Sandqvist william@kth.se 

Maximum power, RI 
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When do P(RL) have a maximum? (You 
get simpler calculations if you turn to the 
question to "where is 1/P minimum"). 
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Maximum transfered power if you chose RL = RI.   
(RL = 31,4 Ω).  
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The maximum power 

How big is the power for  RL = RI 
(Maximum power)? 

I
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How big are the losses inside the equivalent circuit? 

If  RL = RI  the power is divided equal between the internal 
resistance and the load. This means that the Thermal 
efficiency will be 50% (= bad). 

Maximum power transfer, impedance matching, is only used 
when neccessary, such as for radio transmitters. 



Maximum power transfer 

At power match with a load equal to the complex 
conjugate of the internal impedance, the effect: 
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