## IE1206 Embedded Electronics



William Sandqvist william@kth.se

## Phasor - vector



$$
\omega=2 \pi f \quad\left|X_{L}\right|=\omega \cdot L \quad\left|X_{C}\right|=\frac{1}{\omega \cdot C}
$$

$$
Z=\frac{U}{I}
$$

## Complex phasors, $\mathrm{j} \omega$-method

- Complex OHM's law for $R L$ and $C$.

$$
\begin{aligned}
& \underline{U}_{\mathrm{R}}=\underline{I}_{\mathrm{R}} \cdot R \\
& \underline{U}_{\mathrm{L}}=\underline{I}_{\mathrm{L}} \cdot \mathrm{j} X_{\mathrm{L}}=\underline{I}_{\mathrm{L}} \cdot \mathrm{j} \omega L \\
& \underline{U}_{\mathrm{C}}=\underline{I}_{\mathrm{C}} \cdot \mathrm{j} X_{\mathrm{C}}=\underline{I}_{\mathrm{C}} \cdot \frac{1}{\mathrm{j} \omega C}
\end{aligned} \quad \omega=2 \pi \cdot f
$$

- Complex OHM’s law for $Z$.

$$
\underline{U}=\underline{I} \cdot \underline{Z} \quad Z=\frac{U}{I} \quad \varphi=\arg (\underline{Z})=\arctan \left(\frac{\operatorname{Im}[\underline{Z}]}{\operatorname{Re}[\underline{Z}]}\right)
$$

William Sandqvist william@kth.se

## $\omega$ for half the voltage? (12.3)

$U_{1}$ is a sine voltage with the angular frequency $\omega$. Decide the product $R \cdot C$
(No current is consumed at $U_{2}$ ). $\quad U_{1}=10 \mathrm{~V}$
$+$


## $\omega$ for half the voltage? (12.3)

$U_{1}$ is a sine voltage with the angular frequency $\omega$. Decide the product $R \cdot C$ (No current is consumed at $U_{2}$ ).


$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}}
$$

## $\omega$ for half the voltage? (12.3)

$U_{1}$ is a sine voltage with the angular frequency $\omega$. Decide the product $R \cdot C$ (No current is consumed at $U_{2}$ ).


$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{(\mathrm{j} \omega C)}{(\mathrm{j} \omega C)}=
$$

## $\omega$ for half the voltage? (12.3)

$U_{1}$ is a sine voltage with the angular frequency $\omega$. Decide the product $R \cdot C$ (No current is consumed at $U_{2}$ ).


$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{(\mathrm{j} \omega C)}{(\mathrm{j} \omega C)}=\underline{U}_{1} \cdot \frac{1}{1+\mathrm{j} \omega R C}
$$

## $\omega$ for half the voltage? (12.3)

$U_{1}$ is a sine voltage with the angular frequency $\omega$. Decide the product $R \cdot C$ (No current is consumed at $U_{2}$ ).


$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega \mathrm{C}}} \cdot \frac{(\mathrm{j} \omega C)}{(\mathrm{j} \omega C)}=\underline{U}_{1} \cdot \frac{1}{1+\mathrm{j} \omega R C} \Rightarrow \frac{U_{1}}{U_{2}}=\sqrt{1+R^{2} \omega^{2} C^{2}}=\frac{10}{5}=2
$$

## $\omega$ for half the voltage? (12.3)

$U_{1}$ is a sine voltage with the angular frequency $\omega$. Decide the product $R \cdot C$ (No current is consumed at $U_{2}$ ).


$$
\underline{U}_{2}=\underline{U}_{1} \cdot \frac{\frac{1}{\mathrm{j} \omega C}}{R+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{(\mathrm{j} \omega C)}{(\mathrm{j} \omega C)}=\underline{U}_{1} \cdot \frac{1}{1+\mathrm{j} \omega R C} \quad \Rightarrow \frac{U_{1}}{U_{2}}=\sqrt{1+R^{2} \omega^{2} C^{2}}=\frac{10}{5}=2
$$

$$
1+R^{2} \omega^{2} C^{2}=4 \quad \Leftrightarrow \quad R \omega C=\sqrt{3} \quad \Leftrightarrow \quad R C=\frac{\sqrt{3}}{\omega}
$$

William Sandqvist william@kth.se

## Try yourself ... (12.1)

Set up the complex expression for current $I$ expressed with $U R$ $C \omega$. Let $U$ be reference phase, real. Answer with a expression
 of the form $a+\mathrm{j} b$.

## Try yourself ... (12.1)

Set up the complex expression for current $I$ expressed with $U R$ $C \omega$. Let $U$ be reference phase, real. Answer with a expression
 of the form $a+\mathrm{j} b$.

$$
\underline{I}=\underline{I}_{\mathrm{R}}+\underline{I}_{\mathrm{C}}=\frac{U}{R}+\frac{U}{\frac{1}{\mathrm{j} \omega C}}=\frac{U}{R}+\mathrm{j} \omega C \cdot U
$$

William Sandqvist william@kth.se

## Compare serial with parallel (12.5)



When a resistor $R$ and a capacitor $C$ is connected in parallel to a voltage source $U$ each of them get the current 2A.

How big would the current in the resistor be if the two were series connected to the voltage source?

## Compare serial with parallel (12.5)



- Parallell connection:

$$
\begin{aligned}
& \underline{I}=\underline{I}_{\mathrm{R}}+\underline{I}_{\mathrm{C}}=\frac{U}{R}+\mathrm{j} U \omega C \quad \underline{I}=2+2 \mathrm{j} \\
& I_{R}=\frac{U}{R}=2 \quad I_{C}=U \omega C=2 \quad \Rightarrow \quad R=\frac{U}{2} \quad \frac{1}{\omega C}=\frac{U}{2}
\end{aligned}
$$

## Compare serial with parallel (12.5)



- Series connected:

$$
\underline{I}=\frac{U}{R+\frac{1}{\mathrm{j} \omega C}} \Rightarrow I=\frac{U}{\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}}
$$

## Compare serial with parallel (12.5)



- Serial connection: as before ...

$$
\begin{aligned}
& I=\frac{U}{\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}}=\left\{R=\frac{U}{2} \quad \frac{1}{\omega C}=\frac{U}{2}\right\}=\frac{U}{\sqrt{\left(\frac{U}{2}\right)^{2}+\left(\frac{U}{2}\right)^{2}}}= \\
& =\frac{U}{U \sqrt{\frac{1}{4}+\frac{1}{4}}}=\sqrt{2}=1,414 \mathrm{~A}
\end{aligned}
$$

William Sandqvist william@kth.se

## AC circuit with inductor (12.11)

An AC voltage $U_{\text {IN }}$ with the frequency $f=1000 \mathrm{~Hz}$ feeds a circuit with an inductance $L=10 \mathrm{mH}$ in series with a resistor $R=50 \Omega$. In parallel with these are a resistor $R_{\mathrm{S}}=100 \Omega$.
Given is voltage $U_{\mathrm{UT}}=6,28 \mathrm{~V}$.
a) Calculate $I_{\mathrm{L}}$
b) Calculate $U_{\mathrm{R}}$
c) Calculate $U_{\mathrm{IN}}$
d) Calculate $I$


## a) Calculate $I_{\mathrm{L}}$ (12.11)

a) $\underline{U}_{U T}$ are chosen as reference phase, $\arg \left(\underline{U}_{U T}\right)=0$ $\underline{U}_{U T}=j \omega L \cdot \underline{I}_{1} \quad \underline{U}_{U T}=U_{U T}=6,28$
$\underline{I}_{L}=\frac{\underline{U}_{U T}}{j \omega L}=\frac{6,28}{j \cdot 2 \pi \cdot 1000 \cdot 10 \cdot 10^{-3}}-0,1 j$
$I_{L}=0,1 \mathrm{~A}$


## b) Calculate $U_{\mathrm{R}}$ (12.11)

b) $\quad \underline{U}_{R}=R \cdot \underline{I}_{L}=-50 \cdot 0,1 j=-5 j \quad U_{R}=5 \mathrm{~V}$


## c) Calculate $U_{\text {IN }}$ (12.11)

c) $\underline{U}_{I N}=\underline{U}_{R}+\underline{U}_{U T}=6,28-5 j \quad U_{I N}=\sqrt{6,28^{2}+5^{2}}=8,0 \mathrm{~V}$
$\underline{I}_{S}=\frac{U_{I N}}{R_{S}}=\frac{6,28-5 j}{100}=0,063-0,05 j$


William Sandqvist william@kth.se

## d) Calculate I (12.11)

$$
\begin{aligned}
& \quad \underline{I}_{S}=\frac{U_{I N}}{R_{S}}=\frac{6,28-5 j}{100}=0,063-0,05 j \\
& \text { d) } \underline{I}=\underline{I}_{L}+\underline{I}_{S}=-0,1 j+0,063-0,05 j=0,062-0,15 j \\
& I=\sqrt{0,063^{2}+0,15^{2}}=0,16 \mathrm{~A}
\end{aligned}
$$



William Sandqvist william@kth.se

William Sandqvist william@kth.se

## Series resonance




$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

$Q=\frac{2 \pi f_{0} L}{r}$

$$
\frac{\Delta \omega}{\omega_{0}}=\frac{1}{Q} \Rightarrow \frac{\Delta f}{f_{0}}=\frac{1}{Q}
$$

If $Q$ is high, no significant error is done if the bandwidth is divided equally on both sides of $f_{0}$.


## Parallel resonance

The parallel resonance circuit in manual computation for simplicity one usually uses the formulas of the ideal resonant circuit. At high Q and close to the resonance frequency $f_{0}$ the deviations becomes insignificant. At $\mathbf{Q}>10$ are the two circuits "interchangeable".

$$
\omega_{0} \approx \frac{1}{\sqrt{L C}}
$$

Alternative definition of $Q$ with $R_{\mathrm{P}}$

$Q=\frac{\omega_{0} L}{r_{\mathrm{S}}}=\left(\frac{R_{\mathrm{P}}}{\omega_{0} L}\right) \Rightarrow R_{\mathrm{P}}=Q^{2} \cdot r_{\mathrm{s}}$
(applies approximately for $\mathbf{Q}>10$ )

## Loaded parallel resonance

$$
\begin{aligned}
& Q=\frac{X_{L}}{r}=\frac{R}{X_{L}} \quad R=Q^{2} \cdot r
\end{aligned}
$$

Usually the resonance circuit is loaded!


If the loaded resonance circuit is to become the wanted $Q$ value one has to have an inductor with a much better $Q_{0}$ !


- $Q_{0}$ unloaded Q-value


$$
Q_{0}=\frac{R_{0}}{X_{L}}>Q
$$

## Loaded parallel resonance



- When the circuit is loaded with $R_{\text {Load }}$ the Q-value will change from $Q_{0}$ to $Q$ !

William Sandqvist william@kth.se

## To measure Q-value (13.9)

Radio controled clock is a clock that is automatically synchronized with a time code from a radio transmitter in Germany, on longvawe $77,5 \mathrm{kHz}$. The time signal consists of pulses encoded digitally. The signal strength is weak so such a receiver uses a tuned resonant circuit with $L$ and $C$. The coil has a ferrite core, and this is also used as an antenna. In a project we have to measure the Q -value this resonance circuit. How will this be done? Other values:
$L=1,5 \mathrm{mH}$
$C=2,8 \mathrm{nF}$

## To measure Q-value (13.9)



This is how to measure the inductor's Q-value.
$U_{\mathrm{IN}}=15 \mathrm{~V}$ is a sine voltage with the frequency $77,5 \mathrm{kHz}$ (the resonance frequency) which is voltage divided to 15 mV . Over the capacitor we then measures the much bigger voltage $U_{\mathrm{UT}}=1,73 \mathrm{~V}$.
a) What is the inductor's $Q$-value?
b) What is the value of the inductor's internal resistance $r$ (will also include other losses)?

## To measure Q-value (13.9)



The voltage divider: $\quad U_{r}=15 \frac{0,1}{100}=0,015 \mathrm{~V}$
a) $Q=\frac{2 \pi f \cdot L}{r} \cdot \frac{I}{I}=\frac{U_{L}}{U_{r}}=\left\{U_{L}=U_{C}=U_{U T}\right\}=\frac{U_{U T}}{U_{r}}=\frac{1,73}{0,015}=115$
b) $r=\frac{2 \pi f \cdot L}{Q}=\frac{2 \pi \cdot 77,5 \cdot 10^{3} \cdot 1,5 \cdot 10^{-3}}{115}=6,33 \Omega$ Big compared with $0,1 \Omega$ from voltage divider.

William Sandqvist william@kth.se

## SL's access card (13.7)



$$
r_{0}=?
$$



SL access-card contains a RFID-tag that communicates with the turnstyle reader on the frequency $13,56 \mathrm{MHz}$ and uses the data transfer speed of 70 KHz .
To be able to read data in that speed then the resonance circuits inside the reader and the card must have a bandwidth at least twice this data speed, eg. $200 \mathbf{~ k H z}$.

## SL's access card (13.7)

RFID-tag in the card concists of a parallel resonance circuit

$$
r_{0}=?
$$

$C\left\|\left(L+r_{0}\right)\right\| R_{\text {Load }}$. The processor in the card consumes current from the resonance circuit. This is symbolized with the resistance
 $R_{\text {Load }}=30000 \Omega$.

$$
\begin{array}{ll}
f_{0}=13,56 \mathrm{MHz} & C=55 \mathrm{pF} \\
B W=200 \mathrm{kHz} & R_{\mathrm{L}}=30000 \Omega \\
L=2,5 \mu \mathrm{H} &
\end{array}
$$

## SL's access card (13.7)

- Wanted Q-value:

$$
Q=\frac{f_{0}}{\Delta f}=\frac{13,56 \cdot 10^{6}}{200 \cdot 10^{3}}=68
$$

- Total parallel resistance for bandwidth 200 kHz


$$
\begin{aligned}
& R=Q \cdot X_{L}=Q \cdot 2 \pi f_{0} L=68 \cdot 2 \pi \cdot 13,56 \cdot 10^{6} \cdot 2,5 \cdot 10^{-6}=14469 \Omega \\
& R_{L}=30000 \Omega \quad R_{L}>R \\
& R=R_{L} \| R_{0} \Rightarrow \quad R_{0}=\frac{R_{L} \cdot R}{R_{L}-R}=\frac{30000 \cdot 14469}{30000-14469}=27947 \Omega \\
& Q_{0}=\frac{R_{0}}{X_{L}}=\frac{27947}{2 \pi \cdot 13,56 \cdot 10^{6} \cdot 2,5 \cdot 10^{-6}}=131
\end{aligned}
$$

## SL's access card (13.7)



- The inductor Q-value: 131!
- The inductor resistance $r_{0}$

$$
r_{0}=Q_{0}^{2} \cdot R_{0}=131^{2} \cdot 27947=1,63 \Omega
$$

- The loaded resonance circuit


$$
Q=68
$$

$$
R_{L}=30000 \Omega
$$

$$
r_{0}=1,63 \Omega
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

## Thevenine equivalent with inductor (12.4)

Determine the value of the current I.

Use Thevenine equivalent.


## Thevenine equivalent with inductor (12.4)

Determine the value of the current I.

Use Thevenin equivalent.


## Thevenin equivalent with inductor (12.4)

Calculate the Thevenin equivalent $E_{0}$ and $R_{\mathrm{I}}$ of this
 circuit.

## Thevenine equivalent with inductor (12.4)

Calculate the Thevenin equivalent $E_{0}$ and $R_{\mathrm{I}}$ of this circuit.


## Thevenine equivalent with inductor (12.4)

Calculate the Thevenin equivalent $E_{0}$ and $R_{\mathrm{I}}$ of this circuit.


The emf and resistors - this time as with DC circuits ...

$$
R_{I}=\frac{75 \cdot 50}{75+50}=30 \Omega \quad E_{0}=220 \frac{50}{75+50}=88 \mathrm{~V}
$$

The inductor - now it must be considered an AC circuits ...

$$
\underline{I}=\frac{U}{\underline{Z}} \Rightarrow I=\frac{88}{|(30+10)+\mathrm{j} 40|}=\frac{88}{\sqrt{(30+10)^{2}+40^{2}}}=1,56 \mathrm{~A}
$$

William Sandqvist william@kth.se

## Active power in impedance

Set up an expression of the active power $P$ for this impedance.
There will only be power in the resistors.
$U$ reference phase, real.

$$
\begin{aligned}
P=I^{2} \cdot R \quad \underline{I}=\frac{U}{\underline{Z}}=\frac{U}{R+\mathrm{j} \omega L} \Rightarrow I=\frac{U}{\sqrt{R^{2}+(\omega L)^{2}}} \\
P=R \cdot \frac{U^{2}}{R^{2}+(\omega L)^{2}}=\frac{R U^{2}}{R^{2}+(\omega L)^{2}} \quad \omega \rightarrow \infty \Rightarrow P \rightarrow 0 \\
\omega \rightarrow 0 \Rightarrow P \rightarrow \frac{U^{2}}{R}
\end{aligned}
$$

## Example. Complex equivalent


a) Derive the equivalent complex circuit with $E_{0}+Z_{I}$.
b) Suppose that we can load the circuit with an arbitrary chosen impedance - how should this be composed if one wishes the power in the load to be the maximum?
(Maximum power transfer theorem).

## Example. Complex equivalent, $E_{0}$


$E_{0}$ is calculated as the divided voltage. If $U$ is the reference phase we get $E_{0} 8,47 \mathrm{~V}$ and gets the phase $45^{\circ}$ to $U$. If there are no other voltage sources or current sources in the circuit then we don't have to keep track on the phase, as $E_{0}$ might as well become the network's new reference phase!

$$
\underline{E}_{0}=U \frac{\mathrm{j} \omega L}{R+\mathrm{j} \omega L}=12 \frac{\mathrm{j} 2 \pi 1000 \cdot 0,01}{63+\mathrm{j} 2 \pi 1000 \cdot 0,01}=6+6 \mathrm{j} \quad E_{0}=\sqrt{6^{2}+6^{2}}=8,48 \mathrm{~V}
$$

## Example. Complex equivalent, $Z_{1}$


$Z_{I}$ is the impedance we see if we turn down $U$.

$$
\underline{Z}_{I}=\frac{R \cdot \mathrm{j} \omega L}{R+\mathrm{j} \omega L}=\frac{63 \cdot \mathrm{j} 2 \pi 1000 \cdot 0,01}{63+\mathrm{j} 2 \pi 1000 \cdot 0,01}=31,4+31,5 \mathrm{j}
$$

## Moxinnun onver

The equivalent circuit is $8,57 \mathrm{~V}$ an


- Maximum power.

At resonance inductance and capacitance cancel each other. This will maximize the power in the load. Therefore, the load this time should be capacitive $(-31,5 \mathrm{j})$.

When the two reactances cancel each other the circuit becomes completely resistive. What load resistance will give the maximum power?

## Maximum power, $R_{\mathrm{t}}$

$$
P=R_{\mathrm{L}} \cdot I^{2} \quad I=\frac{E_{0}}{R_{\mathrm{I}}+R_{\mathrm{L}}} \Rightarrow P=E_{0}^{2} \cdot \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{I}}+R_{\mathrm{L}}\right)^{2}}
$$

When do $P\left(R_{\mathrm{L}}\right)$ have a maximum? (You get simpler calculations if you turn to the question to "where is $1 / \mathrm{P}$ minimum").


$$
\begin{aligned}
& \frac{1}{P}=\frac{1}{E_{0}^{2}} \cdot\left(\frac{R_{\mathrm{L}}^{2}}{R_{\mathrm{L}}}+\frac{R_{\mathrm{I}}^{2}}{R_{\mathrm{L}}}+2 \cdot \frac{R_{\mathrm{I}} \cdot R_{\mathrm{L}}}{R_{\mathrm{L}}}\right)=\frac{1}{E_{0}^{2}} \cdot\left(R_{\mathrm{L}}+2 \cdot R_{\mathrm{I}}+\frac{R_{\mathrm{I}}^{2}}{R_{\mathrm{L}}}\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} R_{\mathrm{L}}}\left(\frac{1}{P}\right)=\frac{\mathrm{d}}{\mathrm{~d} R_{\mathrm{L}}}\left(\frac{1}{E_{0}^{2}} \cdot\left(R_{\mathrm{L}}+2 \cdot R_{\mathrm{I}}+\frac{R_{\mathrm{I}}^{2}}{R_{\mathrm{L}}}\right)\right)=1-\frac{R_{\mathrm{I}}^{2}}{R_{\mathrm{L}}^{2}}=0 \Rightarrow R_{\mathrm{L}}=R_{\mathrm{I}}
\end{aligned}
$$

Maximum transfered power if you chose $R_{\mathrm{L}}=R_{\mathrm{I}}$.
( $R_{\mathrm{L}}=31,4 \Omega$ ).

## The maximum power

How big is the power for $R_{\mathrm{L}}=R_{\mathrm{I}}$ (Maximum power)?
$P=E_{0}^{2} \cdot \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{I}}+R_{\mathrm{L}}\right)^{2}} \quad R_{\mathrm{I}}=R_{\mathrm{L}} \quad \Rightarrow \quad P_{M A X}=\frac{E_{0}^{2}}{4 \cdot R_{\mathrm{I}}}$


How big are the losses inside the equivalent circuit?
If $R_{\mathrm{L}}=R_{\mathrm{I}}$ the power is divided equal between the internal resistance and the load. This means that the Thermal efficiency will be 50\% (= bad).

Maximum power transfer, impedance matching, is only used when neccessary, such as for radio transmitters.

## Maximum power transfer



At power match with a load equal to the complex conjugate of the internal impedance, the effect:

$$
P_{\max }=\frac{\left|\underline{E}_{0}\right|^{2}}{4 \cdot \operatorname{Re}\left[\underline{Z}_{\mathrm{I}}\right]}
$$

William Sandqvist william@kth.se

William Sandqvist william@kth.se

