IE1206 Embedded Electronics

PIC-block Documentation, Seriecom, Pulse sensor

I, U, R, P, series and parallel

Pulse sensors, Menu program
e Start of program task

Kirchhoffs laws Node analysis Two terminals R2R AD

Two terminals, AD, Comparator/Schmitt
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Transients PWM
Step-up, RC-oscillator

Phasor jo PWM CCP CAP/IND-sensor
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LP-filter Trafo + Guest lecturer
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Trafo, Ethernet contact
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Phasor - vector
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Complex phasors, jo-method
e Complex OHM’s law for R L and C.

QRZLR'R

QLILL'J.XLIL_’J.COL w=2r-f
. 1

U =l jXo=1.——

~C -C J C -C JQ)C

e Complex OHM’s law for Z.

U=1-2| <=

v
|

p=arg(Z) = arctan( Im_Z_ j
Re
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o for half the voltage? (12.3)

o
+

U, Is a sine voltage with the angular = .

frequency . Decide the product R- .
(No current is consumed at U,). - o

- 2
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o for half the voltage? (12.3)
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o for half the voltage? (12.3)

o
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U, Is a sine voltage with the angular =
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o for half the voltage? (12.3)

o
+

U, Is a sine voltage with the angular

R

frequency . Decide the product R- .
(No current is consumed at U,). - o

1

U J“’C eC) _y L o Y iRz =10_,
S S ([2.9) "= 14 jeRC U, 5
JaC
1+R’0’C?=4 < RaC=+3 < RC:E
aQ
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Try yourself ... (12.1)

Set up the complex expression o ——

for current | expressed withUR  + R=? | X,=?
C o. LetU be reference phase, ) Za T
real. Answer with a expression 2 |

of the form a+jb.
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Try yourself ... (12.1)

Set up the complex expression o ——
for current | expressed withUR  + R=? | X,=?
C o. LetU be reference phase, ) Za T
real. Answer with a expression 2 |
of the form a+jb.
L=l le =t =2+ joC U
JaC
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Compare serial with parallel (12.5)

A,{ A | =7

_ .
Y2 yi=2 o—1 |
®

SOOI

© W

When a resistor R and a capacitor C is connected in parallel
to a voltage source U each of them get the current 2A.

How big would the current in the resistor be if the two were
series connected to the voltage source?
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Compare serial with parallel (12.5)

A,{ A | =7

SoIE OIS

Q

N

wC

N
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Compare serial with parallel (12.5)

Ay Al =7

Y0 Y2 L e
U + R C U + ?
Y, I RAY . C
B B

Nt

e Series connected:

U U

1 2
R+ —— 2 1
i C Re+| —
J \/ (a)Cj
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Compare serial with parallel (12.5)

A Al =7

S0 g2 L -
U + R C U + ?
Y DAY . C
B B

Nt

e Serial connection:

as before ...
| U —{R—U 1 _U}_ U B
el T TR
R*+| — — | 4| =
wC 2 2
— U =2 =1414 A Paralell Iz= 2A
Uys+i Serial Iz=1,4A
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AC circuit with inductor (12.11)

An AC voltage Uy with the frequency f= 1000 Hz feeds a circuit with
an inductance L = 10 mH 1n series with a resistor R = 50 Q. In parallel

with these are a resistor R¢ = 100 Q.
Given is voltage Uyr=6,28 V.

a) Calculate /; O *I
b) Calculate Uk ., ! - i+
¢) Calculate Uy U Is R Ur
d) Calculate 7 IN R
Y Rg
- . .
£=1000 Hz L
AV
O O
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a) Calculate I, (12.11)

a) Q 7 are chosen as reference phase, arg(g L,_T) =0
Q{,-T = ]@L : i| QUT = UUT =6,28
1, =20 028 01

joL  j-27-1000-10-10

1,=0,14
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b) Calculate U, (12.11)

by U,=R-1,=-50-0,1j=-5j U,=5V -

Un av
~y

£=1000 Hz 7
v Yur
AV

o) o)
UUT

:}—|

[S |

Ur VN — _N
UIN

‘\x [
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c) Calculate U, (12.11)

¢) Up=Uy+U,, =6,28-5] U, =+6,28+5 =80V

[o=Lw 028757 0630 05
R, 100

O * + O
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d) Calculate | (12.11)

1 =Yy 828757 663_0.05;
100

d) I=1,+1.=-01+0,063-0,05/=0,062-0,15]

I =4/0,063*+0,15> =0,16 A

O * + O
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Series resonance

1f

08¢
R 0.707
0,6F
) L 0.4t
0.2F
C
T “
c__ 1 0~ 27, L
° 2z4JLC r

I
I
I
I
I

™,

w [Hz]=Af

>

[0
a,

I

If Q Is high, no significant error is done if the

bandwidth is divided equally on both sides of f,,.
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Parallel resonance

The parallel resonance circuit in manual computation for simplicity
one usually uses the formulas of the ideal resonant circuit. At high Q
and close to the resonance frequency f, the deviations becomes
Insignificant. At Q >10 are the two circuits "interchangeable".

LU BN LU

| | Q
o~ 1 c 1k< 1@ c
e IO T 0 o F

ey ‘

{/\
Alternative oLk [Rp A2
definitionof @ |~ 1, kool)| T 225
with R, N\

(applies approximately for Q >10)
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L oaded parallel resonance

R
Usually the Load | Q
resonance circuit T
is loaded! Iy

If the loaded resonance circuit is to
become the wanted Q value one has to
have an inductor with a much better Q,!

' e Q, unloaded Q-value

-1
A,
T
|

]

|
O;UI
=0

r
|
|
m
|
L - —— - _
A
)
Pu)
Il
Q,
r
|
IL
|
©
|
|
V
O
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L oaded parallel resonance

% B
- oommy | N = :
| N S We will need an
L"'F’J | 0 jnductor with Q,!
Rigas | Q  When the circuit is loaded
E— = with R, .4 the Q-value will

r, change from Q, to Q!
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To measure Q-value (13.9)&

Radio controled clock is a clock that is automatically
synchronized with a time code from a radio transmitter in
Germany, on longvawe 77,5 kHz. The time signal consists of
pulses encoded digitally. The signal strength is weak so such
a receiver uses a tuned resonant circuit with L and C. The
coil has a ferrite core, and this is also used as an antenna.

In a project we have to measure the Q-value this resonance
circuit. How will this be done? Other values:

L=15mH
C=28nF
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To measure Q-value (13. 9)&\

1000 r

U, =15V

Q-meter

U=15mV

_O_r'\m_:,_o_

—@ s Uy, =173V

|ldeal emk

This 1s how to measure the inductor’s Q-value.

U, = 15V Is a sine voltage with the frequency 77,5 kHz (the
resonance frequency) which is voltage divided to 15 mV. Over the
capacitor we then measures the much bigger voltageU ,r = 1,73 V.

a) What is the inductor’s Q-value?

b) What is the value of the inductor’s internal resistance r (will

also include other losses)?
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To measure Q-value (13.9)‘;‘\\

1000 L r

) 0,1

L _ .+ 1 1
c f— -
Qmeter  ——(V )Ur ° 2zJL-.C 27,1510°%.2810°

Check of resonance frequency 77,5 KHz

=77,5-10°

Ideal emk

The voltage divider: U,k =15 0.1 =0,015V
100
274 -L 1 U, U 1,73
a = —_— = — = = = U = Ut = : = 115
) Q T U, =U.=Uy} U 0015

r r

, . 103 12 .10-3 Big compared with
r= ert oL 2w 17510715007 6,33Q| 0,1Q from voltage
Q 115 divider.

b)
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SL'’s access card (13.7)

Bk -
//

]
[
[
QD
)
=

SL access-card contains a RFID-tag that communicates with
the turnstyle reader on the frequency 13,56 MHz and uses the
data transfer speed of 70 KHz.

To be able to read data in that speed then the resonance
circuits inside the reader and the card must have a bandwidth
at least twice this data speed, eg. 200 kHz.

[

)
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SL’s access card (13.7) # N

RFID-tag in the card concists of a

. r="?
parallel resonance circuit 0
C||(L+rp)||R 5aq- The processor in
the card consumes current from the Rioad | O L
resonance circuit. This is -C
symbolized with the resistance "y

R, .= 30000 Q.

f,=13,56 MHz = C=55pF
BW = 200 kHz R, = 30000 Q
L=25uH

William Sandgvist william@kth.se



SL’s access card (13.7) 4 N

e \Wanted Q-value:

o fp _1356-10° _ o r;['j%fi; 0

T A 200-10° | L
e Total parallel resistance for T *; ——————
bandwidth 200 kHz

R=Q-X, =Q-2f,L=68-2r-1356-10°-2,5-10"° =14469 O
R =30000Q R, >R

R -R  30000-14469
R, —R 30000-14469
R, 27947

X, 27-1356-10°-2,5-10°°

R=R ||[R, = R,= = 27947 Q)

Qo:
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SL’s access card (13.7)

e The inductor Q-value: 131!

e The inductor resistance r,
I, = Qg ‘R, = 13127947 =1,63Q

e The loaded resonance circuit

Rlaad Q L Q =68
- R, =30000 Q
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Thevenine equivalent with inductor (12.4)

Determine the value of the Ri=750
—_
current . o
Use Thevenine equivalent. U, R =100
~ (D
R2
220V, 50Hz _500< X=400
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Thevenine equivalent with inductor (12.4)

Determine the value of the
current I.

Use Thevenin equivalent.
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Thevenin equivalent with inductor (12.4)

R,=75Q

Calculate the "
Thevenin S
equivalent E, 220V, 50K3 [ oo,
and R, of this

circuit.
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Thevenine equivalent with inductor (12.4)

Y R =@=SOQ
Calculate the ' 75450 | =p Ri=100
Thevenin ur ™ E_%:I_é
equivalent By 2ovs0 CD X=400
and R, of this —
circuit. E = 220+=22-=83V, 50Hz
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Thevenine equivalent with inductor (12.4)

R1=@=SOQ _

Calculate the 75+50 = =100
Thevenin ur, v

- . <> X =40 Q
equivalent E;  zzov.s0m L
and R, of this o
circuit E =220 755+050 =88V, 50Hz

The emf and resistors — this time as with DC circuits ...

R, = 75-50 2300 E, =220 50 _agy
75+30 75+350

The inductor — now it must be considered an AC circuits ...
U 88 88

" [(30+10)+ j40] /(30 +10)% + 40°

=156 A
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Active power In impedance

Set up an expression of the active % P=7
power P for this impedance. ~ * [ e
There will only be
power in the resisters. R L
U reference phase, real.
P=I2.R l=o=_ 2 = ="
Z R+jaol JRZ + (al)?
_R. u* 1 RU* w—>0=P—>0
R*+(wL)? | R* +(wl)? U?2

w0—>0=>P—>—
R
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Example. Complex equivalent

R =63Q Zy
f = 1000 Hz | | 5
+ L +
e (D =& (D
U=12V
—0 )

a) Derive the equivalent complex circuit with E,+Z,.

b) Suppose that we can load the circuit with an arbitrary
chosen impedance — how should this be composed if one
wishes the power in the load to be the maximum?
(Maximum power transfer theorem).
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Example. Complex equivalent, E,

R =63Q Z;
f = 1000 Hz | | 5
+ L +
e (D =& (D
U=12V
—0 )

E, Is calculated as the divided voltage. If U is the reference
phase we get E, 8,47 V and gets the phase 45° to U.

If there are no other voltage sources or current sources in
the circuit then we don’t have to keep track on the phase, as
E, might as well become the network’s new reference
phase!

jol j271000-0,01 . —
E,=U =12 —6+6j E,=+62+6>=848V
=% T R+jwL ~ 63+j271000-0,01 5

William Sandgvist william@kth.se



Example. Complex equivalent, Z,

R=63Q Z,
— —C
+ L +
o1 (D ==
U=12V
—0 )

Z, 1s the impedance we see If we turn down U.

_ R-joL  63-j221000-0,01
~' R+jwL 63+j271000-0,01

~31,4+315]
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Maximum power, X

Z;=31,4+31,9

Fam
e

The equivalent circuit is 8,57 V an
emf with internal impedance

Z, = 31,4+315j. E, +<>
A

e Maximum power.

O

At resonance inductance and capacitance cancel each other. This
will maximize the power in the load. Therefore, the load this time
should be capacitive (-31,5)).

When the two reactances cancel each other the circuit becomes

completely resistive. What load resistance will give the maximum

power?
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Maximum power, R,

B . po E.- R, R
R +R R +R.)’
| L ( | L) _:’_»_Q_ D = Max ?
When do P(R,) have a maximum? (You *C) ' uq
0 L

P=R_-12 I=

get simpler calculations if you turn to the
question to "where is 1/P minimum"). 0

1 1 R® R R?
E:EZ.(RLJFRI L)— ~-(R.+2-R + I)
0 L L 0
2
%{éj dg[ (R +2. R+R)] 1—%:0 ~ R =R
L L

Maximum transfered power if you chose R, = R,.
(R, =314 Q).
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The maximum power

How big is the power for R, =R, S
(Maximum power)? L PRV

R
P:EZ' L R :R — P =

How big are the losses inside the equivalent circuit?

If R_ =R, the power is divided equal between the internal
resistance and the load. This means that the Thermal
efficiency will be 50% (= bad).

Maximum power transfer, impedance matching, is only used

when neccessary, such as for radio transmitters.
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Maximum power transfer

Z ;= 31,4431 5« X =0

2
I:)max = e M \
+

O

At power match with a load equal to the complex
conjugate of the internal impedance, the effect:
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