
DD2457 Program Semantics and Analysis

Examination problems
with solution sketches
3 June 2015, 14:00 - 19:00

Dilian Gurov
KTH CSC

tel: 08-790 8198

1 Level E

1. Consider the Natural semantics of the While language. The rules of the semantics do not impose 4p
a particular order of execution. However, we discussed in class that the language is deterministic,
and that a strategy can be imposed on applying the rules that guarantees that for any given initial
configuration 〈S, s〉 the exploration will terminate whenever there exists a derivation.

(a) Suggest a procedure (or function) that executes While programs in Natural semantics from a
specified initial state, yielding the final state if there is one. Provide the pseudo-code of the
procedure in a suitable notation.

Solution: Here is a possible solution, implemented as a function:

fun exec(S, s) =

let fun update(s, x, v) = ... end;

let fun aeval(a, s) =

case a of

n : n;

x : s(x);

a1+a2 : aeval(a1, s) + aeval(a2, s);

a1-a2 : aeval(a1, s) - aeval(a2, s);

a1*a2 : aeval(a1, s) * aeval(a2, s);

end;

end;

let fun beval(b, s) = ... end;

in case S of

x:=a : update(s, x, aeval(a, s));

skip : s;

S1;S2 : let s’ = exec(S1, s) in exec(S2, s’);

if b then S1 else S2 : beval(b, s) = tt ? exec(S1, s) ! exec(S2, s);

while b do S : beval(b, s) = tt

? let s’ = exec(S, s) in exec(while b do S, s’);

! s;

end;

end;

(b) Explain briefly the workings of your procedure (or function), and argue why it yields the correct
final state whenever it exists.

Solution: The evaluation of arithmetic and Boolean expressions follows the semantic definitions
of A and B, which we have shown in class to be deterministic. The rules for statements are
uniquely applicable depending on the type of statement and its potential Boolean guard, except for
the choice of state s′ in rules [compns] and [whilettns]. Again, we have shown in class that execution
of While programs in Natural semantics is deterministic, and so we are safe to compute s′ by
executing S1, respectively S, from s.



2. Consider the following (not particularly useful) While program: 4p

x := 17;

while 0 ≤ y do

if x ≤ y then

y := y − x;

while 0 ≤ x do x := x− y
else

x := x− 1;

Your task is to construct for this program a test suite, i.e., a set of tests, each being represented simply
by an initial state. The coverage criterion for the suite is to traverse every possible simple path of the
program, i.e., no edge of the control flow graph needs to be visited more than once along the same
path. Apply symbolic execution (see handouts) to construct such a test suite. Illustrate and explain
your construction step-by-step.

Solution: As we are only interested in simple paths, one possibility is to re-write all while statements
to if statements (for simplicity I will omit the else branches), and to add labels as a preparatory step:

l0 : x := 17;

l1 : if 0 ≤ y then

l2 : if x ≤ y then

l3 : y := y − x;

l4 : if 0 ≤ x then l5 : x := x− y
else

l6 : x := x− 1;

lF :

The paths in this modified program (corresponding to the simple paths of the original one), each
corresponding path condition obtained by symbolic execution as explained in class, and a possible
corresponding satisfying assignment (i.e., state, if there is one), are summarized by the table:

Path Path Condition State Identifier State

l0l1l2l3l4l5lF 0 ≤ y0 ∧ 17 ≤ y0 ∧ 0 ≤ 17 s1 [x 7→ 0, y 7→ 17]

l0l1l2l3l4lF 0 ≤ y0 ∧ 17 ≤ y0 ∧ ¬(0 ≤ 17) − −
l0l1l2l6lF 0 ≤ y0 ∧ ¬(17 ≤ y0) s3 [x 7→ 0, y 7→ 0]

l0l1lF ¬(0 ≤ y0) s4 [x 7→ 0, y 7→ −1]

The second path is infeasible, since its path condition is unsatisfiable, and we thus obtain the test
suite T = {s1, s3, s4}.



2 Level C

For grade D you need to have passed level E and obtained 5 (out of 12) points from this section. For passing
level C you need 8 points from this section.

Consider the extension of While with the thread S end statement discussed in class and in Assign-
ment 2. Extend the Abstract Machine of Chapter 4 of the course book to handle this extension in a way
that you still can argue for correctness of the implementation of While. That is:

1. Propose an operational semantics for the extended language that is suitable as a specification for the 3p
implementation.

Solution: The first subtle point of the task is that, as discussed in class and in the course book, Natural
semantics is inadequate to capture the interleaving of multi-threaded execution. We have therefore
to pick a SOS-style semantics. Here is a set of possible rules, following a suggestion presented in
class, based on configurations over multi-sets of statement sequences (see also the suggested solution
to problem E1 from the exam from 21 May 2013):

[skipMT] 〈(skip : γ) +M, s〉 ⇒ 〈γ +M, s〉
[assMT] 〈(x := a : γ) +M, s〉 ⇒ 〈γ +M, s[x 7→ A[[a]] (s)]〉

[threadMT] 〈(thread S end : γ) +M, s〉 ⇒ 〈S + γ +M, s〉
[compMT] 〈(S1;S2 : γ) +M, s〉 ⇒ 〈(S1 : S2 : γ) +M, s〉

[ifttMT] 〈(if b then S1 else S2 : γ) +M, s〉 ⇒ 〈(S1 : γ) +M, s〉 if B[[b]] (s) = tt
[ifffMT] 〈(if b then S1 else S2 : γ) +M, s〉 ⇒ 〈(S2 : γ) +M, s〉 if B[[b]] (s) = ff

[whilett
MT] 〈(while b do S : γ) +M, s〉 ⇒ 〈(S : while b do S : γ) +M, s〉 if B[[b]] (s) = tt

[whileff
MT] 〈(while b do S : γ) +M, s〉 ⇒ 〈γ +M, s〉 if B[[b]] (s) = ff

It is against this semantics as a specification of While that the correctness of the implementation will
be argued.

2. In this operational semantics, show an execution of the program: 2p

x := 0; while true do (x := x+ 1; thread x := x− 1 end)

from an arbitrary state s up to a repeating configuration.

Solution: Let W abbreviate while true do (x := x+ 1; thread x := x− 1 end).

〈x := 0; W, s〉
⇒ 〈W, s[x 7→ 0]〉 [assMT]
⇒ 〈(x := x+ 1; thread x := x− 1 end);W, s[x 7→ 0]〉 [whilett

MT]
⇒ 〈(x := x+ 1; thread x := x− 1 end) : W, s[x 7→ 0]〉 [compMT]
⇒ 〈x := x+ 1 : thread x := x− 1 end : W, s[x 7→ 0]〉 [compMT]
⇒ 〈thread x := x− 1 end : W, s[x 7→ 1]〉 [assMT]
⇒ 〈(x := x− 1) +W, s[x 7→ 1]〉 [threadMT]
⇒ 〈W, s[x 7→ 0]〉 [assMT]

and we reached a repeating configuration.



3. Extend suitably the abstract machine language AM and the translation of While into AM. 2p

Solution: We could extend AM with the instruction SPAWN(c), and the translation of statements
with the clause:

CS[[thread S end]]
def
= SPAWN(CS[[S]])

4. Describe the necessary extensions of the (operational semantics of the) abstract machine, so that you 3p
can still argue for correctness of the implementation (this you will do in part A below).

Solution: We extend abstract machine configurations to 〈C, e, s〉, where C is a multi-set of code
(instruction sequences), and add the operational semantics rule:〈

SPAWN(c) : c′ + C, e, s
〉
�

〈
c+ c′ + C, e, s

〉
However, here comes the next subtle point: The SOS specification of While treats the evaluation of
arithmetic and Boolean expressions atomically, and thus the current operational semantic rules of the
abstract machine do not guarantee correctness of the implementation.

One way to achieve such atomicity on the abstract machine level could be to restrict the rules so that,
whenever the evaluation stack is non-empty, only the code (thread) that last made the evaluation
stack non-empty is allowed to progress, until the stack becomes empty again.

5. Translate the program from item 2 above to AM and execute the resulting code from an arbitrary 2p
state s up to a repeating configuration, matching the execution from item 2.

Solution: The translation of the program proceeds as follows:

CS[[x := 0; while true do (x := x+ 1; thread x := x− 1 end)]]
= CS[[x := 0]] : CS[[while true do (x := x+ 1; thread x := x− 1 end)]]
= PUSH−0 : STORE−x : LOOP(CS[[true]] , CS[[x := x+ 1; thread x := x− 1 end]])
= PUSH−0 : STORE−x : LOOP(TRUE, CS[[x := x+ 1]] : CS[[thread x := x− 1 end]])
= PUSH−0 : STORE−x : LOOP(TRUE,PUSH−1 : FETCH−x : ADD : STORE−x :

SPAWN(PUSH−1 : FETCH−x : SUB : STORE−x))

Let c abbreviate the code PUSH−1 : FETCH−x : ADD : STORE−x : SPAWN(PUSH−1 :
FETCH−x : SUB : STORE−x). The execution that follows the one of the SOS above proceeds as
follows, jumping over steps and presenting only the matching configurations:

〈PUSH−0 : STORE−x : LOOP(TRUE, c), ε, s〉
�+ 〈LOOP(TRUE, c), ε, s[x 7→ 0]〉
�+ 〈c : LOOP(TRUE, c), ε, s[x 7→ 0]〉
�+ 〈SPAWN(PUSH−1 : FETCH−x : SUB : STORE−x) : LOOP(TRUE, c), ε, s[x 7→ 1]〉
� 〈PUSH−1 : FETCH−x : SUB : STORE−x + LOOP(TRUE, c), ε, s[x 7→ 1]〉
�+ 〈LOOP(TRUE, c), ε, s[x 7→ 0]〉

and we reached the repeating configuration. Note that all transitions adhere to the restriction stated
above that only the thread that last made the evaluation stack non-empty is allowed to progress.



3 Level A

For grade B you need to have passed level C and obtained 4 (out of 10) points from this section. For grade A
you need 7 points from this section.

1. For the extension of While with multi-threading and its implementation developed in part C above, 5p
formalize the statement of correctness of the implementation (just the statement itself, not its proof).
Argue as formally as you can that your correctness statement holds.

Solution: First, we need to lift the translation of statements CS[[−]] to multi-sets of statement se-
quences M, in the obvious way; then the definition of Sam can stay as it is, referring to the lifted
definition of the extended translation. The operational semantics of multi-threaded While induces a
semantic function Smt in the usual way. The correctness statement can then be presented as:

For every statement S of multi-threaded While, we have:

Smt [[S]] = Sam [[S]]

The proof of the statement can again be organized as four separate results, closely following the
treatment in the book. Lemma 4.18 and Exercise 4.19 can stay unchanged. Lemma 4.21 can be
reformulated as follows:

if 〈S, s〉 ⇒ 〈S′ + γ, s′〉 then 〈CS[[S]] , ε, s〉�+ 〈CS[[S′]] + CS[[γ]] , ε, s′〉

where S′ accounts for a potentially spawned new statement, and γ for the statement sequence resulting
from S within the current thread. Lemma 4.22 can be adapted accordingly.

To then combine these lemmas to prove the correctness statement above one has to rely heavily on
the restriction imposed on the execution of the abstract machine that only the thread that last made
the evaluation stack non-empty is allowed to progress.

2. When we developed the Denotational semantics of While, we discussed a possible definition for while 5p
loops as follows:

S ′ds[[while b do S]] (s) = s′
def⇐⇒ ∃s0, . . . , sn ∈ State.

s = s0 ∧ s′ = sn
∧ ∀i < n. (B[[b]] (si) = tt ∧ Sds[[S]] (si) = si+1)
∧ B[[b]] (sn) = ff

Instead, we chose a definition based on fixed points (i.e., as a specific solution to a recursive semantic
equation). Still, argue as formally as you can that the above definition is equivalent to the chosen defi-
nition. (Hint: Refer to the meaning of the i-th approximant of the semantic transformer corresponding
to the loop.)

Solution: We have to show that for all s, s′ ∈ State:

Sds[[while b do S]] (s) = s′ ⇔ S ′ds[[while b do S]] (s) = s′

We have by definition:
Sds[[while b do S]] = ∪i≥0 F i

b,S(∅)

and so we have that Sds[[while b do S]] (s) = s′ if and only if there is i ≥ 0 such that F i
b,S(∅)(s) = s′. In

class we discussed that F i
b,S(∅)(s) = s′ holds when executing while b do S from s terminates in s′ with

executing the loop body S at most i− 1 times. Let n be the smallest index such that Fn+1
b,S (∅)(s) = s′.

This means then that executing while b do S from s terminates in s′ with executing the loop body S
exactly n times. This corresponds precisely to the case formalized by S ′ds[[while b do S]].


