SF1624 Algebra och geometri Solutions for Examn 2015.06.10

Del A

1. We have the following points in three space:

$$
\begin{equation*}
A=(-1,0,1), B=(1,1,2) \quad \text { och } \quad C=(0,0,2) . \tag{1p}
\end{equation*}
$$

(a) Give a parametric representation of the line l passing through B and C.
(b) Determine an equation (normal form) for the plane π containing A, and orthogonal against l.
(c) Determine the distance between point A and the line l.

Solution.

(a) The line l passing through B and C has directional vector $\overrightarrow{B C}=\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$. The line passes through e.g. the point B, which gives the parametric representation

$$
\left(\begin{array}{l}
x \\
y \\
x
\end{array}\right)=t\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

(a) As the sought plane is orthogonal l, the directional vector $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$ is also a normal vector for the plane. The plane also passes through A. An equation is then

$$
(-1) \cdot(x-(-1))+(-1) \cdot(y-0)+0 \cdot(z-1)=0, \text { d.v.s. } x+y+1=0 .
$$

(b) We have that l is orthogonal to the plane π. It follows that the distance we are seeking equals the distance between A and P, where P is the intersection point of π and l. We have that

$$
l \cap \pi=\left\{\left(\begin{array}{c}
-t+1 \\
-t+1 \\
2
\end{array}\right) \text { så att }-t+1-t+1+1=0\right\} .
$$

It follows that $t=\frac{3}{2}$, and that $P=\left(\begin{array}{c}-1 / 2 \\ -1 / 2 \\ 2\end{array}\right)$. The sought distance is

$$
d(A, P)=\|\overrightarrow{A P}\|=\sqrt{\frac{1}{4}+\frac{1}{4}+1}=\sqrt{\frac{3}{2}} .
$$

2. For each number a we have the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & -a \\
-1 & 1 & 0 \\
2 & 2 a+2 & -2 a-4
\end{array}\right]
$$

(a) For which values of a is the matrix A invertible?
(b) Let $a=3$, and determine the inverse of A.

Solution.

(a) By adding multiples of the first row to the second and the third, we get

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -a \\
-1 & 1 & 0 \\
2 & 2 a+2 & -2 a-4
\end{array}\right] & =\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & -a \\
0 & 2 & -a \\
0 & 2 a & -4
\end{array}\right] \\
& =1 \operatorname{det}\left[\begin{array}{cc}
2 & -a \\
2 a & -4
\end{array}\right] \\
& =2(-4)-2 a(-a) \\
& =2\left(a^{2}-4\right) .
\end{aligned}
$$

The determinant $\operatorname{det}(A)$ is therefore zero if and only if $a= \pm 2$, so the matrix A is invertible for all other values of a.
(b) When $a=3$, we have the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & -3 \\
-1 & 1 & 0 \\
2 & 8 & -10
\end{array}\right]
$$

Prosecuting elementary row operations give

$$
\begin{aligned}
{\left[\begin{array}{ccc|ccc}
1 & 1 & -3 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
2 & 8 & -10 & 0 & 0 & 1
\end{array}\right] } & \sim\left[\begin{array}{ccc|ccc}
1 & 1 & -3 & 1 & 0 & 0 \\
0 & 2 & -3 & 1 & 1 & 0 \\
0 & 6 & -4 & -2 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{ccc|ccc}
1 & 1 & -3 & 1 & 0 & 0 \\
0 & 2 & -3 & 1 & 1 & 0 \\
0 & 0 & 5 & -5 & -3 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{lll|lll}
1 & 1 & 0 & -2 & -9 / 5 & 3 / 5 \\
0 & 2 & 0 & -2 & -4 / 5 & 3 / 5 \\
0 & 0 & 1 & -1 & -3 / 5 & 1 / 5
\end{array}\right] \\
& \sim\left[\begin{array}{lll|lll}
1 & 0 & 0 & -1 & -7 / 5 & 3 / 10 \\
0 & 1 & 0 & -1 & -2 / 5 & 3 / 10 \\
0 & 0 & 1 & -1 & -3 / 5 & 1 / 5
\end{array}\right]
\end{aligned}
$$

Our candidate for the inverse is

$$
A^{-1}=\left[\begin{array}{lll}
-1 & -7 / 5 & 3 / 10 \\
-1 & -2 / 5 & 3 / 10 \\
-1 & -3 / 5 & 2 / 10
\end{array}\right]
$$

We control our answer

$$
\left[\begin{array}{ccc}
1 & 1 & -3 \\
-1 & 1 & 0 \\
2 & 8 & -10
\end{array}\right] \cdot\left[\begin{array}{ccc}
-1 & -7 / 5 & 3 / 10 \\
-1 & -2 / 5 & 3 / 10 \\
-1 & -3 / 5 & 2 / 10
\end{array}\right]=\left[\begin{array}{ccc}
-1-1+3=1 & \frac{-7-2+9}{\frac{5}{5}}=0 & \frac{3+3-6}{10}=0 \\
1-1=0 & \frac{7-2}{5}=1 & \frac{-14-16+30}{5}=0 \\
\frac{3+3-6}{10}=0 & \frac{-3+3}{10}=0 & \frac{6+24-20}{10}=1
\end{array}\right] .
$$

Answer.
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map

$$
T(x, y, z)=(x+2 y+z, 2 x+y-z,-3 x-y+2 z) .
$$

(a) Determina a matrix representation of the map T.
(b) Determine a basis for the kernel, $\operatorname{ker}(T)$.
(c) Determine the dimension of the image of T.
(d) Let $P=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Determine another point Q such that $T(P)=T(Q)$.

Solution.

(a) We have that

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x+2 y+z \\
2 x+y-z \\
-3 x-y+2 z
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & -1 \\
-3 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

and it follows that the matrix representation of T is

$$
M_{T}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & -1 \\
-3 & -1 & 2
\end{array}\right]
$$

(b) Gauss-Jordan elimination transforms M_{T} to row echolon form

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & -1 \\
-3 & -1 & 2
\end{array}\right] } & \sim\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -3 & -3 \\
0 & 5 & 5
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We read off the solutions to the system

$$
M_{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

as

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

for real numbers t. A basis for the kernel is then given by, for instance, the vector

$$
\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] .
$$

(c) The dimension of the image equals the rank of the matrix M_{T}, which equals the number of leading ones. In this case the rank is two.
(d) We have that $P+Q^{\prime}$, with Q^{\prime} in the kernel of T have the same image as $T(P)$. The kernel of T is $\left[\begin{array}{lll}t & -t & t\end{array}\right]^{T}$. So, we can for instance choose

$$
Q=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]
$$

Answer.
4. We have the matrix

$$
A=\left[\begin{array}{lll}
5 & 5 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5
\end{array}\right]
$$

(a) Determine one eigenvalue that has two linearly independent eigenvectors.
(b) Determine all eigenvalues, and determine wheter the matrix A is diagonalizable.

Solution.

(a) The matrix A has rank 1, clearly as

$$
\left[\begin{array}{lll}
5 & 5 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5
\end{array}\right] \sim\left[\begin{array}{lll}
5 & 5 & 5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

So, the kernel is of dimension two. Therefore $\lambda=0$ is one eigenvalue having two linearly independent eigenvectors.
(b) The characteristic polynomial of A is

$$
0=\operatorname{det}(\lambda I-A)=\operatorname{det}\left[\begin{array}{ccc}
\lambda-5 & -5 & -5 \\
-5 & \lambda-5 & -5 \\
-5 & -5 & \lambda-5
\end{array}\right]
$$

If we add the second and the third row to the first row, we get

$$
\begin{aligned}
0 & =\operatorname{det}\left[\begin{array}{ccc}
\lambda-5 & -5 & -5 \\
-5 & \lambda-5 & -5 \\
-5 & -5 & \lambda-5
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{ccc}
\lambda-15 & \lambda-15 & \lambda-15 \\
-5 & \lambda-5 & -5 \\
-5 & -5 & \lambda-5
\end{array}\right] \\
& =(\lambda-15) \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 1 \\
-5 & \lambda-5 & -5 \\
-5 & -5 & \lambda-5
\end{array}\right] \\
& =(\lambda-15) \operatorname{det}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
& =(\lambda-15) \lambda^{2} .
\end{aligned}
$$

We now know all the roots of the characteristic polyomial, $\lambda=0$ and $\lambda=15$. As the dimensions of their corresponding eigenspaces equals their algebraic multiplicities (2 and 1 , respectively) we get that the matrix is diagonalizable.
5. Let V be the linear span of the vectors $\left[\begin{array}{c}-2 \\ -2 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right]$, and let V^{\perp} denote its orthogonal complement.
(a) Determine a basis for V^{\perp}.
(b) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the reflection through V, i.e. $T(\vec{x})=\vec{x}$ if \vec{x} is in V, and $T(\vec{x})=$ $-\vec{x}$ if \vec{x} is in V^{\perp}. Determine $T\left(\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)$.

Solution.

(a) The vector space V^{\perp} consists of all vectors $\left[\begin{array}{llll}x & y & z & w\end{array}\right]^{T}$ that are orthogonal against the two vectors $\vec{v}_{1}=\left[\begin{array}{llll}-2 & -2 & 0 & 1\end{array}\right]^{T}$ and $\vec{v}_{2}=\left[\begin{array}{llll}1 & 0 & 2 & 2\end{array}\right]^{T}$. Written in matrix form that means that $\left[\begin{array}{llll}x & y & z & w\end{array}\right]^{T}$ satisfies

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 2 \\
-2 & -2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

By elementary row operations we get that

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 2 \\
-2 & -2 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 2 \\
0 & -2 & 4 & 5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 2 \\
0 & 1 & -2 & -\frac{5}{2}
\end{array}\right]
$$

and we read off the solutions as

$$
\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
-2 s-2 t \\
2 s+\frac{5}{2} t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
2 \\
1 \\
0
\end{array}\right]+\frac{t}{2}\left[\begin{array}{c}
-4 \\
-5 \\
0 \\
2
\end{array}\right]
$$

with parameters s and t. A basis for V^{\perp} can therefore be chosen as the two vectors

$$
\vec{v}_{3}=\left[\begin{array}{c}
-2 \\
2 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad \vec{v}_{4}=\left[\begin{array}{c}
-4 \\
5 \\
0 \\
2
\end{array}\right]
$$

(b) We normalize the vectors \vec{v}_{1} and \vec{v}_{2}, and then get an ON-basis for the vector space V,

$$
\vec{n}_{1}=\frac{1}{3}\left[\begin{array}{c}
-2 \\
-2 \\
0 \\
1
\end{array}\right] \quad \text { och } \quad \vec{n}_{2}=\frac{1}{3}\left[\begin{array}{l}
1 \\
0 \\
2 \\
2
\end{array}\right]
$$

We let $\vec{x}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$. We have that

$$
\begin{aligned}
\operatorname{proj}_{V}(\vec{x}) & =\left(\vec{n}_{1} \cdot \vec{x}\right) \vec{n}_{1}+\left(\vec{n}_{2} \cdot \vec{x}\right) \vec{n}_{2} \\
& =\frac{1}{3}(-3) \vec{n}_{1}+\frac{5}{3} \vec{n}_{2} \\
& =\frac{1}{9}\left[\begin{array}{c}
6+5 \\
6+0 \\
0+10 \\
-3+10
\end{array}\right]=\frac{1}{9}\left[\begin{array}{c}
11 \\
6 \\
10 \\
7
\end{array}\right] .
\end{aligned}
$$

Then we get that $\vec{x}-\operatorname{proj}_{V}(\vec{x})=\frac{1}{9}\left[\begin{array}{c}-2 \\ 3 \\ -1 \\ 2\end{array}\right]$. It follows that

$$
\begin{aligned}
T(\vec{x}) & =T\left(\operatorname{proj}_{V}(\vec{x})\right)+T\left(\vec{x}-\operatorname{proj}_{V}(\vec{x})\right) \\
& =\operatorname{proj}_{V}(\vec{x})-\vec{x}+\operatorname{proj}_{V}(\vec{x}) \\
& =\frac{1}{9}\left[\begin{array}{c}
11 \\
6 \\
10 \\
7
\end{array}\right]-\frac{1}{9}\left[\begin{array}{c}
+2 \\
3 \\
-1 \\
2
\end{array}\right]=\frac{1}{9}\left[\begin{array}{c}
13 \\
3 \\
11 \\
5
\end{array}\right] .
\end{aligned}
$$

(b') Alternatively: We have the basis $\left\{\vec{v}_{1}, \overrightarrow{v_{2}}\right\}$ for V, and a basis $\left\{\vec{v}_{3}, \vec{v}_{4}\right\}$ for V^{\perp}. We determine the coordinate matrix for $\vec{x}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ with respect to the basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{4}\right\}$ of \mathbb{R}^{4}. This is given as the solution of the system

$$
\left[\begin{array}{cccc:c}
-2 & 1 & -2 & -4 & 1 \\
-2 & 0 & 2 & 5 & 1 \\
0 & 2 & 1 & 0 & 1 \\
1 & 2 & 0 & 2 & 1
\end{array}\right]
$$

By applying elementary row operations we get

$$
\sim\left[\begin{array}{cccc:c}
1 & 2 & 0 & 2 & 1 \\
0 & 2 & 1 & 0 & 1 \\
0 & 4 & 2 & 9 & 3 \\
0 & 5 & -2 & 0 & 3
\end{array}\right] \sim\left[\begin{array}{cccc:c}
1 & 0 & -1 & 2 & 0 \\
0 & 1 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 9 & 1 \\
0 & 0 & -\frac{9}{2} & 0 & \frac{1}{2}
\end{array}\right] \sim\left[\begin{array}{cccc:c}
1 & 0 & 0 & 0 & -\frac{3}{9} \\
0 & 1 & 0 & 0 & \frac{5}{9} \\
0 & 0 & 1 & 0 & -\frac{1}{9} \\
0 & 0 & 0 & 1 & \frac{1}{9}
\end{array}\right] .
$$

So,

$$
\vec{x}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=-\frac{3}{9} \vec{v}_{1}+\frac{5}{9} \vec{v}_{2}-\frac{1}{9} \vec{v}_{3}+\frac{1}{9} \vec{v}_{4} .
$$

And in particular we get that

$$
T(\vec{x})=-\frac{3}{9} \vec{v}_{1}+\frac{5}{9} \vec{v}_{2}+\frac{1}{9} \vec{v}_{3}-\frac{1}{9} \vec{v}_{4}=\frac{1}{9}\left[\begin{array}{c}
13 \\
3 \\
11 \\
5
\end{array}\right] .
$$

Answer.
6. Determine a symmetric matrix A that satisfies the following.
(a) The eigenspace corresponding to the eigenvalue $\lambda=2$ is $\left[\begin{array}{lll}2 t & t & -t\end{array}\right]^{T}$, where t is a parameter.
(b) The eigenspace corresponding to the eigenvalue $\lambda=4$ has dimension two.

Solution. The first condition (a) gives that $v=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$ is an eigenvector with eigenvalue
2. As the matrix A is symmetric, its different eigenspaces are orthogonal. So, the two dimensional eigenspace corresponding to the eigenvalue 4 , is orthogonal to $\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$. In other words the eigenspace E_{4} is given as the plane $2 x+y-z=0$. We choose an orthogonal basis $\{\vec{u}, \vec{w}\}$ for the plane;

$$
u:=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad \text { och } \quad w:=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] .
$$

This is not necessary, but does simplify our calculations that follow. I the basis $\{v, u, w\}$ the matrix representation of our linear map is the diagonal matrix

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] .
$$

The matrix we are looking for is the matrix representation in the standard basis. That means that

$$
A=\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]^{-1}
$$

We note, before we continue, that

$$
\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]^{T}\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] .
$$

Consequently the sought inverse matrix is given as the following product

$$
\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]^{-1}\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{6} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

We now proceed by caculating the matrix A,

$$
A=\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{6} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]=
$$

$$
\begin{gathered}
=\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & \frac{4}{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]= \\
=\left[\begin{array}{ccc}
\frac{2}{3} & 0 & \frac{4}{3} \\
\frac{1}{3} & 2 & \frac{-4}{3} \\
\frac{-1}{3} & 2 & \frac{4}{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{8}{3} & \frac{-2}{3} & \frac{2}{3} \\
\frac{-2}{3} & \frac{11}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{1}{3} & \frac{11}{3}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 11 & 1 \\
2 & 1 & 11
\end{array}\right] .
\end{gathered}
$$

Del C

7. Determine the line L that passes through the point $P=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and intersects both the lines

$$
L_{1}=\left\{\left.\left[\begin{array}{c}
3 t \tag{4p}\\
t \\
t+1
\end{array}\right] \right\rvert\, \text { tal } t\right\} \quad \text { and } \quad L_{2}=\left\{\left.\left[\begin{array}{c}
s \\
s+4 \\
2 s
\end{array}\right] \right\rvert\, \text { tal } s\right\} .
$$

Solution. A directional vector from the point P to a point Q on the line L_{1} is $Q-P=$ $\left[\begin{array}{lll}3 t-1 & t-1 & t\end{array}\right]^{T}$. And similarly we get the directiona vector $\left[\begin{array}{ccc}s-1 & s+3 & 2 s-1\end{array}\right]^{T}$ from P to a point on L_{2}. We need to determine the numbers s and t such that the vectors $\left[\begin{array}{c}3 t-1 \\ t-1 \\ t\end{array}\right]$ och $\left[\begin{array}{c}s-1 \\ s+3 \\ 2 s-1\end{array}\right]$ are parellel. The vectors being parallel means that there exists a number λ solving the system

$$
\left\{\begin{aligned}
3 t \lambda-\lambda & =s-1 \\
t \lambda-\lambda & =s+3 \\
t \lambda & =2 s-1
\end{aligned}\right.
$$

We subtract the second equation from the first, and get that $2 t \lambda=-4$. So $t \lambda=-2$. The third equation gives that $-2=2 s-1$, so $s=\frac{-1}{2}$. We use that information in the second equation $-2-\lambda=\frac{-1}{2}+3$, and we obtain that $\lambda=\frac{-9}{2}$. So $t=\frac{4}{9}$. One verifies that $\lambda=\frac{-9}{2}$, $t=\frac{4}{9}$ and $s=\frac{-1}{2}$ also satisfies the first equation.
We then have that $\left[\begin{array}{c}s-1 \\ s+3 \\ 2 s-1\end{array}\right]$, with $s=\frac{-1}{2}$, is a directional vector for L. This vector is $\left[\begin{array}{c}\frac{-3}{2} \\ \frac{5}{2} \\ -2\end{array}\right]$, and then also $\left[\begin{array}{c}-3 \\ 5 \\ -4\end{array}\right]$ is a directional vector L.
The line L is $\left[\begin{array}{c}-3 t+1 \\ 5 t+1 \\ -4 t+1\end{array}\right]$, where t is a parameter.

Answer.

8. Let $V_{1} \subset V_{2} \subset \cdots \subset V_{n}=\mathbb{R}^{n}$ be a collection of subspaces in \mathbb{R}^{n} where V_{k} has dimension k for each k, and where V_{k-1} is a subspace in V_{k} for each $k \geq 2$. Such a collection is called a flag. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map that stabilizes the flag. That means that for each $k=1,2, \ldots, n$ and for each vector $v \in \mathbb{R}^{n}$ the implication $v \in V_{k} \Rightarrow T(v) \in V_{k}$ holds. Let $v_{1}, v_{2}, \ldots, v_{n}$ be vectors in \mathbb{R}^{n} such that $\operatorname{span}\left\{v_{1}, v_{2} \ldots, v_{k}\right\}=V_{k}$ for each k. Show that the matrix representing T with respect to the basis $v_{1}, v_{2} \ldots, v_{n}$ is upper triangular.

Solution. Let B denote the matrix representation of T with respect to the basis $v_{1}, v_{2}, \ldots, v_{n}$. For each $k=1,2, \ldots, n$ we have that v_{k} belongs to V_{k}, as $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}=V_{k}$. As T stabilizes the flag, we get that even $T\left(v_{k}\right)$ belongs to V_{k}. So $T\left(v_{k}\right)$ can be written as a linear combination $b_{1, k} v_{1}+b_{2, k} v_{2}+\cdots+b_{k, k} v_{k}$ where $b_{1, k}, b_{2, k}, \ldots, b_{k, k}$ are real numbers. With respect to the basis $v_{1}, v_{2}, \ldots, v_{n}$ we have that v_{k} and $T\left(v_{k}\right)$ have the coordinate vectors
$\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]$ respectively $\left[\begin{array}{c}b_{1, k} \\ b_{2, k} \\ \vdots \\ b_{k, k} \\ 0 \\ \vdots \\ 0\end{array}\right]$,
where the singleton 1 occurs on row k. We conclude from this that

$$
B=\left(\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
0 & b_{2,2} & \cdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & b_{n, n}
\end{array}\right)
$$

, which is upper triangular.
9. The matrix

$$
A=\frac{1}{10}\left[\begin{array}{lll}
3 & 1 & 4 \\
2 & 8 & 0 \\
5 & 1 & 6
\end{array}\right]
$$

has eigenvectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ with corresponding eigenvalues

$$
\lambda_{1}=1, \quad \lambda_{2}=\frac{7+\sqrt{57}}{20}, \quad \text { och } \quad \lambda_{3}=\frac{7-\sqrt{57}}{20}
$$

Let $X=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ be a vector with positive coefficients $a \geq 0, b \geq 0$ and $c \geq 0$ such that $a+b+c=1$. Determine the point $A^{n} X$, when $n \rightarrow \infty$.

Solution. We have three different eigenvalues, and know thereby that the eigenvectors \vec{x}_{1}, \vec{x}_{2}, and \vec{x}_{3} form a basis for \mathbb{R}^{3}. Write X as a linear combination $X=\alpha_{1} \vec{x}_{1}+\alpha_{2} \vec{x}_{2}+\alpha_{3} \vec{x}_{3}$. From the linearity of A^{n} we obtain that

$$
\begin{aligned}
A^{n} X & =\alpha_{1} A^{n} \vec{x}_{1}+\alpha_{2} A^{n} \vec{x}_{2}+\alpha_{3} A^{n} \vec{x}_{3} \\
& =\alpha_{1} \lambda_{1}^{n} \vec{x}_{1}+\alpha_{2} \lambda_{2}^{n} \vec{x}_{2}+\alpha_{3} \lambda_{3}^{n} \vec{x}_{3} .
\end{aligned}
$$

We have that $|7+\sqrt{57}|<20$ and $|7-\sqrt{57}|<20$. This means that λ_{2} and λ_{3} have absolute values strictly less than 1 , and when $n \rightarrow \infty$ then $\lambda_{2}^{n} \rightarrow 0$ and $\lambda_{3}^{n} \rightarrow 0$. The implication is that $A^{n} X \rightarrow \alpha_{1} \vec{x}_{1}$ when $n \rightarrow \infty$. We need now to determine the line spanned by the eigenvector \vec{x}_{1}. The eigenvector \vec{x}_{1} is one, non-trivial, solution to the homogeneous system given by the matrix

$$
A-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\frac{1}{10}\left[\begin{array}{ccc}
-7 & 1 & 4 \\
2 & -2 & 0 \\
5 & 1 & -4
\end{array}\right]
$$

Gauss-Jordan elimination gives

$$
\left[\begin{array}{ccc}
-7 & 1 & 4 \\
2 & -2 & 0 \\
5 & 1 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 0 \\
-7 & 1 & 4 \\
5 & 1 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & -6 & 4 \\
0 & 6 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & -3 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

In other words, the eigenspace corresponding to the eigenvalue $\lambda_{1}=1$ are the vectors $\left[\begin{array}{c}\frac{2}{3} t \\ \frac{2}{3} t \\ t\end{array}\right]$ where t is a parameter.
We then note that every column in the matrix A sum up to one. That implies that if we have a vector $X=\left[\begin{array}{lll}a & b & c\end{array}\right]^{T}$ such that $a+b+c=1$, then also the coefficients of $A X$ sum up to one;

$$
A X=\frac{1}{10}\left[\begin{array}{c}
3 a+b+4 c \\
2 a+8 b \\
5 a+b+6 c
\end{array}\right]
$$

and we have that

$$
\frac{1}{10}(3 a+b+4 c+2 a+8 b+5 a+b+6 c)=\frac{1}{10} 10(a+b+c)=1
$$

In other words the matrix A maps the plane $x+y+z=1$ onto itself. We use now these two properties: One is that $A^{n} X$ converges towards the line $\operatorname{Span}\left(\vec{x}_{1}\right)$, and the other property is that the coefficients of $A^{n} X$ are positive and sum up to one.

A point on the line $\operatorname{Span}\left(\vec{x}_{1}\right)$ is of the form $\left[\begin{array}{c}\frac{2}{3} t \\ \frac{2}{3} t \\ t\end{array}\right]$, and the condition that the coefficients are positive and sum up to one gives that $t=\frac{3}{7}$. We therefore get that the vector $A^{n} X$ will converge towards

$$
\left[\begin{array}{l}
\frac{2}{7} \\
\frac{2}{7} \\
\frac{3}{7}
\end{array}\right]
$$

